organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3279-o3280

4-(2-Bromo­phen­yl)-2-phenyl­pyrano[3,2-c]chromen-5(4H)-one

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: nagagold@gmail.com

(Received 5 October 2012; accepted 26 October 2012; online 3 November 2012)

In the title compound, C24H15BrO3, the pyran­ochromenone ring is essentially planar, while the 2-bromo­phenyl group is almost perpendicular to it [85.58 (6)°]. In the crystal, inversion dimers linked by pairs of weak C—H⋯π bonds occur; there is also a short inter­atomic contact found between the Br and carbonyl O atoms [3.016 (1) Å].

Related literature

For coumarin chemistry and applications, see: Hinman et al. (1956[Hinman, W., Hoeksema, H., Caron, E. L. & Jackson, W. G. (1956). J. Am. Chem. Soc. 78, 1072-1074.]); Soine (1964[Soine, T. O. (1964). J. Pharm. Sci. 53, 231-264.]); Murray et al. (1982[Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). In The Natural Coumarins: Occurrence, Chemistry and Biochemistry. UK: Wiley-VCH.]); Patil et al. (1993[Patil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., Caranfa, M. J., Breen, A. L., Bartus, H. R., Johnson, R. K., Hertzberg, R. P. & Westley, J. W. (1993). J. Med. Chem. 36, 4131-4138.]); Verotta et al. (2004[Verotta, L., Lovaglio, E., Vidari, G., Finzi, P. V., Neri, M. G., Raimondi, A., Parapini, S., Taramelli, D., Riva, A. & Bombardelli, E. (2004). Phytochemistry, 65, 2867-2989.]); Heide (2009[Heide, L. (2009). Methods in Enzymology, Vol. 459, Aminocoumarins Mutasynthesis, Chemoenzymatic Synthesis, and Metabolic Engineering, pp. 437-455. New York: Academic Press.]); Magolan et al. (2012[Magolan, J., Adams, N. B. P., Onozuka, H., Hungerford, N. L., Esumi, H. & Coster, M. J. (2012). ChemMedChem, 7, 766-770.]). For related structures, see: Shi et al. (2004[Shi, D., Wu, N., Zhuang, Q. & Zhang, Y. (2004). Acta Cryst. E60, o2339-o2341.], 2005[Shi, D.-Q., Wu, N., Zhuang, Q.-Y. & Zhang, Y. (2005). Acta Cryst. E61, o87-o89.]); Lakshmi et al. (2006[Lakshmi, S., Manvar, D., Parecha, A., Shah, A., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o2163-o2165.]). For related synthesis and structures, see: Naveen et al. (2007[Naveen, S., Lakshmi, S., Manvar, D., Parecha, A., Shah, A., Sridhar, M. A. & Prasad, J. S. (2007). J. Chem. Crystallogr. 37, 733-738.]); Shaabani et al. (2008[Shaabani, A., Rezayan, A. H., Sarvary, A., Rahmati, A. & Khavasi, H. R. (2008). Catal. Commun. 9, 1082-1086.]); Sarma et al. (2010[Sarma, R., Sarmah, M. M., Lekhok, K. C. & Prajapati, D. (2010). Synlett, 19, 2847-2852.]); He et al. (2010[He, Z., Lin, X., Zhu, Y. & Wang, Y. (2010). Heterocycles, 81, 965-976.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15BrO3

  • Mr = 431.27

  • Monoclinic, P 21 /c

  • a = 11.5959 (2) Å

  • b = 17.7890 (4) Å

  • c = 8.7610 (2) Å

  • β = 97.060 (1)°

  • V = 1793.53 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 100 K

  • 0.52 × 0.40 × 0.23 mm

Data collection
  • Bruker X8 APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.380, Tmax = 0.618

  • 41256 measured reflections

  • 4464 independent reflections

  • 4019 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.05

  • 4464 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg4i 1.00 2.80 3.4956 (18) 127
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia,1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compound 1 is a derivative of a well known phytochemical called coumarin. The derivatives of coumarins are valued for their interesting medicinal applications (Murray et al., 1982; Heide et al., 2009 & Soine et al., 1964). For example, some of them are inhibitors of HIV-1 reverse transcriptase (Patil et al., 1993), while others are being used as anti-bacterial (Verotta et al., 2004), anti-biotic (Hinman et al., 1956) and anti-neoplastic (Magolan et al., 2012) agents. Many authors have synthesized coumarin derivatives using their own approaches (Naveen et al., 2007; Shaabani et al., 2008 & Sarma et al., 2010) and we adapted the synthetic procedure by He et al., 2010. There are also quite a few structures published that are related to compound 1 (Shi et al., 2004; Shi et al., 2005; He et al., 2010 & Lakshmi et al.,2006).

Recently He et al., 2010, synthesized various functionalized pyranochromenones and reported the crystal structure of the 2,4-diphenyl pyrano(3,2 - c)chromen-5(4H)-one (2). Structurally, both compounds 1 and 2 are quite similar. We adapted their synthetic method for the preparation of 1. Our close examination of the crystal structure 1 (Fig. 1) reveals that the bonds C2—C3 (1.508 (2) Å and C3—C4 (1.506 (2) Å are essentially single bonds. The mean plane analysis of 1 shows the pyranochromen-5(4H)-one ring is almost planar. The deviation observed is maximum for the C4 [(0.1166 (17) Å] and C5 [(0.1024 (14) Å] atoms located next to O1 and primary C3 of the pyran ring respectively. The dihedral angle between the chromene (atoms C12 to C17, O2, C18, C1 and C2) and pyrane (C1 to C5 and O1) of pyranochromen-5(4H)-one ring is 5.39 (5) °. The phenyl group (atoms C6 to C11) attached to C5 is slightly tilted from the parent plane (dihedral angle is 17.50 (8) ° and the torsion angle of O1—C5—C6—C7 is 157.68 (1) °. The 2-bromophenyl group (C19 to C24 and Br1) connected to C3 is almost perpendicular to the pyranochromen-5(4H)-one ring [dihedral angle is 85.58 (6)° and torsion angles of C4—C3—C19—C20 is 81.41 (8) and C4—C3—C19—C24 is 95.90 (1)°].

Several edge-to-face intermolecular C—H ··· π interactions are observed in compound 1 (Fig. 2) and the atomic parameters [distance and angles] are as follows.

a) phenyl ring of the chromenone with C3—H3 [2.804 (1) Å; 146.75 (4)°] and C4—H4 [3.812 (4) Å; 92.71 (4)°] of pyran ring.

b) phenyl ring of the chromenone with C9—H9 [3.798 (4) Å; 84.12 (2)°] and C10—H10 [3.238 (2) Å; 95.65 (3)°] of 2-phenyl group.

c) 2-bromophenyl ring with C9—H9 [3.076 (2) Å; 141.50 (3)°] and C8—H8 [3.652 (5) Å; (115.99 (2)°] of 2-phenyl group.

d) 2-phenyl ring with C23—H23 [3.301 (8) Å; (146.75 (8)°] of 2-bromophenyl group and [C7—H73.639 (4) Å; (128.73 (3)°] of 2-phenyl group.

Strong C—H ··· Br intramolecular interaction is also observed [C3—H3 ··· Br1 2.668 (7) Å; 113.66 (9)°]. The unit cell packing diagram shows a zigzag arrangement of atoms running along the b axis (Fig. 3). There is also a short interatomic contact found between Br1 and O3 (3.016 (1)Å).

Related literature top

For coumarin chemistry and applications, see: Hinman et al. (1956); Soine (1964); Murray et al. (1982); Patil et al. (1993); Verotta et al. (2004); Heide (2009); Magolan et al. (2012). For related structures, see: Shi et al. (2004, 2005); Lakshmi et al. (2006). For related synthesis and structures, see: Naveen et al. (2007); Shaabani et al. (2008); Sarma et al. (2010); He et al. (2010).

Experimental top

The synthesis is adapted from the procedure previously published (He et al. 2010). A mixture of 4-hydroxycoumarin (0.3 mmol) and 3-(2-bromophenyl)-1-phenylprop-2-en-1-one (0.25 mmol) and 4 Å molecular sieves (0.25 g) were taken in 5 ml of dichloromethane solvent. 2, 3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (0.5 mmol) was added in portions during 15 min and the reaction mixture were allowed to stir for the 20–30 min. It was then filtered through a Celite plug and purified by column chromatography on silica gel with petroleum ether and ethyl acetate (10:1) as the eluent. The solution was evaporated under vacuo and the pale yellow solid obtained was dissolved in hot acetonitrile. Upon slow evaporation, colourless crystals suitable for X-ray diffraction were obtained. m.p. 238–239°C; Yield. 80%. 1H NMR (600 MHz, CDCl3) δ 8.05 (d, J = 10.3 Hz, 1H), 7.72 (d, J = 7.3 Hz, 2H), 7.68 – 7.53 (m, 2H), 7.49 – 7.39 (m, 5H), 7.32 – 7.07 (m, 2H), 5.91 (d, J = 4.1 Hz, 1H), 5.25 (d, J = 4.0 Hz, 1H). 13 C NMR (150 MHz, CDCl3) δ 161.2(C), 157.3(C), 153.1(C), 146.9(C), 142.5(C), 133.3(CH), 132.6(C), 132.4(CH), 129.7(CH), 129.4(CH), 128.7(2xCH), 128.6(CH), 128.2(CH), 124.8(2xCH), 124.4(CH), 123.4(C), 122.9(CH), 117.1(CH), 114.4(C), 102.4(CH), 102.3(C), 36.5(CH).

Refinement top

The aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(parent) of the parent atom with a C—H distance of 0.93. The methyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å; their torsion angles were optimized from electron density

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008) and WinGX (Farrugia,1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. DIAMOND 3.2i picture of the title compound 1 (ellipsoid model with 50% probability).
[Figure 2] Fig. 2. DIAMOND 3.2i picture of 1, showing the intermolecular C—H ••• π interactions. symmetry codes are 2 - x, 0.5 + y, 0.5 - z; 2 - x, -y, 1 - z; x, y, z; 1 - x, -y, -z.
[Figure 3] Fig. 3. Unit cell packing of the title compound 1 along a-c place (DIAMOND 3.2i representation).
4-(2-Bromophenyl)-2-phenylpyrano[3,2-c]chromen-5(4H)-one top
Crystal data top
C24H15BrO3F(000) = 872
Mr = 431.27Dx = 1.597 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9421 reflections
a = 11.5959 (2) Åθ = 2.6–28.3°
b = 17.7890 (4) ŵ = 2.32 mm1
c = 8.7610 (2) ÅT = 100 K
β = 97.060 (1)°Cuboidal, colourless
V = 1793.53 (7) Å30.52 × 0.40 × 0.23 mm
Z = 4
Data collection top
Bruker X8 APEXII KappaCCD
diffractometer
4464 independent reflections
Radiation source: sealed tube4019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.380, Tmax = 0.618k = 2023
41256 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0271P)2 + 1.4892P]
where P = (Fo2 + 2Fc2)/3
4464 reflections(Δ/σ)max = 0.003
253 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C24H15BrO3V = 1793.53 (7) Å3
Mr = 431.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5959 (2) ŵ = 2.32 mm1
b = 17.7890 (4) ÅT = 100 K
c = 8.7610 (2) Å0.52 × 0.40 × 0.23 mm
β = 97.060 (1)°
Data collection top
Bruker X8 APEXII KappaCCD
diffractometer
4464 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4019 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.618Rint = 0.045
41256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
4464 reflectionsΔρmin = 0.34 e Å3
253 parameters
Special details top

Experimental. Data collected on a Bruker X8 ApexII Kappa CCD diffractometer with 10 s/frame exposure time(total of 2250, width 0.5°)covering up to θ = 28.29° with 99.9% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.771558 (15)0.721619 (9)0.11776 (2)0.02123 (6)
O10.70255 (10)1.05778 (6)0.14190 (13)0.0176 (2)
O20.55197 (11)0.98739 (7)0.28387 (14)0.0206 (2)
O30.59774 (12)0.86907 (7)0.23016 (16)0.0266 (3)
C10.65713 (13)1.03040 (9)0.00302 (18)0.0152 (3)
C20.66299 (14)0.95736 (9)0.03718 (19)0.0170 (3)
C30.72297 (14)0.89890 (9)0.0691 (2)0.0178 (3)
H30.66760.85650.07830.021*
C40.75403 (14)0.93335 (10)0.2258 (2)0.0194 (3)
H40.78080.90080.30870.023*
C50.74635 (14)1.00623 (9)0.25547 (19)0.0175 (3)
C60.77853 (15)1.04556 (10)0.40272 (19)0.0192 (3)
C70.8584 (2)1.01472 (12)0.5172 (2)0.0392 (5)
H70.89000.96630.50290.047*
C80.8922 (2)1.05422 (13)0.6525 (2)0.0445 (6)
H80.94871.03320.72820.053*
C90.84469 (18)1.12329 (12)0.6777 (2)0.0285 (4)
H90.86701.14970.77090.034*
C100.76475 (17)1.15344 (12)0.5665 (2)0.0291 (4)
H100.73091.20090.58360.035*
C110.73243 (16)1.11577 (11)0.4291 (2)0.0263 (4)
H110.67831.13820.35230.032*
C120.60043 (13)1.08645 (9)0.09917 (18)0.0155 (3)
C130.59292 (14)1.16273 (9)0.06145 (19)0.0173 (3)
H130.62721.18030.03610.021*
C140.53576 (15)1.21245 (9)0.1660 (2)0.0191 (3)
H140.53061.26410.14040.023*
C150.48548 (15)1.18643 (10)0.30964 (19)0.0200 (3)
H150.44601.22080.38090.024*
C160.49225 (15)1.11142 (10)0.34978 (19)0.0200 (3)
H160.45841.09400.44770.024*
C170.54995 (14)1.06213 (9)0.24295 (19)0.0171 (3)
C180.60497 (14)0.93349 (10)0.1856 (2)0.0192 (3)
C190.83245 (14)0.86731 (9)0.0112 (2)0.0189 (3)
C200.90660 (16)0.91560 (10)0.0560 (2)0.0266 (4)
H200.88700.96740.06640.032*
C211.00623 (16)0.89077 (11)0.1072 (2)0.0260 (4)
H211.05410.92500.15390.031*
C221.03834 (15)0.81506 (11)0.0915 (2)0.0251 (4)
H221.10760.79770.12760.030*
C230.96779 (15)0.76574 (10)0.0225 (2)0.0217 (3)
H230.98900.71430.00940.026*
C240.86588 (14)0.79205 (9)0.02731 (19)0.0179 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02278 (9)0.01590 (9)0.02471 (10)0.00087 (6)0.00178 (6)0.00514 (6)
O10.0210 (6)0.0138 (5)0.0177 (5)0.0002 (4)0.0007 (4)0.0012 (4)
O20.0245 (6)0.0165 (6)0.0206 (6)0.0026 (5)0.0020 (5)0.0052 (5)
O30.0293 (7)0.0169 (6)0.0336 (7)0.0020 (5)0.0035 (5)0.0096 (5)
C10.0134 (7)0.0151 (7)0.0177 (7)0.0021 (6)0.0045 (6)0.0012 (6)
C20.0149 (7)0.0154 (8)0.0213 (8)0.0017 (6)0.0055 (6)0.0016 (6)
C30.0175 (7)0.0113 (7)0.0257 (8)0.0009 (6)0.0068 (6)0.0018 (6)
C40.0184 (8)0.0173 (8)0.0234 (8)0.0008 (6)0.0063 (6)0.0022 (6)
C50.0159 (7)0.0173 (8)0.0200 (8)0.0000 (6)0.0052 (6)0.0022 (6)
C60.0205 (8)0.0192 (8)0.0188 (8)0.0035 (6)0.0062 (6)0.0009 (6)
C70.0645 (15)0.0242 (10)0.0264 (10)0.0119 (10)0.0043 (10)0.0010 (8)
C80.0708 (17)0.0355 (12)0.0229 (10)0.0075 (11)0.0110 (10)0.0045 (9)
C90.0365 (10)0.0325 (10)0.0171 (8)0.0095 (8)0.0061 (7)0.0026 (7)
C100.0247 (9)0.0293 (10)0.0332 (10)0.0007 (8)0.0025 (7)0.0124 (8)
C110.0218 (9)0.0263 (9)0.0292 (9)0.0029 (7)0.0027 (7)0.0078 (8)
C120.0148 (7)0.0150 (7)0.0175 (7)0.0016 (6)0.0053 (6)0.0008 (6)
C130.0190 (7)0.0155 (8)0.0178 (7)0.0014 (6)0.0045 (6)0.0009 (6)
C140.0219 (8)0.0143 (8)0.0219 (8)0.0007 (6)0.0065 (6)0.0017 (6)
C150.0209 (8)0.0204 (8)0.0192 (8)0.0008 (6)0.0048 (6)0.0052 (6)
C160.0212 (8)0.0229 (9)0.0161 (8)0.0041 (7)0.0039 (6)0.0001 (6)
C170.0174 (7)0.0157 (8)0.0192 (8)0.0026 (6)0.0062 (6)0.0026 (6)
C180.0176 (8)0.0169 (8)0.0240 (8)0.0010 (6)0.0061 (6)0.0036 (6)
C190.0170 (8)0.0175 (8)0.0223 (8)0.0001 (6)0.0030 (6)0.0033 (6)
C200.0249 (9)0.0159 (8)0.0405 (11)0.0000 (7)0.0105 (8)0.0007 (7)
C210.0220 (9)0.0230 (9)0.0342 (10)0.0060 (7)0.0083 (7)0.0035 (7)
C220.0178 (8)0.0292 (10)0.0289 (9)0.0042 (7)0.0056 (7)0.0035 (7)
C230.0211 (8)0.0210 (9)0.0226 (8)0.0046 (7)0.0004 (7)0.0024 (6)
C240.0191 (8)0.0170 (8)0.0171 (8)0.0004 (6)0.0006 (6)0.0015 (6)
Geometric parameters (Å, º) top
Br1—C241.8992 (17)C10—C111.388 (3)
O1—C11.3555 (19)C10—H100.9500
O1—C51.4017 (19)C11—H110.9500
O2—C171.378 (2)C12—C171.391 (2)
O2—C181.382 (2)C12—C131.402 (2)
O3—C181.210 (2)C13—C141.382 (2)
C1—C21.350 (2)C13—H130.9500
C1—C121.443 (2)C14—C151.399 (2)
C2—C181.452 (2)C14—H140.9500
C2—C31.508 (2)C15—C161.385 (2)
C3—C41.506 (2)C15—H150.9500
C3—C191.531 (2)C16—C171.392 (2)
C3—H31.0000C16—H160.9500
C4—C51.327 (2)C19—C201.396 (2)
C4—H40.9500C19—C241.396 (2)
C5—C61.475 (2)C20—C211.363 (3)
C6—C111.389 (3)C20—H200.9500
C6—C71.391 (3)C21—C221.400 (3)
C7—C81.392 (3)C21—H210.9500
C7—H70.9500C22—C231.388 (3)
C8—C91.375 (3)C22—H220.9500
C8—H80.9500C23—C241.390 (2)
C9—C101.369 (3)C23—H230.9500
C9—H90.9500
C1—O1—C5117.97 (13)C17—C12—C1117.11 (14)
C17—O2—C18121.86 (13)C13—C12—C1124.00 (15)
C2—C1—O1123.61 (15)C14—C13—C12120.12 (15)
C2—C1—C12122.46 (15)C14—C13—H13119.9
O1—C1—C12113.94 (13)C12—C13—H13119.9
C1—C2—C18118.84 (15)C13—C14—C15119.80 (15)
C1—C2—C3122.47 (15)C13—C14—H14120.1
C18—C2—C3118.63 (14)C15—C14—H14120.1
C4—C3—C2108.83 (13)C16—C15—C14121.13 (16)
C4—C3—C19109.64 (14)C16—C15—H15119.4
C2—C3—C19112.78 (14)C14—C15—H15119.4
C4—C3—H3108.5C15—C16—C17118.28 (16)
C2—C3—H3108.5C15—C16—H16120.9
C19—C3—H3108.5C17—C16—H16120.9
C5—C4—C3124.17 (16)O2—C17—C12121.13 (15)
C5—C4—H4117.9O2—C17—C16117.06 (15)
C3—C4—H4117.9C12—C17—C16121.79 (15)
C4—C5—O1121.81 (15)O3—C18—O2116.61 (15)
C4—C5—C6128.24 (16)O3—C18—C2124.89 (17)
O1—C5—C6109.95 (14)O2—C18—C2118.49 (14)
C11—C6—C7118.06 (17)C20—C19—C24117.06 (16)
C11—C6—C5120.72 (16)C20—C19—C3119.52 (15)
C7—C6—C5121.19 (16)C24—C19—C3123.37 (15)
C6—C7—C8120.51 (19)C21—C20—C19122.03 (17)
C6—C7—H7119.7C21—C20—H20119.0
C8—C7—H7119.7C19—C20—H20119.0
C9—C8—C7120.7 (2)C20—C21—C22120.34 (17)
C9—C8—H8119.6C20—C21—H21119.8
C7—C8—H8119.6C22—C21—H21119.8
C10—C9—C8119.04 (18)C23—C22—C21119.17 (17)
C10—C9—H9120.5C23—C22—H22120.4
C8—C9—H9120.5C21—C22—H22120.4
C9—C10—C11120.99 (19)C22—C23—C24119.55 (17)
C9—C10—H10119.5C22—C23—H23120.2
C11—C10—H10119.5C24—C23—H23120.2
C10—C11—C6120.65 (18)C23—C24—C19121.83 (16)
C10—C11—H11119.7C23—C24—Br1117.66 (13)
C6—C11—H11119.7C19—C24—Br1120.51 (13)
C17—C12—C13118.89 (15)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg4i1.002.803.4956 (18)127
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC24H15BrO3
Mr431.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.5959 (2), 17.7890 (4), 8.7610 (2)
β (°) 97.060 (1)
V3)1793.53 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.52 × 0.40 × 0.23
Data collection
DiffractometerBruker X8 APEXII KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.380, 0.618
No. of measured, independent and
observed [I > 2σ(I)] reflections
41256, 4464, 4019
Rint0.045
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.05
No. of reflections4464
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.34

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXTL (Sheldrick, 2008) and WinGX (Farrugia,1999), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg4i1.002.803.4956 (18)127
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The University of the Free State and Sasol Ltd are gratefully acknowledged for financial support.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, Z., Lin, X., Zhu, Y. & Wang, Y. (2010). Heterocycles, 81, 965–976.  CAS Google Scholar
First citationHeide, L. (2009). Methods in Enzymology, Vol. 459, Aminocoumarins Mutasynthesis, Chemoenzymatic Synthesis, and Metabolic Engineering, pp. 437–455. New York: Academic Press.  Google Scholar
First citationHinman, W., Hoeksema, H., Caron, E. L. & Jackson, W. G. (1956). J. Am. Chem. Soc. 78, 1072–1074.  CrossRef CAS Web of Science Google Scholar
First citationLakshmi, S., Manvar, D., Parecha, A., Shah, A., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o2163–o2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMagolan, J., Adams, N. B. P., Onozuka, H., Hungerford, N. L., Esumi, H. & Coster, M. J. (2012). ChemMedChem, 7, 766–770.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMurray, R. D. H., Mendez, J. & Brown, S. A. (1982). In The Natural Coumarins: Occurrence, Chemistry and Biochemistry. UK: Wiley-VCH.  Google Scholar
First citationNaveen, S., Lakshmi, S., Manvar, D., Parecha, A., Shah, A., Sridhar, M. A. & Prasad, J. S. (2007). J. Chem. Crystallogr. 37, 733–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., Caranfa, M. J., Breen, A. L., Bartus, H. R., Johnson, R. K., Hertzberg, R. P. & Westley, J. W. (1993). J. Med. Chem. 36, 4131–4138.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSarma, R., Sarmah, M. M., Lekhok, K. C. & Prajapati, D. (2010). Synlett, 19, 2847–2852.  Google Scholar
First citationShaabani, A., Rezayan, A. H., Sarvary, A., Rahmati, A. & Khavasi, H. R. (2008). Catal. Commun. 9, 1082–1086.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D., Wu, N., Zhuang, Q. & Zhang, Y. (2004). Acta Cryst. E60, o2339–o2341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, D.-Q., Wu, N., Zhuang, Q.-Y. & Zhang, Y. (2005). Acta Cryst. E61, o87–o89.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSoine, T. O. (1964). J. Pharm. Sci. 53, 231–264.  CrossRef PubMed CAS Web of Science Google Scholar
First citationVerotta, L., Lovaglio, E., Vidari, G., Finzi, P. V., Neri, M. G., Raimondi, A., Parapini, S., Taramelli, D., Riva, A. & Bombardelli, E. (2004). Phytochemistry, 65, 2867–2989.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3279-o3280
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds