metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­carbonyl­bis­­(1,3-diiso­propyl-4,5-di­methyl­imidazol-2-yl­­idene)iron

aDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 22 November 2012; accepted 23 November 2012; online 28 November 2012)

In the title compound, [Fe(C11H20N2)2(CO)3], the Fe atom shows a distorted trigonal–bipyramidal geometry with three carbonyl and two carbene ligands. The latter have a cis arrangement, with a C—Fe—C angle of 90.60 (7)°. The Fe atom lies 0.007 (1) Å above the basal plane defined by two carbonyl and one carbene C atoms. The mol­ecular structure is closely related to that of the isomolecular but not isotypic Ru complex with an identical cis arrangement, so, in general, bond geometries lie in expected ranges. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into infinite zigzag chains extending along [010].

Related literature

For structures of related cis complexes, see: Ellul et al. (2008[Ellul, C. E., Saker, O., Mahon, M. F., Apperley, D. C. & Whittlesey, M. K. (2008). Organometallics, 27, 100-108.]). For Co and Ru complexes with a trans configuration, see: van Rendsburg et al. (2007[Rendsburg, H. van, Tooze, R. P., Foster, D. F. & Otto, S. (2007). Inorg. Chem. 46, 1963-1965.]); Chantler et al. (2008[Chantler, V. L., Chatwin, S. L., Jazzar, R. F. R., Mahon, M. F., Saker, O. & Whittlesey, M. K. (2008). Dalton Trans. pp. 2603-2614.]); Ellul et al. (2008[Ellul, C. E., Saker, O., Mahon, M. F., Apperley, D. C. & Whittlesey, M. K. (2008). Organometallics, 27, 100-108.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C11H20N2)2(CO)3]

  • Mr = 500.46

  • Orthorhombic, P 21 21 21

  • a = 11.5913 (5) Å

  • b = 12.7572 (5) Å

  • c = 17.7970 (7) Å

  • V = 2631.69 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 120 K

  • 0.38 × 0.32 × 0.29 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 0.844

  • 26635 measured reflections

  • 6362 independent reflections

  • 5983 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.082

  • S = 1.04

  • 6362 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2789 Friedel pairs

  • Flack parameter: 0.022 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25B⋯O2i 0.98 2.42 3.154 (3) 131
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Related literature top

For structures of related cis complexes, see: Ellul et al. (2008). For Co and Rucomplexes with trans conformations, see: van Rendsburg et al. (2007); Chantler et al. (2008); Ellul et al. (2008).

Experimental top

To a solution of 1,3-diisopropyl-4,5-dimethylimidazol-2-thione (850 mg, 4 mmol) in 30 ml THF was added K (420 mg, 1 mmol + 10% excess) and the mixture was refluxed under inert atmosphere for 4 h. After filtration and removal of K2S, Fe2(CO)9 (360 mg, 1 mmol) was added to the filtrate. The reaction mixture was stirred over night at room temperature. After removal of the solvent and subsequent drying in vacuum the residue was cyrstallized by diffusion of hexane into a concentrated toluene solution to give single-crystal of the title complex.

Refinement top

All Hydrogen atom positions were clearly derived from difference maps, then refined at calculated positions riding on the parent atoms with C—H 0.98 - 1.00 Å and isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(–CH3). All CH3 hydrogen atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [001] with hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in bonding are omitted.
Tricarbonylbis(1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene)iron top
Crystal data top
[Fe(C11H20N2)2(CO)3]F(000) = 1072
Mr = 500.46Dx = 1.263 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7772 reflections
a = 11.5913 (5) Åθ = 2.4–27.7°
b = 12.7572 (5) ŵ = 0.61 mm1
c = 17.7970 (7) ÅT = 120 K
V = 2631.69 (19) Å3Prism, yellow
Z = 40.38 × 0.32 × 0.29 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6362 independent reflections
Radiation source: sealed tube5983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.803, Tmax = 0.844k = 1616
26635 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.1759P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
6362 reflectionsΔρmax = 0.42 e Å3
298 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 2789 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (11)
Crystal data top
[Fe(C11H20N2)2(CO)3]V = 2631.69 (19) Å3
Mr = 500.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.5913 (5) ŵ = 0.61 mm1
b = 12.7572 (5) ÅT = 120 K
c = 17.7970 (7) Å0.38 × 0.32 × 0.29 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6362 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5983 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.844Rint = 0.035
26635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.42 e Å3
S = 1.04Δρmin = 0.23 e Å3
6362 reflectionsAbsolute structure: Flack (1983), 2789 Friedel pairs
298 parametersAbsolute structure parameter: 0.022 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.378885 (18)0.495342 (17)0.430547 (11)0.01450 (6)
O10.34212 (13)0.66917 (12)0.32606 (8)0.0353 (4)
O20.37267 (15)0.28447 (11)0.36881 (9)0.0422 (4)
O30.12817 (10)0.49640 (11)0.43365 (7)0.0306 (3)
N10.34487 (13)0.52000 (12)0.60226 (8)0.0216 (3)
N20.45810 (13)0.63918 (11)0.55801 (9)0.0219 (3)
N30.62444 (13)0.43646 (11)0.47979 (7)0.0181 (3)
N40.62449 (12)0.49072 (12)0.36536 (8)0.0216 (3)
C10.36558 (16)0.60380 (14)0.36833 (10)0.0213 (3)
C20.37532 (17)0.36667 (14)0.39603 (10)0.0229 (4)
C30.22766 (14)0.49610 (14)0.43548 (9)0.0199 (3)
C40.39480 (14)0.55369 (13)0.53668 (9)0.0171 (3)
C50.26875 (16)0.42794 (16)0.60580 (11)0.0251 (4)
H5A0.26740.39770.55400.030*
C60.14431 (18)0.45811 (19)0.62406 (13)0.0364 (5)
H6A0.11930.51450.59040.055*
H6B0.13960.48220.67620.055*
H6C0.09420.39700.61730.055*
C70.3120 (2)0.34124 (18)0.65709 (13)0.0370 (5)
H7A0.39180.32380.64390.056*
H7B0.26330.27900.65100.056*
H7C0.30880.36500.70940.056*
C80.3765 (2)0.58435 (17)0.66267 (10)0.0324 (4)
C90.3397 (3)0.5679 (3)0.74274 (13)0.0557 (8)
H9A0.36250.62860.77300.084*
H9B0.37680.50470.76270.084*
H9C0.25570.55950.74480.084*
C100.44711 (19)0.65845 (16)0.63532 (11)0.0311 (5)
C110.5096 (3)0.74236 (19)0.67739 (14)0.0511 (7)
H11A0.47360.75210.72670.077*
H11B0.50580.80810.64900.077*
H11C0.59050.72190.68400.077*
C120.52171 (16)0.70393 (14)0.50370 (12)0.0255 (4)
H12A0.51840.66520.45490.031*
C130.64936 (17)0.71613 (17)0.52206 (15)0.0382 (5)
H13A0.68390.64680.52950.057*
H13B0.65800.75770.56800.057*
H13C0.68840.75180.48040.057*
C140.46139 (18)0.80827 (16)0.48996 (14)0.0370 (5)
H14A0.37980.79570.47860.055*
H14B0.49790.84410.44740.055*
H14C0.46770.85210.53500.055*
C150.55252 (14)0.47282 (12)0.42458 (10)0.0170 (3)
C160.58137 (15)0.38014 (14)0.54622 (10)0.0199 (4)
H16A0.49600.39120.54750.024*
C170.60057 (17)0.26248 (14)0.53661 (12)0.0293 (4)
H17A0.56800.23970.48850.044*
H17B0.56260.22480.57770.044*
H17C0.68350.24750.53750.044*
C180.62846 (19)0.42159 (16)0.62020 (10)0.0291 (4)
H18A0.61330.49700.62380.044*
H18B0.71180.40920.62250.044*
H18C0.59070.38530.66200.044*
C190.73965 (15)0.43699 (15)0.45598 (11)0.0226 (4)
C200.84120 (17)0.41219 (19)0.50418 (13)0.0359 (5)
H20A0.91200.41840.47440.054*
H20B0.83420.34050.52340.054*
H20C0.84420.46140.54640.054*
C210.73951 (15)0.47107 (14)0.38450 (10)0.0238 (4)
C220.84160 (17)0.4855 (2)0.33430 (13)0.0413 (6)
H22A0.91210.48740.36470.062*
H22B0.83380.55150.30660.062*
H22C0.84590.42700.29870.062*
C230.58288 (17)0.51908 (17)0.28977 (10)0.0306 (5)
H23A0.49670.51680.29210.037*
C240.6189 (2)0.4380 (3)0.23116 (12)0.0501 (7)
H24A0.59470.36810.24770.075*
H24B0.70290.43940.22520.075*
H24C0.58220.45450.18300.075*
C250.6150 (2)0.6308 (2)0.26977 (15)0.0508 (7)
H25A0.58800.67820.30940.076*
H25B0.57860.65000.22200.076*
H25C0.69900.63650.26500.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01323 (11)0.01603 (11)0.01422 (10)0.00051 (10)0.00024 (8)0.00020 (10)
O10.0401 (9)0.0333 (8)0.0325 (8)0.0048 (7)0.0021 (6)0.0136 (6)
O20.0557 (10)0.0268 (7)0.0442 (8)0.0075 (8)0.0135 (9)0.0155 (6)
O30.0164 (6)0.0346 (7)0.0407 (7)0.0008 (7)0.0010 (5)0.0029 (7)
N10.0227 (7)0.0253 (8)0.0167 (7)0.0028 (6)0.0016 (5)0.0029 (6)
N20.0211 (7)0.0203 (7)0.0243 (8)0.0004 (6)0.0042 (6)0.0048 (6)
N30.0149 (7)0.0202 (7)0.0194 (7)0.0003 (6)0.0004 (6)0.0015 (5)
N40.0177 (6)0.0279 (7)0.0191 (6)0.0005 (8)0.0024 (5)0.0027 (6)
C10.0201 (9)0.0236 (9)0.0202 (8)0.0013 (7)0.0023 (7)0.0023 (7)
C20.0218 (9)0.0249 (9)0.0220 (8)0.0010 (8)0.0038 (8)0.0013 (7)
C30.0209 (7)0.0179 (7)0.0208 (7)0.0006 (7)0.0004 (6)0.0014 (9)
C40.0137 (8)0.0172 (8)0.0203 (8)0.0031 (6)0.0014 (6)0.0005 (6)
C50.0243 (9)0.0293 (10)0.0218 (9)0.0005 (8)0.0045 (7)0.0056 (8)
C60.0262 (11)0.0460 (13)0.0370 (11)0.0031 (9)0.0090 (9)0.0084 (10)
C70.0353 (11)0.0424 (13)0.0333 (11)0.0047 (10)0.0089 (9)0.0162 (9)
C80.0376 (11)0.0395 (11)0.0201 (9)0.0073 (10)0.0003 (9)0.0089 (8)
C90.0736 (19)0.0734 (19)0.0201 (10)0.0006 (15)0.0049 (11)0.0119 (12)
C100.0366 (11)0.0313 (11)0.0254 (10)0.0060 (9)0.0067 (9)0.0118 (8)
C110.0654 (18)0.0458 (14)0.0423 (13)0.0033 (13)0.0141 (13)0.0228 (12)
C120.0206 (9)0.0199 (9)0.0359 (10)0.0048 (7)0.0035 (8)0.0017 (8)
C130.0229 (10)0.0269 (10)0.0649 (16)0.0025 (8)0.0079 (10)0.0019 (10)
C140.0249 (10)0.0243 (10)0.0618 (15)0.0021 (8)0.0080 (10)0.0063 (10)
C150.0180 (8)0.0160 (8)0.0170 (7)0.0007 (6)0.0002 (6)0.0007 (6)
C160.0186 (8)0.0219 (9)0.0193 (8)0.0027 (7)0.0011 (7)0.0059 (7)
C170.0264 (10)0.0213 (9)0.0402 (11)0.0005 (7)0.0010 (9)0.0066 (8)
C180.0313 (10)0.0353 (10)0.0206 (9)0.0035 (9)0.0040 (8)0.0029 (7)
C190.0155 (8)0.0225 (9)0.0297 (9)0.0003 (7)0.0010 (7)0.0002 (7)
C200.0183 (9)0.0495 (13)0.0399 (12)0.0017 (9)0.0019 (8)0.0084 (10)
C210.0168 (8)0.0278 (10)0.0267 (9)0.0004 (7)0.0039 (7)0.0005 (7)
C220.0213 (9)0.0639 (17)0.0387 (11)0.0045 (10)0.0093 (8)0.0062 (12)
C230.0256 (9)0.0482 (13)0.0179 (8)0.0050 (9)0.0050 (7)0.0080 (8)
C240.0374 (13)0.088 (2)0.0252 (11)0.0085 (15)0.0011 (11)0.0116 (12)
C250.0413 (13)0.0592 (15)0.0518 (14)0.0049 (13)0.0092 (12)0.0319 (12)
Geometric parameters (Å, º) top
Fe1—C21.7531 (18)C11—H11C0.9800
Fe1—C31.7551 (16)C12—C131.523 (3)
Fe1—C11.7788 (17)C12—C141.523 (3)
Fe1—C152.0358 (16)C12—H12A1.0000
Fe1—C42.0386 (17)C13—H13A0.9800
O1—C11.156 (2)C13—H13B0.9800
O2—C21.156 (2)C13—H13C0.9800
O3—C31.154 (2)C14—H14A0.9800
N1—C41.372 (2)C14—H14B0.9800
N1—C81.402 (2)C14—H14C0.9800
N1—C51.470 (2)C16—C181.520 (3)
N2—C41.368 (2)C16—C171.527 (2)
N2—C101.403 (2)C16—H16A1.0000
N2—C121.470 (2)C17—H17A0.9800
N3—C151.369 (2)C17—H17B0.9800
N3—C191.401 (2)C17—H17C0.9800
N3—C161.471 (2)C18—H18A0.9800
N4—C151.363 (2)C18—H18B0.9800
N4—C211.399 (2)C18—H18C0.9800
N4—C231.474 (2)C19—C211.344 (3)
C5—C71.519 (3)C19—C201.491 (3)
C5—C61.528 (3)C20—H20A0.9800
C5—H5A1.0000C20—H20B0.9800
C6—H6A0.9800C20—H20C0.9800
C6—H6B0.9800C21—C221.494 (3)
C6—H6C0.9800C22—H22A0.9800
C7—H7A0.9800C22—H22B0.9800
C7—H7B0.9800C22—H22C0.9800
C7—H7C0.9800C23—C251.515 (3)
C8—C101.342 (3)C23—C241.527 (3)
C8—C91.502 (3)C23—H23A1.0000
C9—H9A0.9800C24—H24A0.9800
C9—H9B0.9800C24—H24B0.9800
C9—H9C0.9800C24—H24C0.9800
C10—C111.494 (3)C25—H25A0.9800
C11—H11A0.9800C25—H25B0.9800
C11—H11B0.9800C25—H25C0.9800
C2—Fe1—C389.95 (9)C12—C13—H13A109.5
C2—Fe1—C1120.54 (9)C12—C13—H13B109.5
C3—Fe1—C186.58 (8)H13A—C13—H13B109.5
C2—Fe1—C1582.70 (8)C12—C13—H13C109.5
C3—Fe1—C15172.20 (8)H13A—C13—H13C109.5
C1—Fe1—C1599.38 (8)H13B—C13—H13C109.5
C2—Fe1—C4131.97 (7)C12—C14—H14A109.5
C3—Fe1—C492.41 (7)C12—C14—H14B109.5
C1—Fe1—C4107.49 (7)H14A—C14—H14B109.5
C15—Fe1—C490.60 (7)C12—C14—H14C109.5
C4—N1—C8111.02 (15)H14A—C14—H14C109.5
C4—N1—C5122.68 (14)H14B—C14—H14C109.5
C8—N1—C5126.30 (16)N4—C15—N3103.82 (13)
C4—N2—C10111.29 (16)N4—C15—Fe1128.43 (12)
C4—N2—C12122.31 (15)N3—C15—Fe1127.75 (12)
C10—N2—C12126.29 (16)N3—C16—C18113.85 (15)
C15—N3—C19111.20 (14)N3—C16—C17109.91 (15)
C15—N3—C16122.38 (14)C18—C16—C17112.75 (15)
C19—N3—C16124.68 (14)N3—C16—H16A106.6
C15—N4—C21111.40 (14)C18—C16—H16A106.6
C15—N4—C23123.11 (14)C17—C16—H16A106.6
C21—N4—C23125.32 (14)C16—C17—H17A109.5
O1—C1—Fe1170.74 (17)C16—C17—H17B109.5
O2—C2—Fe1175.73 (17)H17A—C17—H17B109.5
O3—C3—Fe1175.51 (15)C16—C17—H17C109.5
N2—C4—N1103.88 (14)H17A—C17—H17C109.5
N2—C4—Fe1126.64 (12)H17B—C17—H17C109.5
N1—C4—Fe1129.47 (12)C16—C18—H18A109.5
N1—C5—C7114.16 (17)C16—C18—H18B109.5
N1—C5—C6111.99 (17)H18A—C18—H18B109.5
C7—C5—C6111.54 (16)C16—C18—H18C109.5
N1—C5—H5A106.2H18A—C18—H18C109.5
C7—C5—H5A106.2H18B—C18—H18C109.5
C6—C5—H5A106.2C21—C19—N3106.66 (15)
C5—C6—H6A109.5C21—C19—C20127.89 (17)
C5—C6—H6B109.5N3—C19—C20125.29 (17)
H6A—C6—H6B109.5C19—C20—H20A109.5
C5—C6—H6C109.5C19—C20—H20B109.5
H6A—C6—H6C109.5H20A—C20—H20B109.5
H6B—C6—H6C109.5C19—C20—H20C109.5
C5—C7—H7A109.5H20A—C20—H20C109.5
C5—C7—H7B109.5H20B—C20—H20C109.5
H7A—C7—H7B109.5C19—C21—N4106.83 (15)
C5—C7—H7C109.5C19—C21—C22127.21 (18)
H7A—C7—H7C109.5N4—C21—C22125.96 (17)
H7B—C7—H7C109.5C21—C22—H22A109.5
C10—C8—N1107.09 (16)C21—C22—H22B109.5
C10—C8—C9128.0 (2)H22A—C22—H22B109.5
N1—C8—C9124.8 (2)C21—C22—H22C109.5
C8—C9—H9A109.5H22A—C22—H22C109.5
C8—C9—H9B109.5H22B—C22—H22C109.5
H9A—C9—H9B109.5N4—C23—C25111.40 (18)
C8—C9—H9C109.5N4—C23—C24111.58 (18)
H9A—C9—H9C109.5C25—C23—C24114.18 (19)
H9B—C9—H9C109.5N4—C23—H23A106.4
C8—C10—N2106.71 (17)C25—C23—H23A106.4
C8—C10—C11128.2 (2)C24—C23—H23A106.4
N2—C10—C11125.0 (2)C23—C24—H24A109.5
C10—C11—H11A109.5C23—C24—H24B109.5
C10—C11—H11B109.5H24A—C24—H24B109.5
H11A—C11—H11B109.5C23—C24—H24C109.5
C10—C11—H11C109.5H24A—C24—H24C109.5
H11A—C11—H11C109.5H24B—C24—H24C109.5
H11B—C11—H11C109.5C23—C25—H25A109.5
N2—C12—C13113.80 (17)C23—C25—H25B109.5
N2—C12—C14111.49 (16)H25A—C25—H25B109.5
C13—C12—C14113.02 (16)C23—C25—H25C109.5
N2—C12—H12A105.9H25A—C25—H25C109.5
C13—C12—H12A105.9H25B—C25—H25C109.5
C14—C12—H12A105.9
C10—N2—C4—N10.31 (19)C10—N2—C12—C1470.2 (2)
C12—N2—C4—N1176.57 (15)C21—N4—C15—N33.00 (19)
C10—N2—C4—Fe1178.52 (13)C23—N4—C15—N3172.56 (16)
C12—N2—C4—Fe12.3 (2)C21—N4—C15—Fe1176.66 (12)
C8—N1—C4—N20.41 (19)C23—N4—C15—Fe17.8 (2)
C5—N1—C4—N2179.58 (15)C19—N3—C15—N42.90 (19)
C8—N1—C4—Fe1178.37 (13)C16—N3—C15—N4162.70 (14)
C5—N1—C4—Fe11.6 (2)C19—N3—C15—Fe1176.76 (12)
C2—Fe1—C4—N2140.02 (15)C16—N3—C15—Fe117.6 (2)
C3—Fe1—C4—N2127.88 (15)C2—Fe1—C15—N488.48 (16)
C1—Fe1—C4—N240.71 (16)C1—Fe1—C15—N431.39 (16)
C15—Fe1—C4—N259.32 (15)C4—Fe1—C15—N4139.23 (15)
C2—Fe1—C4—N141.4 (2)C2—Fe1—C15—N391.94 (15)
C3—Fe1—C4—N150.66 (16)C1—Fe1—C15—N3148.19 (15)
C1—Fe1—C4—N1137.83 (15)C4—Fe1—C15—N340.35 (15)
C15—Fe1—C4—N1122.14 (15)C15—N3—C16—C18130.89 (17)
C4—N1—C5—C7119.58 (19)C19—N3—C16—C1865.5 (2)
C8—N1—C5—C760.4 (2)C15—N3—C16—C17101.53 (18)
C4—N1—C5—C6112.46 (19)C19—N3—C16—C1762.1 (2)
C8—N1—C5—C667.5 (2)C15—N3—C19—C211.8 (2)
C4—N1—C8—C100.4 (2)C16—N3—C19—C21163.43 (16)
C5—N1—C8—C10179.62 (17)C15—N3—C19—C20173.86 (18)
C4—N1—C8—C9178.3 (2)C16—N3—C19—C2020.9 (3)
C5—N1—C8—C91.7 (3)N3—C19—C21—N40.1 (2)
N1—C8—C10—N20.2 (2)C20—C19—C21—N4175.63 (19)
C9—C8—C10—N2178.0 (2)N3—C19—C21—C22180.0 (2)
N1—C8—C10—C11176.3 (2)C20—C19—C21—C224.5 (3)
C9—C8—C10—C111.5 (4)C15—N4—C21—C192.0 (2)
C4—N2—C10—C80.1 (2)C23—N4—C21—C19173.42 (18)
C12—N2—C10—C8176.17 (17)C15—N4—C21—C22178.07 (19)
C4—N2—C10—C11176.7 (2)C23—N4—C21—C226.5 (3)
C12—N2—C10—C117.2 (3)C15—N4—C23—C25111.8 (2)
C4—N2—C12—C13125.24 (19)C21—N4—C23—C2573.2 (2)
C10—N2—C12—C1359.1 (2)C15—N4—C23—C24119.3 (2)
C4—N2—C12—C14105.49 (19)C21—N4—C23—C2455.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25B···O2i0.982.423.154 (3)131
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C11H20N2)2(CO)3]
Mr500.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)11.5913 (5), 12.7572 (5), 17.7970 (7)
V3)2631.69 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.38 × 0.32 × 0.29
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.803, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
26635, 6362, 5983
Rint0.035
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.04
No. of reflections6362
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.23
Absolute structureFlack (1983), 2789 Friedel pairs
Absolute structure parameter0.022 (11)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25B···O2i0.982.423.154 (3)131.0
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantler, V. L., Chatwin, S. L., Jazzar, R. F. R., Mahon, M. F., Saker, O. & Whittlesey, M. K. (2008). Dalton Trans. pp. 2603–2614.  Web of Science CSD CrossRef Google Scholar
First citationEllul, C. E., Saker, O., Mahon, M. F., Apperley, D. C. & Whittlesey, M. K. (2008). Organometallics, 27, 100–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRendsburg, H. van, Tooze, R. P., Foster, D. F. & Otto, S. (2007). Inorg. Chem. 46, 1963–1965.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds