metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1524-m1525

Tris(5,6-di­methyl-1,10-phenanthroline-κ2N,N′)iron(II) bis­­(tri­cyano­methanide)

aInstitute of Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia
*Correspondence e-mail: lucia.vahovska@student.upjs.sk

(Received 29 October 2012; accepted 14 November 2012; online 24 November 2012)

The title compound, [Fe(C14H12N2)3](C4N3)2, consists of one [Fe(dimephen)3]2+ complex cation (dimephen = 5,6-dimethyl-1,10-phenanthroline) and two uncoordinating tcm anions (tcm = tricyano­methanide). In the complex cation, the FeII atom is coordinated by six N atoms from three chelating dimephen ligands at an average Fe—N distance of 1.963 (4) Å giving a distorted octa­hedral geometry. The crystal structure is stabilized by weak C—H⋯N hydrogen bonds and C≡N⋯π inter­actions between planar [maximum deviations of 0.024 (3) and 0.015 (3) Å] tcm anions and pyridine rings of dimephen [N2⋯centroid = 3.531 (3) and 3.726 (3) Å; C≡N⋯centroid = 96.4 (2) and 97.1 (2)°].

Related literature

[Fe(phen)2(NCS)2] (phen = 1,10-phenathroline) and [Fe(bpy)2(NCS)2] (bpy = 2,2-bipyridine) are the first known and most extensively studied compounds of iron(II) exhibiting a high spin ←→ low spin transition, see: König & Watson (1970[König, E. & Watson, K. J. (1970). Chem. Phys. Lett. 6, 457-459.]); Müller et al. (1982[Müller, E. W., Spiering, H. & Gütlich, P. (1982). Chem. Phys. Lett. 93, 567-571.]). For [Fe(phen)3]2+complexes, see: Aparici Plaza et al. (2007[Aparici Plaza, L., Baranowska, K. & Becker, B. (2007). Acta Cryst. E63, m1537-m1539.]); Odoko & Okabe (2004[Odoko, M. & Okabe, N. (2004). Acta Cryst. E60, m1822-m1824.]); Koh et al. (1994[Koh, L. L., Xu, Y., Hsieh, A. K., Song, B., Wu, F. & Ji, L. (1994). Acta Cryst. C50, 884-886.]); Uçar et al. (2005[Uçar, I., Paşaoĝlu, H., Büyükgüngör, O. & Bulut, A. (2005). Acta Cryst. E61, m1405-m1407.]); Li et al. (2008[Li, Z.-X., Yu, M.-M., Zhang, Y.-N. & Wei, L.-H. (2008). Acta Cryst. E64, m1514.]). For bond lengths and angles in dimephen, see: Toledano-Magaña et al. (2012)[Toledano-Magaña, Y., García-Ramos, J.-C., García-Manrique, C., Flores-Alamo, M. & Ruiz-Azuara, L. (2012). Acta Cryst. E68, m987-m988.] and in tcm ligands, see: Potočňák et al. (2002[Potočňák, I., Pohlová, M., Wagner, C. & Jäger, L. (2002). Acta Cryst. E58, m595-m596.]); Luo et al. (2009[Luo, J., Zhang, X.-R., Qiu, L.-J., Liu, B.-S. & Zhang, Z.-Y. (2009). Acta Cryst. E65, m455-m456.]). For the structure, properties and bonding modes of the tcm anion, see: Golub et al. (1986[Golub, A. M., Köhler, H. & Skopenko, V. V. (1986). Chemistry of Pseudohalides, pp. 313-318. Amsterdam: Elsevier.]); Kohout et al. (2000[Kohout, J., Jäger, L., Hvastijová, M. & Kožíšek, J. (2000). J. Coord. Chem. 51, 172-182.]). For the crystal and mol­ecular structure of phen, see: Nishigaki et al. (1978[Nishigaki, S., Yoshioka, H. & Nakatsu, K. (1978). Acta Cryst. B34, 875-879.]). For similar FeII complexes, see: Váhovská & Potočňák (2012[Váhovská, L. & Potočňák, I. (2012). J. Chem. Crystallogr. Submitted.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C14H12N2)3](C4N3)2

  • Mr = 860.76

  • Triclinic, [P \overline 1]

  • a = 9.3676 (3) Å

  • b = 12.7079 (9) Å

  • c = 18.1998 (9) Å

  • α = 75.458 (5)°

  • β = 89.623 (3)°

  • γ = 82.323 (4)°

  • V = 2077.52 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 183 K

  • 0.66 × 0.25 × 0.03 mm

Data collection
  • Agilent Xcalibur (Sapphire2) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.874, Tmax = 0.986

  • 15408 measured reflections

  • 8167 independent reflections

  • 6309 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.125

  • S = 1.07

  • 8167 reflections

  • 574 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N20 1.957 (2)
Fe1—N10 1.959 (2)
Fe1—N60 1.963 (2)
Fe1—N30 1.965 (2)
Fe1—N50 1.967 (2)
Fe1—N40 1.968 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C52—H52⋯N30 0.95 2.59 3.070 (3) 112
C22—H22⋯N40 0.95 2.59 3.089 (4) 113
C32—H32⋯N8 0.95 2.43 3.266 (4) 146
C42—H42⋯N60 0.95 2.57 3.056 (3) 112
C22—H22⋯N6i 0.95 2.54 3.271 (4) 134
C12—H12⋯N2ii 0.95 2.55 3.352 (4) 142
C62—H62⋯N3iii 0.95 2.51 3.266 (4) 137
C44—H44⋯N7iv 0.95 2.59 3.312 (4) 133
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x, -y+1, -z; (iv) x-1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The iron(II) complexes [Fe(phen)2(NCS)2] and [Fe(bpy)2(NCS)2] (bpy = 2,2-bipyridine) belong to the first known and most extensively studied compounds of iron(II) exhibiting a high spin low spin transition (Müller et al., 1982; König & Watson, 1970). By far the majority of known spin-transition compounds are octahedral FeII compounds of general formula [Fe(L)4(NCX)2] or [Fe(L)2(NCX)2] (L = monodentate or bidentate N-donor ligands, X = S, Se). In our research, which is aimed on preparation of new [Fe(L)2(Y)2] compounds (L = bpy, phen or their derivatives and Y = pseudohalide anions (dicyanamide, or tcm)) with possible spin crossover, we prepared crystals of the title compound with composition [Fe(dimephen)3](tcm)2 (I) (dimephen = 5,6-dimethyl-1,10-phenanthroline).

Structural analysis showed that crystal structure of the title compound is ionic and consists of one complex cation and two tcm counter-anions (Fig. 1).

In the complex cation the FeII ion is bonded to three bidentate dimephen ligands through their nitrogen atoms resulting in a distorted octahedral arrangement with the six Fe1–N distances ranging from 1.957 (2) to 1.968 (2) Å (Table 1). These values as well as the values of N–Fe1–N bite angles (82.88 (9), 82.69 (9), 82.44 (9)°) and opposite (trans) angles (173.92 (9), 176.49 (9), 176.56 (9)°) are comparable to the corresponding distances and angles in other complexes with [Fe(phen)3]2+ cations (Aparici Plaza et al., 2007; Odoko & Okabe, 2004; Koh et al., 1994; Uçar et al., 2005; Li et al., 2008). All N–Fe1–N bond angles in (I) deviate significantly from the ideal values of 90 or 180° because of the constrained geometry of the dimephen ring systems. The values of bond distances and angles within the rings of neutral ligands are similar to those found in the similar [Cu(dimephen)3](PF6)2.CH3CN complex, too (Toledano-Magaña et al., 2012). The dimephen ligands in (I) are almost planar, the largest deviation of atom from the mean plane being 0.051 (3) Å for atom C63.

Both tcm anions are nearly planar, too (the largest deviations of atoms from the mean planes being 0.024 (3) for C1 atom and 0.015 (3) Å for C5 atom). The average C–C and CN bond lengths (1.404 (6) and 1.155 (3) Å, respectively), C–C–C (120.0 (3)°) and C–CN (179.0 (6)°) angles within the both anions are in good agreement with those found in other tricyanomethanide complexes (Potočňák et al., 2002; Luo et al., 2009).

The crystal packing in (I) is formed by weak C–H···N hydrogen bonds (Table 2) and C–N···Cg π-ring interactions. Weak hydrogen bonds occur between individual dimephen ligands and thus the structure of the cation is stabilized. Moreover, tcm anions interconnect two [Fe(dimephen)3]2+cations through hydrogen bonds and these interactions lead to infinite chain-like structure running along z axis (Fig. 2).

Except hydrogen bonds, the crystal structure is stabilized by π-ring interactions between nitrogen atoms from tcm anions and corresponding pyridine rings. The N2···Cg8i (i = x – 1, y, z) and N6···Cg7 distances (3.531 (3) and 3.726 (3) Å, respectively, Cg8 and Cg7 are centroids of pyridine rings with N50 and N40 atoms, respectively), the distances of N2 and N6 atoms to the planes of the corresponding dimephen rings (3.505 and 3.677 Å, respectively) as well as the C2N2···Cg8i and C6N6···Cg7 angles (96.4 (2) and 97.1 (2)°, respectively) are close to those found in similar FeII complexes (Váhovská & Potočňák, 2012). Parallel arrangement of tcm anions with dimephen molecules in (I) is shown in Fig. 3.

Related literature top

The iron(II) complexes [Fe(phen)2(NCS)2] and [Fe(bpy)2(NCS)2] (bpy = 2,2-bipyridine) are the first known and most extensively studied compounds of iron(II) exhibiting a high spin low spin transition, see: König & Watson (1970); Müller et al. (1982). For [Fe(phen)3]2+complexes (phen = 1,10-phenathroline) see: Aparici Plaza et al. (2007); Odoko & Okabe (2004); Koh et al. (1994); Uçar et al. (2005); Li et al. (2008). For bond lengths and angles in dimephen, see: Toledano-Magaña et al. (2012) and in tcm ligands, see: Potočňák et al. (2002); Luo et al. (2009). For the structure, properties and bonding modes of the tcm anion, see: Golub et al. (1986); Kohout et al. (2000). For the crystal and molecular structure of phen, see: Nishigaki et al. (1978). For similar FeII complexes, see: Váhovská & Potočňák (2012).

Experimental top

Single crystals of the title compound were obtained at the interfaces of layered systems, with the lower layer comprising an aqueous solution (5 ml) of iron(II) sulfate (0.1 mmol) and 5 ml of tcm (0.1 mmol) and the upper layer comprising a methanolic solution (3 ml) of dimephen (0.1 mmol). These layered systems were allowed to stand at room temperature. Red crystals suitable for X-ray analysis were obtained and filtered off in several days and dried on air.

Refinement top

Anisotropic displacement parameters were refined for all non-H atoms. The aromatic as well as methyl H atoms were placed in calculated positions and refined riding on their parent C atoms with C–H distances of 0.95 and 0.98 Å, respectively and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for aromatic and methyl hydrogen atoms, respectively.

Structure description top

The iron(II) complexes [Fe(phen)2(NCS)2] and [Fe(bpy)2(NCS)2] (bpy = 2,2-bipyridine) belong to the first known and most extensively studied compounds of iron(II) exhibiting a high spin low spin transition (Müller et al., 1982; König & Watson, 1970). By far the majority of known spin-transition compounds are octahedral FeII compounds of general formula [Fe(L)4(NCX)2] or [Fe(L)2(NCX)2] (L = monodentate or bidentate N-donor ligands, X = S, Se). In our research, which is aimed on preparation of new [Fe(L)2(Y)2] compounds (L = bpy, phen or their derivatives and Y = pseudohalide anions (dicyanamide, or tcm)) with possible spin crossover, we prepared crystals of the title compound with composition [Fe(dimephen)3](tcm)2 (I) (dimephen = 5,6-dimethyl-1,10-phenanthroline).

Structural analysis showed that crystal structure of the title compound is ionic and consists of one complex cation and two tcm counter-anions (Fig. 1).

In the complex cation the FeII ion is bonded to three bidentate dimephen ligands through their nitrogen atoms resulting in a distorted octahedral arrangement with the six Fe1–N distances ranging from 1.957 (2) to 1.968 (2) Å (Table 1). These values as well as the values of N–Fe1–N bite angles (82.88 (9), 82.69 (9), 82.44 (9)°) and opposite (trans) angles (173.92 (9), 176.49 (9), 176.56 (9)°) are comparable to the corresponding distances and angles in other complexes with [Fe(phen)3]2+ cations (Aparici Plaza et al., 2007; Odoko & Okabe, 2004; Koh et al., 1994; Uçar et al., 2005; Li et al., 2008). All N–Fe1–N bond angles in (I) deviate significantly from the ideal values of 90 or 180° because of the constrained geometry of the dimephen ring systems. The values of bond distances and angles within the rings of neutral ligands are similar to those found in the similar [Cu(dimephen)3](PF6)2.CH3CN complex, too (Toledano-Magaña et al., 2012). The dimephen ligands in (I) are almost planar, the largest deviation of atom from the mean plane being 0.051 (3) Å for atom C63.

Both tcm anions are nearly planar, too (the largest deviations of atoms from the mean planes being 0.024 (3) for C1 atom and 0.015 (3) Å for C5 atom). The average C–C and CN bond lengths (1.404 (6) and 1.155 (3) Å, respectively), C–C–C (120.0 (3)°) and C–CN (179.0 (6)°) angles within the both anions are in good agreement with those found in other tricyanomethanide complexes (Potočňák et al., 2002; Luo et al., 2009).

The crystal packing in (I) is formed by weak C–H···N hydrogen bonds (Table 2) and C–N···Cg π-ring interactions. Weak hydrogen bonds occur between individual dimephen ligands and thus the structure of the cation is stabilized. Moreover, tcm anions interconnect two [Fe(dimephen)3]2+cations through hydrogen bonds and these interactions lead to infinite chain-like structure running along z axis (Fig. 2).

Except hydrogen bonds, the crystal structure is stabilized by π-ring interactions between nitrogen atoms from tcm anions and corresponding pyridine rings. The N2···Cg8i (i = x – 1, y, z) and N6···Cg7 distances (3.531 (3) and 3.726 (3) Å, respectively, Cg8 and Cg7 are centroids of pyridine rings with N50 and N40 atoms, respectively), the distances of N2 and N6 atoms to the planes of the corresponding dimephen rings (3.505 and 3.677 Å, respectively) as well as the C2N2···Cg8i and C6N6···Cg7 angles (96.4 (2) and 97.1 (2)°, respectively) are close to those found in similar FeII complexes (Váhovská & Potočňák, 2012). Parallel arrangement of tcm anions with dimephen molecules in (I) is shown in Fig. 3.

The iron(II) complexes [Fe(phen)2(NCS)2] and [Fe(bpy)2(NCS)2] (bpy = 2,2-bipyridine) are the first known and most extensively studied compounds of iron(II) exhibiting a high spin low spin transition, see: König & Watson (1970); Müller et al. (1982). For [Fe(phen)3]2+complexes (phen = 1,10-phenathroline) see: Aparici Plaza et al. (2007); Odoko & Okabe (2004); Koh et al. (1994); Uçar et al. (2005); Li et al. (2008). For bond lengths and angles in dimephen, see: Toledano-Magaña et al. (2012) and in tcm ligands, see: Potočňák et al. (2002); Luo et al. (2009). For the structure, properties and bonding modes of the tcm anion, see: Golub et al. (1986); Kohout et al. (2000). For the crystal and molecular structure of phen, see: Nishigaki et al. (1978). For similar FeII complexes, see: Váhovská & Potočňák (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound.
[Figure 2] Fig. 2. Intramolecular and intermolecular C—H···N hydrogen bonds (blue and red dashed lines, respectively) in the title compound. H-atoms not involved in hydrogen bonds are omitted because of clarity.
[Figure 3] Fig. 3. π-π interactions (dashed lines) between tcm and pyridine rings in the title compound (symmetry codes: (i) = x –1, y, z). H-atoms are omitted because of clarity.
Tris(5,6-dimethyl-1,10-phenanthroline-κ2N,N')iron(II) bis(tricyanomethanide) top
Crystal data top
[Fe(C14H12N2)3](C4N3)2Z = 2
Mr = 860.76F(000) = 892
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3676 (3) ÅCell parameters from 5036 reflections
b = 12.7079 (9) Åθ = 3.0–29.2°
c = 18.1998 (9) ŵ = 0.42 mm1
α = 75.458 (5)°T = 183 K
β = 89.623 (3)°Needle, dark red
γ = 82.323 (4)°0.66 × 0.25 × 0.03 mm
V = 2077.52 (19) Å3
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
8167 independent reflections
Radiation source: fine-focus sealed tube6309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3438 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1111
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
k = 1510
Tmin = 0.874, Tmax = 0.986l = 2221
15408 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0473P)2 + 1.1913P]
where P = (Fo2 + 2Fc2)/3
8167 reflections(Δ/σ)max = 0.001
574 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Fe(C14H12N2)3](C4N3)2γ = 82.323 (4)°
Mr = 860.76V = 2077.52 (19) Å3
Triclinic, P1Z = 2
a = 9.3676 (3) ÅMo Kα radiation
b = 12.7079 (9) ŵ = 0.42 mm1
c = 18.1998 (9) ÅT = 183 K
α = 75.458 (5)°0.66 × 0.25 × 0.03 mm
β = 89.623 (3)°
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
8167 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
6309 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.986Rint = 0.025
15408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.07Δρmax = 0.92 e Å3
8167 reflectionsΔρmin = 0.40 e Å3
574 parameters
Special details top

Experimental. CrysAlis PRO (Agilent, 2012) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.52758 (4)0.38724 (3)0.27263 (2)0.01786 (11)
N100.6319 (2)0.51196 (18)0.23141 (12)0.0199 (5)
N200.3666 (2)0.50317 (18)0.27106 (12)0.0196 (5)
N300.5692 (2)0.37913 (18)0.37975 (12)0.0208 (5)
N400.4163 (2)0.26722 (18)0.31777 (12)0.0189 (5)
N500.6912 (2)0.27509 (18)0.26764 (12)0.0196 (5)
N600.4893 (2)0.37825 (18)0.16864 (12)0.0191 (5)
C110.5467 (3)0.6115 (2)0.22050 (14)0.0178 (5)
C120.7678 (3)0.5128 (2)0.20913 (15)0.0250 (6)
H120.82950.44510.21680.030*
C130.8222 (3)0.6097 (2)0.17501 (16)0.0279 (7)
H130.91860.60700.15830.034*
C140.7372 (3)0.7085 (2)0.16549 (16)0.0273 (7)
H140.77500.77460.14300.033*
C150.5938 (3)0.7123 (2)0.18903 (14)0.0204 (6)
C160.4937 (3)0.8123 (2)0.18188 (15)0.0235 (6)
C170.5497 (3)0.9199 (3)0.14961 (18)0.0365 (8)
H17A0.46870.97930.13760.055*
H17B0.60200.91650.10330.055*
H17C0.61480.93370.18700.055*
C210.4017 (3)0.6066 (2)0.24352 (14)0.0184 (6)
C220.2318 (3)0.4941 (2)0.29416 (16)0.0255 (6)
H220.20460.42300.31320.031*
C230.1304 (3)0.5858 (3)0.29106 (17)0.0297 (7)
H230.03620.57670.30890.036*
C240.1652 (3)0.6885 (3)0.26263 (16)0.0284 (7)
H240.09520.75080.26030.034*
C250.3061 (3)0.7028 (2)0.23650 (15)0.0209 (6)
C260.3543 (3)0.8075 (2)0.20441 (15)0.0245 (6)
C270.2448 (3)0.9083 (3)0.19628 (19)0.0389 (8)
H27A0.29170.97400.17750.058*
H27B0.20350.90900.24580.058*
H27C0.16800.90730.16020.058*
C310.5127 (3)0.2963 (2)0.42907 (14)0.0201 (6)
C320.6471 (3)0.4402 (2)0.40944 (16)0.0257 (6)
H320.68690.49880.37630.031*
C330.6717 (3)0.4202 (3)0.48748 (17)0.0326 (7)
H330.72720.46520.50670.039*
C340.6164 (3)0.3365 (3)0.53644 (17)0.0320 (7)
H340.63420.32280.58960.038*
C350.5328 (3)0.2702 (2)0.50797 (15)0.0266 (6)
C360.4690 (3)0.1787 (3)0.55442 (16)0.0300 (7)
C370.4985 (3)0.1533 (3)0.63885 (17)0.0434 (9)
H37A0.45700.08710.66410.065*
H37B0.45480.21510.65820.065*
H37C0.60270.14110.64910.065*
C410.4288 (2)0.2355 (2)0.39481 (14)0.0187 (6)
C420.3382 (3)0.2126 (2)0.28329 (16)0.0256 (6)
H420.32640.23450.22960.031*
C430.2731 (3)0.1237 (2)0.32412 (18)0.0301 (7)
H430.21950.08550.29780.036*
C440.2859 (3)0.0914 (2)0.40121 (17)0.0293 (7)
H440.24120.03100.42850.035*
C450.3654 (3)0.1477 (2)0.44031 (16)0.0243 (6)
C460.3868 (3)0.1207 (2)0.52172 (16)0.0286 (7)
C470.3141 (3)0.0276 (3)0.56809 (19)0.0422 (9)
H47A0.34950.00930.62100.063*
H47B0.33610.03680.54750.063*
H47C0.20970.04990.56590.063*
C510.6892 (3)0.2399 (2)0.20271 (15)0.0188 (6)
C520.7946 (3)0.2252 (2)0.31962 (15)0.0239 (6)
H520.79940.24940.36480.029*
C530.8950 (3)0.1397 (2)0.31027 (16)0.0278 (7)
H530.96710.10660.34860.033*
C540.8910 (3)0.1025 (2)0.24603 (17)0.0277 (7)
H540.95860.04260.24030.033*
C550.7863 (3)0.1536 (2)0.18851 (15)0.0216 (6)
C560.7733 (3)0.1236 (2)0.11727 (16)0.0258 (6)
C570.8814 (3)0.0306 (3)0.10493 (19)0.0368 (8)
H57A0.85440.01090.05870.055*
H57B0.88240.03320.14850.055*
H57C0.97740.05370.09960.055*
C610.5799 (3)0.2973 (2)0.14812 (14)0.0192 (6)
C620.3875 (3)0.4362 (2)0.11791 (15)0.0232 (6)
H620.32340.49300.13070.028*
C630.3724 (3)0.4158 (2)0.04676 (16)0.0289 (7)
H630.30010.45970.01170.035*
C640.4609 (3)0.3332 (2)0.02716 (16)0.0272 (6)
H640.44910.31880.02100.033*
C650.5700 (3)0.2695 (2)0.07885 (15)0.0214 (6)
C660.6681 (3)0.1789 (2)0.06461 (16)0.0252 (6)
C670.6472 (3)0.1516 (3)0.00986 (18)0.0382 (8)
H67A0.70720.08230.01000.057*
H67B0.67510.21030.05130.057*
H67C0.54570.14440.01690.057*
C10.0574 (3)0.2816 (3)0.04263 (18)0.0358 (8)
C20.0526 (3)0.3207 (3)0.1087 (2)0.0436 (9)
C30.0500 (3)0.3222 (3)0.0146 (2)0.0438 (9)
C40.1662 (3)0.1985 (3)0.03535 (18)0.0338 (7)
C50.9633 (3)0.7346 (3)0.44900 (18)0.0325 (7)
C60.9720 (3)0.6902 (3)0.5285 (2)0.0413 (8)
C71.0418 (3)0.8197 (3)0.41576 (19)0.0348 (7)
C80.8731 (3)0.6955 (3)0.4037 (2)0.0374 (8)
N20.0493 (3)0.3516 (3)0.1633 (2)0.0640 (10)
N30.1365 (3)0.3538 (3)0.0629 (2)0.0624 (10)
N40.2554 (3)0.1297 (2)0.02865 (17)0.0470 (7)
N60.9798 (3)0.6547 (3)0.5933 (2)0.0670 (10)
N71.1049 (3)0.8905 (2)0.38654 (18)0.0482 (8)
N80.7995 (3)0.6636 (3)0.36574 (19)0.0508 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01556 (18)0.0189 (2)0.0196 (2)0.00280 (14)0.00151 (14)0.00547 (16)
N100.0156 (10)0.0235 (13)0.0207 (12)0.0017 (9)0.0029 (8)0.0062 (10)
N200.0175 (10)0.0233 (13)0.0196 (12)0.0040 (9)0.0034 (9)0.0076 (10)
N300.0171 (10)0.0223 (13)0.0242 (12)0.0025 (9)0.0005 (9)0.0084 (10)
N400.0183 (10)0.0186 (12)0.0201 (12)0.0026 (9)0.0005 (9)0.0053 (10)
N500.0179 (11)0.0215 (13)0.0194 (12)0.0052 (9)0.0005 (9)0.0037 (10)
N600.0160 (10)0.0191 (12)0.0212 (12)0.0028 (9)0.0024 (8)0.0031 (10)
C110.0196 (13)0.0199 (15)0.0146 (13)0.0021 (11)0.0009 (10)0.0061 (11)
C120.0175 (13)0.0281 (17)0.0293 (16)0.0011 (11)0.0047 (11)0.0085 (13)
C130.0206 (14)0.0351 (18)0.0301 (16)0.0108 (13)0.0078 (11)0.0084 (14)
C140.0287 (15)0.0288 (17)0.0254 (15)0.0153 (13)0.0050 (12)0.0029 (13)
C150.0255 (13)0.0234 (15)0.0139 (13)0.0084 (11)0.0018 (10)0.0048 (11)
C160.0327 (15)0.0222 (16)0.0160 (14)0.0067 (12)0.0026 (11)0.0039 (12)
C170.0437 (18)0.0239 (17)0.0416 (19)0.0100 (14)0.0025 (14)0.0050 (15)
C210.0198 (13)0.0200 (15)0.0161 (13)0.0027 (11)0.0002 (10)0.0061 (11)
C220.0199 (13)0.0304 (17)0.0282 (15)0.0060 (12)0.0048 (11)0.0098 (13)
C230.0180 (13)0.0391 (19)0.0336 (17)0.0033 (12)0.0059 (12)0.0125 (15)
C240.0200 (13)0.0308 (18)0.0341 (17)0.0050 (12)0.0018 (12)0.0119 (14)
C250.0223 (13)0.0220 (15)0.0184 (14)0.0012 (11)0.0027 (10)0.0075 (12)
C260.0306 (15)0.0230 (16)0.0192 (14)0.0007 (12)0.0018 (11)0.0056 (12)
C270.0429 (18)0.0287 (19)0.0399 (19)0.0068 (14)0.0013 (14)0.0050 (15)
C310.0177 (12)0.0223 (15)0.0195 (14)0.0006 (11)0.0032 (10)0.0055 (12)
C320.0221 (13)0.0271 (16)0.0314 (16)0.0032 (12)0.0009 (11)0.0140 (13)
C330.0304 (15)0.0380 (19)0.0353 (18)0.0009 (13)0.0075 (13)0.0220 (15)
C340.0325 (16)0.043 (2)0.0219 (15)0.0045 (14)0.0036 (12)0.0161 (15)
C350.0224 (14)0.0332 (18)0.0221 (15)0.0061 (12)0.0005 (11)0.0084 (13)
C360.0256 (14)0.0362 (19)0.0209 (15)0.0083 (13)0.0044 (11)0.0006 (13)
C370.0424 (18)0.057 (2)0.0242 (17)0.0025 (16)0.0032 (14)0.0024 (16)
C410.0139 (12)0.0195 (15)0.0215 (14)0.0005 (10)0.0032 (10)0.0042 (11)
C420.0232 (14)0.0291 (17)0.0254 (15)0.0065 (12)0.0005 (11)0.0071 (13)
C430.0246 (14)0.0270 (17)0.0424 (19)0.0093 (12)0.0004 (12)0.0123 (14)
C440.0245 (14)0.0219 (16)0.0405 (18)0.0087 (12)0.0082 (12)0.0033 (14)
C450.0180 (13)0.0234 (16)0.0286 (15)0.0001 (11)0.0050 (11)0.0029 (13)
C460.0231 (14)0.0311 (17)0.0254 (16)0.0039 (12)0.0060 (11)0.0002 (13)
C470.0385 (17)0.041 (2)0.0369 (19)0.0039 (15)0.0125 (14)0.0073 (16)
C510.0170 (12)0.0196 (14)0.0216 (14)0.0074 (10)0.0051 (10)0.0062 (11)
C520.0221 (13)0.0296 (17)0.0197 (14)0.0034 (12)0.0018 (11)0.0054 (12)
C530.0190 (13)0.0322 (18)0.0287 (16)0.0007 (12)0.0032 (11)0.0029 (14)
C540.0201 (13)0.0227 (16)0.0393 (18)0.0016 (11)0.0034 (12)0.0082 (14)
C550.0177 (12)0.0201 (15)0.0276 (15)0.0054 (11)0.0044 (11)0.0053 (12)
C560.0227 (14)0.0236 (16)0.0350 (17)0.0060 (11)0.0085 (12)0.0132 (13)
C570.0303 (16)0.038 (2)0.049 (2)0.0019 (14)0.0074 (14)0.0248 (17)
C610.0202 (13)0.0167 (14)0.0211 (14)0.0073 (10)0.0056 (10)0.0033 (11)
C620.0221 (13)0.0220 (15)0.0246 (15)0.0028 (11)0.0002 (11)0.0040 (12)
C630.0287 (15)0.0292 (17)0.0256 (16)0.0056 (13)0.0060 (12)0.0001 (13)
C640.0330 (15)0.0312 (17)0.0190 (14)0.0096 (13)0.0005 (11)0.0064 (13)
C650.0235 (13)0.0227 (15)0.0200 (14)0.0095 (11)0.0028 (10)0.0059 (12)
C660.0263 (14)0.0258 (16)0.0279 (16)0.0109 (12)0.0076 (12)0.0113 (13)
C670.0456 (18)0.041 (2)0.0348 (18)0.0060 (15)0.0022 (14)0.0212 (16)
C10.0270 (15)0.0319 (19)0.044 (2)0.0007 (13)0.0069 (14)0.0022 (16)
C20.0298 (17)0.040 (2)0.056 (2)0.0020 (15)0.0137 (16)0.0059 (18)
C30.0318 (17)0.032 (2)0.056 (2)0.0013 (14)0.0117 (16)0.0075 (17)
C40.0314 (16)0.0288 (18)0.0372 (18)0.0050 (14)0.0032 (13)0.0004 (15)
C50.0263 (15)0.0321 (18)0.0421 (19)0.0075 (13)0.0061 (13)0.0132 (15)
C60.0290 (16)0.043 (2)0.054 (2)0.0148 (15)0.0125 (15)0.0121 (18)
C70.0269 (15)0.0275 (18)0.051 (2)0.0034 (13)0.0056 (14)0.0123 (16)
C80.0278 (16)0.0316 (19)0.055 (2)0.0055 (14)0.0107 (15)0.0153 (17)
N20.055 (2)0.069 (3)0.074 (3)0.0022 (17)0.0231 (18)0.032 (2)
N30.0396 (17)0.061 (2)0.068 (2)0.0018 (15)0.0005 (16)0.0144 (19)
N40.0468 (17)0.0364 (18)0.0525 (19)0.0050 (14)0.0044 (14)0.0071 (15)
N60.059 (2)0.088 (3)0.055 (2)0.033 (2)0.0127 (17)0.009 (2)
N70.0428 (16)0.0360 (18)0.066 (2)0.0129 (14)0.0066 (14)0.0097 (16)
N80.0401 (16)0.052 (2)0.070 (2)0.0119 (14)0.0044 (15)0.0304 (18)
Geometric parameters (Å, º) top
Fe1—N201.957 (2)C36—C371.508 (4)
Fe1—N101.959 (2)C37—H37A0.9800
Fe1—N601.963 (2)C37—H37B0.9800
Fe1—N301.965 (2)C37—H37C0.9800
Fe1—N501.967 (2)C41—C451.411 (4)
Fe1—N401.968 (2)C42—C431.399 (4)
N10—C121.334 (3)C42—H420.9500
N10—C111.372 (3)C43—C441.361 (4)
N20—C221.339 (3)C43—H430.9500
N20—C211.368 (3)C44—C451.406 (4)
N30—C321.339 (3)C44—H440.9500
N30—C311.365 (3)C45—C461.443 (4)
N40—C421.331 (3)C46—C471.510 (4)
N40—C411.359 (3)C47—H47A0.9800
N50—C521.335 (3)C47—H47B0.9800
N50—C511.365 (3)C47—H47C0.9800
N60—C621.337 (3)C51—C551.404 (4)
N60—C611.369 (3)C51—C611.420 (4)
C11—C151.394 (4)C52—C531.383 (4)
C11—C211.423 (3)C52—H520.9500
C12—C131.393 (4)C53—C541.369 (4)
C12—H120.9500C53—H530.9500
C13—C141.366 (4)C54—C551.408 (4)
C13—H130.9500C54—H540.9500
C14—C151.406 (4)C55—C561.450 (4)
C14—H140.9500C56—C661.369 (4)
C15—C161.454 (4)C56—C571.511 (4)
C16—C261.371 (4)C57—H57A0.9800
C16—C171.507 (4)C57—H57B0.9800
C17—H17A0.9800C57—H57C0.9800
C17—H17B0.9800C61—C651.399 (4)
C17—H17C0.9800C62—C631.394 (4)
C21—C251.394 (4)C62—H620.9500
C22—C231.392 (4)C63—C641.367 (4)
C22—H220.9500C63—H630.9500
C23—C241.360 (4)C64—C651.413 (4)
C23—H230.9500C64—H640.9500
C24—C251.419 (4)C65—C661.449 (4)
C24—H240.9500C66—C671.501 (4)
C25—C261.443 (4)C67—H67A0.9800
C26—C271.506 (4)C67—H67B0.9800
C27—H27A0.9800C67—H67C0.9800
C27—H27B0.9800C1—C41.397 (4)
C27—H27C0.9800C1—C31.402 (5)
C31—C351.398 (4)C1—C21.411 (5)
C31—C411.419 (4)C2—N21.155 (5)
C32—C331.394 (4)C3—N31.156 (4)
C32—H320.9500C4—N41.155 (4)
C33—C341.363 (4)C5—C71.398 (4)
C33—H330.9500C5—C81.403 (5)
C34—C351.411 (4)C5—C61.413 (5)
C34—H340.9500C6—N61.151 (4)
C35—C361.453 (4)C7—N71.157 (4)
C36—C461.367 (4)C8—N81.157 (4)
N20—Fe1—N1082.89 (9)C34—C35—C36124.8 (3)
N20—Fe1—N6094.50 (9)C46—C36—C35120.5 (3)
N10—Fe1—N6089.17 (9)C46—C36—C37123.2 (3)
N20—Fe1—N3089.92 (9)C35—C36—C37116.3 (3)
N10—Fe1—N3095.52 (9)C36—C37—H37A109.5
N60—Fe1—N30173.92 (9)C36—C37—H37B109.5
N20—Fe1—N50176.49 (9)H37A—C37—H37B109.5
N10—Fe1—N5094.93 (9)C36—C37—H37C109.5
N60—Fe1—N5082.70 (9)H37A—C37—H37C109.5
N30—Fe1—N5093.03 (9)H37B—C37—H37C109.5
N20—Fe1—N4094.31 (9)N40—C41—C45124.1 (2)
N10—Fe1—N40176.56 (9)N40—C41—C31115.8 (2)
N60—Fe1—N4093.05 (9)C45—C41—C31120.1 (2)
N30—Fe1—N4082.45 (9)N40—C42—C43121.7 (3)
N50—Fe1—N4087.97 (9)N40—C42—H42119.1
C12—N10—C11117.2 (2)C43—C42—H42119.1
C12—N10—Fe1129.55 (19)C44—C43—C42120.6 (3)
C11—N10—Fe1113.15 (15)C44—C43—H43119.7
C22—N20—C21117.6 (2)C42—C43—H43119.7
C22—N20—Fe1129.00 (19)C43—C44—C45119.8 (3)
C21—N20—Fe1113.43 (16)C43—C44—H44120.1
C32—N30—C31117.4 (2)C45—C44—H44120.1
C32—N30—Fe1129.23 (19)C44—C45—C41115.9 (2)
C31—N30—Fe1113.32 (17)C44—C45—C46124.7 (3)
C42—N40—C41117.8 (2)C41—C45—C46119.3 (3)
C42—N40—Fe1129.02 (18)C36—C46—C45120.4 (3)
C41—N40—Fe1113.08 (17)C36—C46—C47122.3 (3)
C52—N50—C51117.3 (2)C45—C46—C47117.4 (3)
C52—N50—Fe1129.58 (19)C46—C47—H47A109.5
C51—N50—Fe1112.98 (17)C46—C47—H47B109.5
C62—N60—C61117.4 (2)H47A—C47—H47B109.5
C62—N60—Fe1129.68 (19)C46—C47—H47C109.5
C61—N60—Fe1112.91 (17)H47A—C47—H47C109.5
N10—C11—C15124.3 (2)H47B—C47—H47C109.5
N10—C11—C21115.3 (2)N50—C51—C55124.1 (2)
C15—C11—C21120.5 (2)N50—C51—C61115.4 (2)
N10—C12—C13122.2 (3)C55—C51—C61120.5 (2)
N10—C12—H12118.9N50—C52—C53122.5 (3)
C13—C12—H12118.9N50—C52—H52118.7
C14—C13—C12120.2 (2)C53—C52—H52118.7
C14—C13—H13119.9C54—C53—C52120.3 (3)
C12—C13—H13119.9C54—C53—H53119.8
C13—C14—C15119.9 (2)C52—C53—H53119.8
C13—C14—H14120.1C53—C54—C55119.7 (3)
C15—C14—H14120.1C53—C54—H54120.2
C11—C15—C14116.3 (3)C55—C54—H54120.2
C11—C15—C16119.0 (2)C51—C55—C54116.1 (3)
C14—C15—C16124.8 (2)C51—C55—C56119.0 (2)
C26—C16—C15120.5 (2)C54—C55—C56124.9 (3)
C26—C16—C17122.1 (3)C66—C56—C55120.5 (3)
C15—C16—C17117.4 (2)C66—C56—C57122.9 (3)
C16—C17—H17A109.5C55—C56—C57116.7 (3)
C16—C17—H17B109.5C56—C57—H57A109.5
H17A—C17—H17B109.5C56—C57—H57B109.5
C16—C17—H17C109.5H57A—C57—H57B109.5
H17A—C17—H17C109.5C56—C57—H57C109.5
H17B—C17—H17C109.5H57A—C57—H57C109.5
N20—C21—C25124.5 (2)H57B—C57—H57C109.5
N20—C21—C11115.2 (2)N60—C61—C65124.4 (2)
C25—C21—C11120.3 (2)N60—C61—C51115.6 (2)
N20—C22—C23121.8 (3)C65—C61—C51120.1 (2)
N20—C22—H22119.1N60—C62—C63122.0 (3)
C23—C22—H22119.1N60—C62—H62119.0
C24—C23—C22120.5 (2)C63—C62—H62119.0
C24—C23—H23119.8C64—C63—C62120.4 (3)
C22—C23—H23119.8C64—C63—H63119.8
C23—C24—C25120.0 (3)C62—C63—H63119.8
C23—C24—H24120.0C63—C64—C65119.7 (3)
C25—C24—H24120.0C63—C64—H64120.1
C21—C25—C24115.7 (2)C65—C64—H64120.1
C21—C25—C26119.6 (2)C61—C65—C64116.1 (3)
C24—C25—C26124.7 (3)C61—C65—C66119.5 (2)
C16—C26—C25120.2 (3)C64—C65—C66124.4 (3)
C16—C26—C27122.8 (3)C56—C66—C65120.3 (3)
C25—C26—C27117.1 (2)C56—C66—C67123.4 (3)
C26—C27—H27A109.5C65—C66—C67116.3 (3)
C26—C27—H27B109.5C66—C67—H67A109.5
H27A—C27—H27B109.5C66—C67—H67B109.5
C26—C27—H27C109.5H67A—C67—H67B109.5
H27A—C27—H27C109.5C66—C67—H67C109.5
H27B—C27—H27C109.5H67A—C67—H67C109.5
N30—C31—C35124.3 (3)H67B—C67—H67C109.5
N30—C31—C41115.2 (2)C4—C1—C3119.6 (3)
C35—C31—C41120.5 (2)C4—C1—C2119.9 (3)
N30—C32—C33121.9 (3)C3—C1—C2120.4 (3)
N30—C32—H32119.0N2—C2—C1179.3 (4)
C33—C32—H32119.0N3—C3—C1178.1 (4)
C34—C33—C32120.4 (3)N4—C4—C1179.2 (4)
C34—C33—H33119.8C7—C5—C8120.0 (3)
C32—C33—H33119.8C7—C5—C6119.8 (3)
C33—C34—C35119.8 (3)C8—C5—C6120.2 (3)
C33—C34—H34120.1N6—C6—C5179.5 (4)
C35—C34—H34120.1N7—C7—C5178.3 (4)
C31—C35—C34116.1 (3)N8—C8—C5179.3 (4)
C31—C35—C36119.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···N300.952.593.070 (3)112
C22—H22···N400.952.593.089 (4)113
C32—H32···N80.952.433.266 (4)146
C42—H42···N600.952.573.056 (3)112
C22—H22···N6i0.952.543.271 (4)134
C12—H12···N2ii0.952.553.352 (4)142
C62—H62···N3iii0.952.513.266 (4)137
C44—H44···N7iv0.952.593.312 (4)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Fe(C14H12N2)3](C4N3)2
Mr860.76
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)9.3676 (3), 12.7079 (9), 18.1998 (9)
α, β, γ (°)75.458 (5), 89.623 (3), 82.323 (4)
V3)2077.52 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.66 × 0.25 × 0.03
Data collection
DiffractometerAgilent Xcalibur (Sapphire2)
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.874, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
15408, 8167, 6309
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.125, 1.07
No. of reflections8167
No. of parameters574
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.40

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

Selected bond lengths (Å) top
Fe1—N201.957 (2)Fe1—N301.965 (2)
Fe1—N101.959 (2)Fe1—N501.967 (2)
Fe1—N601.963 (2)Fe1—N401.968 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···N300.952.593.070 (3)111.6
C22—H22···N400.952.593.089 (4)112.7
C32—H32···N80.952.433.266 (4)146.2
C42—H42···N600.952.573.056 (3)112.1
C22—H22···N6i0.952.543.271 (4)134.3
C12—H12···N2ii0.952.553.352 (4)142.3
C62—H62···N3iii0.952.513.266 (4)136.7
C44—H44···N7iv0.952.593.312 (4)133.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x1, y1, z.
 

Acknowledgements

This work was supported by the Slovak Research and Development Agency under contract No. APVV-0014–11 and by the inter­nal P. J. Šafárik University grant system (VVGS-PF-2012–24 and VVGS 1/12–13).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAparici Plaza, L., Baranowska, K. & Becker, B. (2007). Acta Cryst. E63, m1537–m1539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGolub, A. M., Köhler, H. & Skopenko, V. V. (1986). Chemistry of Pseudohalides, pp. 313–318. Amsterdam: Elsevier.  Google Scholar
First citationKoh, L. L., Xu, Y., Hsieh, A. K., Song, B., Wu, F. & Ji, L. (1994). Acta Cryst. C50, 884–886.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKohout, J., Jäger, L., Hvastijová, M. & Kožíšek, J. (2000). J. Coord. Chem. 51, 172–182.  Web of Science CrossRef Google Scholar
First citationKönig, E. & Watson, K. J. (1970). Chem. Phys. Lett. 6, 457–459.  Web of Science CSD CrossRef Google Scholar
First citationLi, Z.-X., Yu, M.-M., Zhang, Y.-N. & Wei, L.-H. (2008). Acta Cryst. E64, m1514.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLuo, J., Zhang, X.-R., Qiu, L.-J., Liu, B.-S. & Zhang, Z.-Y. (2009). Acta Cryst. E65, m455–m456.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMüller, E. W., Spiering, H. & Gütlich, P. (1982). Chem. Phys. Lett. 93, 567–571.  CrossRef Web of Science Google Scholar
First citationNishigaki, S., Yoshioka, H. & Nakatsu, K. (1978). Acta Cryst. B34, 875–879.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOdoko, M. & Okabe, N. (2004). Acta Cryst. E60, m1822–m1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPotočňák, I., Pohlová, M., Wagner, C. & Jäger, L. (2002). Acta Cryst. E58, m595–m596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToledano-Magaña, Y., García-Ramos, J.-C., García-Manrique, C., Flores-Alamo, M. & Ruiz-Azuara, L. (2012). Acta Cryst. E68, m987–m988.  CSD CrossRef IUCr Journals Google Scholar
First citationUçar, I., Paşaoĝlu, H., Büyükgüngör, O. & Bulut, A. (2005). Acta Cryst. E61, m1405–m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVáhovská, L. & Potočňák, I. (2012). J. Chem. Crystallogr. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1524-m1525
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds