organic compounds
4-(2-Bromophenyl)-2-phenylpyrano[3,2-c]chromen-5(4H)-one
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: nagagold@gmail.com
In the title compound, C24H15BrO3, the pyranochromenone ring is essentially planar, while the 2-bromophenyl group is almost perpendicular to it [85.58 (6)°]. In the crystal, inversion dimers linked by pairs of weak C—H⋯π bonds occur; there is also a short interatomic contact found between the Br and carbonyl O atoms [3.016 (1) Å].
Related literature
For coumarin chemistry and applications, see: Hinman et al. (1956); Soine (1964); Murray et al. (1982); Patil et al. (1993); Verotta et al. (2004); Heide (2009); Magolan et al. (2012). For related structures, see: Shi et al. (2004, 2005); Lakshmi et al. (2006). For related synthesis and structures, see: Naveen et al. (2007); Shaabani et al. (2008); Sarma et al. (2010); He et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008) and WinGX (Farrugia,1999); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812044510/bv2211sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812044510/bv2211Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812044510/bv2211Isup3.cml
The synthesis is adapted from the procedure previously published (He et al. 2010). A mixture of 4-hydroxycoumarin (0.3 mmol) and 3-(2-bromophenyl)-1-phenylprop-2-en-1-one (0.25 mmol) and 4 Å molecular sieves (0.25 g) were taken in 5 ml of dichloromethane solvent. 2, 3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (0.5 mmol) was added in portions during 15 min and the reaction mixture were allowed to stir for the 20–30 min. It was then filtered through a Celite plug and purified by δ 8.05 (d, J = 10.3 Hz, 1H), 7.72 (d, J = 7.3 Hz, 2H), 7.68 – 7.53 (m, 2H), 7.49 – 7.39 (m, 5H), 7.32 – 7.07 (m, 2H), 5.91 (d, J = 4.1 Hz, 1H), 5.25 (d, J = 4.0 Hz, 1H). 13 C NMR (150 MHz, CDCl3) δ 161.2(C), 157.3(C), 153.1(C), 146.9(C), 142.5(C), 133.3(CH), 132.6(C), 132.4(CH), 129.7(CH), 129.4(CH), 128.7(2xCH), 128.6(CH), 128.2(CH), 124.8(2xCH), 124.4(CH), 123.4(C), 122.9(CH), 117.1(CH), 114.4(C), 102.4(CH), 102.3(C), 36.5(CH).
on silica gel with petroleum ether and ethyl acetate (10:1) as the The solution was evaporated under vacuo and the pale yellow solid obtained was dissolved in hot acetonitrile. Upon slow evaporation, colourless crystals suitable for X-ray diffraction were obtained. m.p. 238–239°C; Yield. 80%. 1H NMR (600 MHz, CDCl3)The aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(parent) of the parent atom with a C—H distance of 0.93. The methyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å; their torsion angles were optimized from electron density
Data collection: APEX2 (Bruker, 2008); cell
SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008) and WinGX (Farrugia,1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C24H15BrO3 | F(000) = 872 |
Mr = 431.27 | Dx = 1.597 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9421 reflections |
a = 11.5959 (2) Å | θ = 2.6–28.3° |
b = 17.7890 (4) Å | µ = 2.32 mm−1 |
c = 8.7610 (2) Å | T = 100 K |
β = 97.060 (1)° | Cuboidal, colourless |
V = 1793.53 (7) Å3 | 0.52 × 0.40 × 0.23 mm |
Z = 4 |
Bruker X8 APEXII KappaCCD diffractometer | 4464 independent reflections |
Radiation source: sealed tube | 4019 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ϕ and ω scans | θmax = 28.3°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −15→15 |
Tmin = 0.380, Tmax = 0.618 | k = −20→23 |
41256 measured reflections | l = −10→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0271P)2 + 1.4892P] where P = (Fo2 + 2Fc2)/3 |
4464 reflections | (Δ/σ)max = 0.003 |
253 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C24H15BrO3 | V = 1793.53 (7) Å3 |
Mr = 431.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.5959 (2) Å | µ = 2.32 mm−1 |
b = 17.7890 (4) Å | T = 100 K |
c = 8.7610 (2) Å | 0.52 × 0.40 × 0.23 mm |
β = 97.060 (1)° |
Bruker X8 APEXII KappaCCD diffractometer | 4464 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 4019 reflections with I > 2σ(I) |
Tmin = 0.380, Tmax = 0.618 | Rint = 0.045 |
41256 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.51 e Å−3 |
4464 reflections | Δρmin = −0.34 e Å−3 |
253 parameters |
Experimental. Data collected on a Bruker X8 ApexII Kappa CCD diffractometer with 10 s/frame exposure time(total of 2250, width 0.5°)covering up to θ = 28.29° with 99.9% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.771558 (15) | 0.721619 (9) | 0.11776 (2) | 0.02123 (6) | |
O1 | 0.70255 (10) | 1.05778 (6) | 0.14190 (13) | 0.0176 (2) | |
O2 | 0.55197 (11) | 0.98739 (7) | −0.28387 (14) | 0.0206 (2) | |
O3 | 0.59774 (12) | 0.86907 (7) | −0.23016 (16) | 0.0266 (3) | |
C1 | 0.65713 (13) | 1.03040 (9) | 0.00302 (18) | 0.0152 (3) | |
C2 | 0.66299 (14) | 0.95736 (9) | −0.03718 (19) | 0.0170 (3) | |
C3 | 0.72297 (14) | 0.89890 (9) | 0.0691 (2) | 0.0178 (3) | |
H3 | 0.6676 | 0.8565 | 0.0783 | 0.021* | |
C4 | 0.75403 (14) | 0.93335 (10) | 0.2258 (2) | 0.0194 (3) | |
H4 | 0.7808 | 0.9008 | 0.3087 | 0.023* | |
C5 | 0.74635 (14) | 1.00623 (9) | 0.25547 (19) | 0.0175 (3) | |
C6 | 0.77853 (15) | 1.04556 (10) | 0.40272 (19) | 0.0192 (3) | |
C7 | 0.8584 (2) | 1.01472 (12) | 0.5172 (2) | 0.0392 (5) | |
H7 | 0.8900 | 0.9663 | 0.5029 | 0.047* | |
C8 | 0.8922 (2) | 1.05422 (13) | 0.6525 (2) | 0.0445 (6) | |
H8 | 0.9487 | 1.0332 | 0.7282 | 0.053* | |
C9 | 0.84469 (18) | 1.12329 (12) | 0.6777 (2) | 0.0285 (4) | |
H9 | 0.8670 | 1.1497 | 0.7709 | 0.034* | |
C10 | 0.76475 (17) | 1.15344 (12) | 0.5665 (2) | 0.0291 (4) | |
H10 | 0.7309 | 1.2009 | 0.5836 | 0.035* | |
C11 | 0.73243 (16) | 1.11577 (11) | 0.4291 (2) | 0.0263 (4) | |
H11 | 0.6783 | 1.1382 | 0.3523 | 0.032* | |
C12 | 0.60043 (13) | 1.08645 (9) | −0.09917 (18) | 0.0155 (3) | |
C13 | 0.59292 (14) | 1.16273 (9) | −0.06145 (19) | 0.0173 (3) | |
H13 | 0.6272 | 1.1803 | 0.0361 | 0.021* | |
C14 | 0.53576 (15) | 1.21245 (9) | −0.1660 (2) | 0.0191 (3) | |
H14 | 0.5306 | 1.2641 | −0.1404 | 0.023* | |
C15 | 0.48548 (15) | 1.18643 (10) | −0.30964 (19) | 0.0200 (3) | |
H15 | 0.4460 | 1.2208 | −0.3809 | 0.024* | |
C16 | 0.49225 (15) | 1.11142 (10) | −0.34978 (19) | 0.0200 (3) | |
H16 | 0.4584 | 1.0940 | −0.4477 | 0.024* | |
C17 | 0.54995 (14) | 1.06213 (9) | −0.24295 (19) | 0.0171 (3) | |
C18 | 0.60497 (14) | 0.93349 (10) | −0.1856 (2) | 0.0192 (3) | |
C19 | 0.83245 (14) | 0.86731 (9) | 0.0112 (2) | 0.0189 (3) | |
C20 | 0.90660 (16) | 0.91560 (10) | −0.0560 (2) | 0.0266 (4) | |
H20 | 0.8870 | 0.9674 | −0.0664 | 0.032* | |
C21 | 1.00623 (16) | 0.89077 (11) | −0.1072 (2) | 0.0260 (4) | |
H21 | 1.0541 | 0.9250 | −0.1539 | 0.031* | |
C22 | 1.03834 (15) | 0.81506 (11) | −0.0915 (2) | 0.0251 (4) | |
H22 | 1.1076 | 0.7977 | −0.1276 | 0.030* | |
C23 | 0.96779 (15) | 0.76574 (10) | −0.0225 (2) | 0.0217 (3) | |
H23 | 0.9890 | 0.7143 | −0.0094 | 0.026* | |
C24 | 0.86588 (14) | 0.79205 (9) | 0.02731 (19) | 0.0179 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02278 (9) | 0.01590 (9) | 0.02471 (10) | 0.00087 (6) | 0.00178 (6) | 0.00514 (6) |
O1 | 0.0210 (6) | 0.0138 (5) | 0.0177 (5) | −0.0002 (4) | 0.0007 (4) | −0.0012 (4) |
O2 | 0.0245 (6) | 0.0165 (6) | 0.0206 (6) | −0.0026 (5) | 0.0020 (5) | −0.0052 (5) |
O3 | 0.0293 (7) | 0.0169 (6) | 0.0336 (7) | −0.0020 (5) | 0.0035 (5) | −0.0096 (5) |
C1 | 0.0134 (7) | 0.0151 (7) | 0.0177 (7) | −0.0021 (6) | 0.0045 (6) | −0.0012 (6) |
C2 | 0.0149 (7) | 0.0154 (8) | 0.0213 (8) | −0.0017 (6) | 0.0055 (6) | −0.0016 (6) |
C3 | 0.0175 (7) | 0.0113 (7) | 0.0257 (8) | −0.0009 (6) | 0.0068 (6) | −0.0018 (6) |
C4 | 0.0184 (8) | 0.0173 (8) | 0.0234 (8) | 0.0008 (6) | 0.0063 (6) | 0.0022 (6) |
C5 | 0.0159 (7) | 0.0173 (8) | 0.0200 (8) | 0.0000 (6) | 0.0052 (6) | 0.0022 (6) |
C6 | 0.0205 (8) | 0.0192 (8) | 0.0188 (8) | −0.0035 (6) | 0.0062 (6) | 0.0009 (6) |
C7 | 0.0645 (15) | 0.0242 (10) | 0.0264 (10) | 0.0119 (10) | −0.0043 (10) | 0.0010 (8) |
C8 | 0.0708 (17) | 0.0355 (12) | 0.0229 (10) | 0.0075 (11) | −0.0110 (10) | 0.0045 (9) |
C9 | 0.0365 (10) | 0.0325 (10) | 0.0171 (8) | −0.0095 (8) | 0.0061 (7) | −0.0026 (7) |
C10 | 0.0247 (9) | 0.0293 (10) | 0.0332 (10) | −0.0007 (8) | 0.0025 (7) | −0.0124 (8) |
C11 | 0.0218 (9) | 0.0263 (9) | 0.0292 (9) | 0.0029 (7) | −0.0027 (7) | −0.0078 (8) |
C12 | 0.0148 (7) | 0.0150 (7) | 0.0175 (7) | −0.0016 (6) | 0.0053 (6) | −0.0008 (6) |
C13 | 0.0190 (7) | 0.0155 (8) | 0.0178 (7) | −0.0014 (6) | 0.0045 (6) | −0.0009 (6) |
C14 | 0.0219 (8) | 0.0143 (8) | 0.0219 (8) | −0.0007 (6) | 0.0065 (6) | 0.0017 (6) |
C15 | 0.0209 (8) | 0.0204 (8) | 0.0192 (8) | −0.0008 (6) | 0.0048 (6) | 0.0052 (6) |
C16 | 0.0212 (8) | 0.0229 (9) | 0.0161 (8) | −0.0041 (7) | 0.0039 (6) | −0.0001 (6) |
C17 | 0.0174 (7) | 0.0157 (8) | 0.0192 (8) | −0.0026 (6) | 0.0062 (6) | −0.0026 (6) |
C18 | 0.0176 (8) | 0.0169 (8) | 0.0240 (8) | −0.0010 (6) | 0.0061 (6) | −0.0036 (6) |
C19 | 0.0170 (8) | 0.0175 (8) | 0.0223 (8) | −0.0001 (6) | 0.0030 (6) | −0.0033 (6) |
C20 | 0.0249 (9) | 0.0159 (8) | 0.0405 (11) | 0.0000 (7) | 0.0105 (8) | 0.0007 (7) |
C21 | 0.0220 (9) | 0.0230 (9) | 0.0342 (10) | −0.0060 (7) | 0.0083 (7) | 0.0035 (7) |
C22 | 0.0178 (8) | 0.0292 (10) | 0.0289 (9) | 0.0042 (7) | 0.0056 (7) | −0.0035 (7) |
C23 | 0.0211 (8) | 0.0210 (9) | 0.0226 (8) | 0.0046 (7) | 0.0004 (7) | −0.0024 (6) |
C24 | 0.0191 (8) | 0.0170 (8) | 0.0171 (8) | −0.0004 (6) | 0.0006 (6) | −0.0015 (6) |
Br1—C24 | 1.8992 (17) | C10—C11 | 1.388 (3) |
O1—C1 | 1.3555 (19) | C10—H10 | 0.9500 |
O1—C5 | 1.4017 (19) | C11—H11 | 0.9500 |
O2—C17 | 1.378 (2) | C12—C17 | 1.391 (2) |
O2—C18 | 1.382 (2) | C12—C13 | 1.402 (2) |
O3—C18 | 1.210 (2) | C13—C14 | 1.382 (2) |
C1—C2 | 1.350 (2) | C13—H13 | 0.9500 |
C1—C12 | 1.443 (2) | C14—C15 | 1.399 (2) |
C2—C18 | 1.452 (2) | C14—H14 | 0.9500 |
C2—C3 | 1.508 (2) | C15—C16 | 1.385 (2) |
C3—C4 | 1.506 (2) | C15—H15 | 0.9500 |
C3—C19 | 1.531 (2) | C16—C17 | 1.392 (2) |
C3—H3 | 1.0000 | C16—H16 | 0.9500 |
C4—C5 | 1.327 (2) | C19—C20 | 1.396 (2) |
C4—H4 | 0.9500 | C19—C24 | 1.396 (2) |
C5—C6 | 1.475 (2) | C20—C21 | 1.363 (3) |
C6—C11 | 1.389 (3) | C20—H20 | 0.9500 |
C6—C7 | 1.391 (3) | C21—C22 | 1.400 (3) |
C7—C8 | 1.392 (3) | C21—H21 | 0.9500 |
C7—H7 | 0.9500 | C22—C23 | 1.388 (3) |
C8—C9 | 1.375 (3) | C22—H22 | 0.9500 |
C8—H8 | 0.9500 | C23—C24 | 1.390 (2) |
C9—C10 | 1.369 (3) | C23—H23 | 0.9500 |
C9—H9 | 0.9500 | ||
C1—O1—C5 | 117.97 (13) | C17—C12—C1 | 117.11 (14) |
C17—O2—C18 | 121.86 (13) | C13—C12—C1 | 124.00 (15) |
C2—C1—O1 | 123.61 (15) | C14—C13—C12 | 120.12 (15) |
C2—C1—C12 | 122.46 (15) | C14—C13—H13 | 119.9 |
O1—C1—C12 | 113.94 (13) | C12—C13—H13 | 119.9 |
C1—C2—C18 | 118.84 (15) | C13—C14—C15 | 119.80 (15) |
C1—C2—C3 | 122.47 (15) | C13—C14—H14 | 120.1 |
C18—C2—C3 | 118.63 (14) | C15—C14—H14 | 120.1 |
C4—C3—C2 | 108.83 (13) | C16—C15—C14 | 121.13 (16) |
C4—C3—C19 | 109.64 (14) | C16—C15—H15 | 119.4 |
C2—C3—C19 | 112.78 (14) | C14—C15—H15 | 119.4 |
C4—C3—H3 | 108.5 | C15—C16—C17 | 118.28 (16) |
C2—C3—H3 | 108.5 | C15—C16—H16 | 120.9 |
C19—C3—H3 | 108.5 | C17—C16—H16 | 120.9 |
C5—C4—C3 | 124.17 (16) | O2—C17—C12 | 121.13 (15) |
C5—C4—H4 | 117.9 | O2—C17—C16 | 117.06 (15) |
C3—C4—H4 | 117.9 | C12—C17—C16 | 121.79 (15) |
C4—C5—O1 | 121.81 (15) | O3—C18—O2 | 116.61 (15) |
C4—C5—C6 | 128.24 (16) | O3—C18—C2 | 124.89 (17) |
O1—C5—C6 | 109.95 (14) | O2—C18—C2 | 118.49 (14) |
C11—C6—C7 | 118.06 (17) | C20—C19—C24 | 117.06 (16) |
C11—C6—C5 | 120.72 (16) | C20—C19—C3 | 119.52 (15) |
C7—C6—C5 | 121.19 (16) | C24—C19—C3 | 123.37 (15) |
C6—C7—C8 | 120.51 (19) | C21—C20—C19 | 122.03 (17) |
C6—C7—H7 | 119.7 | C21—C20—H20 | 119.0 |
C8—C7—H7 | 119.7 | C19—C20—H20 | 119.0 |
C9—C8—C7 | 120.7 (2) | C20—C21—C22 | 120.34 (17) |
C9—C8—H8 | 119.6 | C20—C21—H21 | 119.8 |
C7—C8—H8 | 119.6 | C22—C21—H21 | 119.8 |
C10—C9—C8 | 119.04 (18) | C23—C22—C21 | 119.17 (17) |
C10—C9—H9 | 120.5 | C23—C22—H22 | 120.4 |
C8—C9—H9 | 120.5 | C21—C22—H22 | 120.4 |
C9—C10—C11 | 120.99 (19) | C22—C23—C24 | 119.55 (17) |
C9—C10—H10 | 119.5 | C22—C23—H23 | 120.2 |
C11—C10—H10 | 119.5 | C24—C23—H23 | 120.2 |
C10—C11—C6 | 120.65 (18) | C23—C24—C19 | 121.83 (16) |
C10—C11—H11 | 119.7 | C23—C24—Br1 | 117.66 (13) |
C6—C11—H11 | 119.7 | C19—C24—Br1 | 120.51 (13) |
C17—C12—C13 | 118.89 (15) |
Cg4 is the centroid of the C12–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cg4i | 1.00 | 2.80 | 3.4956 (18) | 127 |
Symmetry code: (i) −x+1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C24H15BrO3 |
Mr | 431.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 11.5959 (2), 17.7890 (4), 8.7610 (2) |
β (°) | 97.060 (1) |
V (Å3) | 1793.53 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.32 |
Crystal size (mm) | 0.52 × 0.40 × 0.23 |
Data collection | |
Diffractometer | Bruker X8 APEXII KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.380, 0.618 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 41256, 4464, 4019 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.068, 1.05 |
No. of reflections | 4464 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.34 |
Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXTL (Sheldrick, 2008) and WinGX (Farrugia,1999), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
Cg4 is the centroid of the C12–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cg4i | 1.00 | 2.80 | 3.4956 (18) | 127 |
Symmetry code: (i) −x+1, −y+2, −z. |
Acknowledgements
The University of the Free State and Sasol Ltd are gratefully acknowledged for financial support.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
He, Z., Lin, X., Zhu, Y. & Wang, Y. (2010). Heterocycles, 81, 965–976. CAS Google Scholar
Heide, L. (2009). Methods in Enzymology, Vol. 459, Aminocoumarins Mutasynthesis, Chemoenzymatic Synthesis, and Metabolic Engineering, pp. 437–455. New York: Academic Press. Google Scholar
Hinman, W., Hoeksema, H., Caron, E. L. & Jackson, W. G. (1956). J. Am. Chem. Soc. 78, 1072–1074. CrossRef CAS Web of Science Google Scholar
Lakshmi, S., Manvar, D., Parecha, A., Shah, A., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o2163–o2165. Web of Science CSD CrossRef IUCr Journals Google Scholar
Magolan, J., Adams, N. B. P., Onozuka, H., Hungerford, N. L., Esumi, H. & Coster, M. J. (2012). ChemMedChem, 7, 766–770. Web of Science CrossRef CAS PubMed Google Scholar
Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). In The Natural Coumarins: Occurrence, Chemistry and Biochemistry. UK: Wiley-VCH. Google Scholar
Naveen, S., Lakshmi, S., Manvar, D., Parecha, A., Shah, A., Sridhar, M. A. & Prasad, J. S. (2007). J. Chem. Crystallogr. 37, 733–738. Web of Science CSD CrossRef CAS Google Scholar
Patil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., Caranfa, M. J., Breen, A. L., Bartus, H. R., Johnson, R. K., Hertzberg, R. P. & Westley, J. W. (1993). J. Med. Chem. 36, 4131–4138. CSD CrossRef CAS PubMed Web of Science Google Scholar
Sarma, R., Sarmah, M. M., Lekhok, K. C. & Prajapati, D. (2010). Synlett, 19, 2847–2852. Google Scholar
Shaabani, A., Rezayan, A. H., Sarvary, A., Rahmati, A. & Khavasi, H. R. (2008). Catal. Commun. 9, 1082–1086. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, D., Wu, N., Zhuang, Q. & Zhang, Y. (2004). Acta Cryst. E60, o2339–o2341. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shi, D.-Q., Wu, N., Zhuang, Q.-Y. & Zhang, Y. (2005). Acta Cryst. E61, o87–o89. Web of Science CSD CrossRef IUCr Journals Google Scholar
Soine, T. O. (1964). J. Pharm. Sci. 53, 231–264. CrossRef PubMed CAS Web of Science Google Scholar
Verotta, L., Lovaglio, E., Vidari, G., Finzi, P. V., Neri, M. G., Raimondi, A., Parapini, S., Taramelli, D., Riva, A. & Bombardelli, E. (2004). Phytochemistry, 65, 2867–2989. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compound 1 is a derivative of a well known phytochemical called coumarin. The derivatives of coumarins are valued for their interesting medicinal applications (Murray et al., 1982; Heide et al., 2009 & Soine et al., 1964). For example, some of them are inhibitors of HIV-1 reverse transcriptase (Patil et al., 1993), while others are being used as anti-bacterial (Verotta et al., 2004), anti-biotic (Hinman et al., 1956) and anti-neoplastic (Magolan et al., 2012) agents. Many authors have synthesized coumarin derivatives using their own approaches (Naveen et al., 2007; Shaabani et al., 2008 & Sarma et al., 2010) and we adapted the synthetic procedure by He et al., 2010. There are also quite a few structures published that are related to compound 1 (Shi et al., 2004; Shi et al., 2005; He et al., 2010 & Lakshmi et al.,2006).
Recently He et al., 2010, synthesized various functionalized pyranochromenones and reported the crystal structure of the 2,4-diphenyl pyrano(3,2 - c)chromen-5(4H)-one (2). Structurally, both compounds 1 and 2 are quite similar. We adapted their synthetic method for the preparation of 1. Our close examination of the crystal structure 1 (Fig. 1) reveals that the bonds C2—C3 (1.508 (2) Å and C3—C4 (1.506 (2) Å are essentially single bonds. The mean plane analysis of 1 shows the pyranochromen-5(4H)-one ring is almost planar. The deviation observed is maximum for the C4 [(0.1166 (17) Å] and C5 [(0.1024 (14) Å] atoms located next to O1 and primary C3 of the pyran ring respectively. The dihedral angle between the chromene (atoms C12 to C17, O2, C18, C1 and C2) and pyrane (C1 to C5 and O1) of pyranochromen-5(4H)-one ring is 5.39 (5) °. The phenyl group (atoms C6 to C11) attached to C5 is slightly tilted from the parent plane (dihedral angle is 17.50 (8) ° and the torsion angle of O1—C5—C6—C7 is 157.68 (1) °. The 2-bromophenyl group (C19 to C24 and Br1) connected to C3 is almost perpendicular to the pyranochromen-5(4H)-one ring [dihedral angle is 85.58 (6)° and torsion angles of C4—C3—C19—C20 is 81.41 (8) and C4—C3—C19—C24 is 95.90 (1)°].
Several edge-to-face intermolecular C—H ··· π interactions are observed in compound 1 (Fig. 2) and the atomic parameters [distance and angles] are as follows.
a) phenyl ring of the chromenone with C3—H3 [2.804 (1) Å; 146.75 (4)°] and C4—H4 [3.812 (4) Å; 92.71 (4)°] of pyran ring.
b) phenyl ring of the chromenone with C9—H9 [3.798 (4) Å; 84.12 (2)°] and C10—H10 [3.238 (2) Å; 95.65 (3)°] of 2-phenyl group.
c) 2-bromophenyl ring with C9—H9 [3.076 (2) Å; 141.50 (3)°] and C8—H8 [3.652 (5) Å; (115.99 (2)°] of 2-phenyl group.
d) 2-phenyl ring with C23—H23 [3.301 (8) Å; (146.75 (8)°] of 2-bromophenyl group and [C7—H73.639 (4) Å; (128.73 (3)°] of 2-phenyl group.
Strong C—H ··· Br intramolecular interaction is also observed [C3—H3 ··· Br1 2.668 (7) Å; 113.66 (9)°]. The unit cell packing diagram shows a zigzag arrangement of atoms running along the b axis (Fig. 3). There is also a short interatomic contact found between Br1 and O3 (3.016 (1)Å).