metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1446-m1447

(η6-Benzene)­di­chlorido(di­cyclo­hexyl­phenyl­phosphane)ruthenium(II) benzene sesquisolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: daviswl24@yahoo.com

(Received 15 October 2012; accepted 29 October 2012; online 3 November 2012)

The asymmetric unit of the title compound, [RuCl2(C6H6)(C18H27P)]·1.5C6H6, contains one mol­ecule of the RuII complex and one and a half solvent molecules as one of these is located about a centre of inversion. The RuII atom has a classical three-legged piano-stool environment being coordinated by an η6-benzene ligand [Ru—centroid = 1.6964 (6) Å], two chloride ligands with an average Ru—Cl bond length of 2.4138 (3) Å and a dicyclo­hexyl­phenyl­phosphane ligand [Ru—P = 2.3786 (3) Å]. The effective cone angle for the phosphane was calculated to be 158°. In the crystal, weak C—H⋯Cl hydrogen bonds link the RuII complexes into centrosymmetric dimers. The crystal packing exhibits intra- and inter­molecular C—H⋯π inter­actions resulting in a zigzag pattern in the [101] direction.

Related literature

For background to the catalytic activity of RuII–arene complexes, see: Chen et al. (2002[Chen, Y., Valentini, M., Pregosin, P. S. & Albinati, A. (2002). Inorg. Chim. Acta, 327, 4-14.]); Crochet et al. (2003[Crochet, P., Fernández-Zumel, M. A., Beauquis, C. & Gimeno, J. (2003). Inorg. Chim. Acta, 356, 114-120.]); Aydemir et al. (2011[Aydemir, M., Baysal, A., Meric, N., Kayan, C., Gümgüm, B., Özkar, S. & Şahin, E. (2011). Inorg. Chim. Acta, 356, 114-120.]); Wang et al. (2011[Wang, L., Yang, Q., Fu, H.-Y., Chen, H., Yuan, M.-L. & Li, R.-X. (2011). Appl. Organomet. Chem. 25, 626-631.]). For ring-opening metathesis polymerization with Ru–arene complexes, see: Stumpf et al. (1995[Stumpf, A. W., Saive, E., Demonceau, A. & Noels, A. F. (1995). J. Chem. Soc. Chem. Commun. pp. 1127-1128.]). For background to cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C6H6)(C18H27P)]·1.5C6H6

  • Mr = 641.61

  • Triclinic, [P \overline 1]

  • a = 10.0893 (8) Å

  • b = 10.8325 (9) Å

  • c = 14.4937 (12) Å

  • α = 90.346 (2)°

  • β = 91.748 (1)°

  • γ = 106.979 (1)°

  • V = 1514.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.43 × 0.17 × 0.16 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.734, Tmax = 0.887

  • 49345 measured reflections

  • 7589 independent reflections

  • 7093 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.048

  • S = 1.03

  • 7589 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C19–C24 and C31–C33/C31′–C33′) benzene rings.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl2i 0.95 2.76 3.6307 (13) 153
C4—H4⋯Cl1i 0.95 2.7 3.6209 (13) 163
C6—H6⋯Cg1 0.95 2.78 3.5086 (14) 135
C2—H2⋯Cg2ii 0.95 2.73 3.5869 (15) 150
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The activity of the half-sandwich Ru(II)-arene complexes are well known in the catalytic transfer hydrogenation of carbonyl compounds (Chen et al., 2002; Crochet et al., 2003; Aydemir et al., 2011; Wang et al., 2011) and for ring-opening metathesis polymerization (Stumpf et al., 1995). Reported here is the η6-Ru compound containing the phosphane, PCy2Ph, where Cy = C6H11 and Ph = C6H5 as part of our ongoing structural investigation into these type of complexes.

The title compound crystallizes in the triclinic space group P1 (Z=2), with its molecules adopting a classical three-legged piano-stool environment observed for these type of complexes. Each Ru complex co-crystallizes with sesqui benzene solvate molecules due to one of the solvate being situated on an inversion centre (see Fig. 1). The coordination sphere of the ruthenium is occupied by a benzene, dicyclohexylphenylphosphane and two chloride atoms. The distance between Ru and the centroid of the π-bonded η6-benzene ligand is 1.6964 (6) Å and the mean Ru—C bond distance is 2.2099 (13) Å. The coordination of the remaining ligands to the Ru atom shows a slight deviation from the typical octahedral geometry with Cl—Ru—Cl = 88.07 (11) and Cl—Ru—P = 87.12 (11), 90.97 (2)°. The bond distances of Ru—P = 2.3786 (3) and Ru—Cl(avg.) = 2.4138 (3) Å are within normal ranges (Allen, 2002).

The steric demand of phosphane ligands is usually described with the use of the Tolman cone angle model (Tolman, 1977). In the present study we make use of an adaptation of this model whereby the geometry obtained from the title compound (and adjusting the Ru—P bond distance to 2.28 Å) is used to calculate an effective cone angle (Otto, 2001). The value obtained with this method is 158°, which is marginally smaller that the average effective cone angle value calculated from literature observations of the phosphane ligand. Data extracted from the Cambridge Structural Database (Allen, 2002) shows an average cone angle of 165° for the phosphane from 31 hits, containing 45 useable observations with a standard deviation of ±6° and a spread from 148° to 180°.

The slightly smaller cone angle value obtained for the phosphane ligand in the title compound could be due to a crowded metal coordination environment as well as several C–H···Cl and C–H···π interactions that are observed (see Fig. 2, Table 1 for a graphical representation of the interactions).

Related literature top

For background to the catalytic activity of RuII–arene complexes, see: Chen et al. (2002); Crochet et al. (2003); Aydemir et al. (2011); Wang et al. (2011). For ring-opening metathesis polymerization with Ru–arene complexes, see: Stumpf et al. (1995). For background to cone angles, see: Tolman (1977); Otto (2001). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

[(C6H6)RuCl2]2 (50.0 mg, 0.10 mmol) and dicyclohexylphenylphosphane (60.2 mg, 0.22 mmol) in benzene (25 ml) were refluxed under argon for 4 h. The resulting red solution was cooled and filtered to obtain the title complex as orange needles suitable for a single-crystal X-ray study. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ (p.p.m.) 24.74 (s, 1P). 1H NMR (CDCl3, 400 MHz): δ (p.p.m.) 1.23 - 2.45 (m, 22H, 2×C6H11); 5.27 (s, 6H, C6H6); 7.43 (m, 3H, Ar—H of C6H5); 7.77 (t, 2H, Ar—H of C6H5); 7.34 (s, 6H, Ar—H of C6H6 co-crystallized solvate)

Refinement top

The aromatic, methine and methylene H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids. Accented lettering indicate atoms generated by symmetry code: 1 - x,1 - y,1 - z.
[Figure 2] Fig. 2. Packing diagram showing the C—H···Cl/π interactions (indicated by red dashed lines).
(η6-Benzene)dichlorido(dicyclohexylphenylphosphane)ruthenium(II) benzene sesquisolvate top
Crystal data top
[RuCl2(C6H6)(C18H27P)]·1.5C6H6Z = 2
Mr = 641.61F(000) = 666
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0893 (8) ÅCell parameters from 9969 reflections
b = 10.8325 (9) Åθ = 2.4–28.4°
c = 14.4937 (12) ŵ = 0.77 mm1
α = 90.346 (2)°T = 100 K
β = 91.748 (1)°Needle, orange
γ = 106.979 (1)°0.43 × 0.17 × 0.16 mm
V = 1514.1 (2) Å3
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
7589 independent reflections
Radiation source: sealed tube7093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.4 pixels mm-1θmax = 28.4°, θmin = 2.0°
ϕ and ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1414
Tmin = 0.734, Tmax = 0.887l = 1919
49345 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.8124P]
where P = (Fo2 + 2Fc2)/3
7589 reflections(Δ/σ)max = 0.006
334 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[RuCl2(C6H6)(C18H27P)]·1.5C6H6γ = 106.979 (1)°
Mr = 641.61V = 1514.1 (2) Å3
Triclinic, P1Z = 2
a = 10.0893 (8) ÅMo Kα radiation
b = 10.8325 (9) ŵ = 0.77 mm1
c = 14.4937 (12) ÅT = 100 K
α = 90.346 (2)°0.43 × 0.17 × 0.16 mm
β = 91.748 (1)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
7589 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7093 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.887Rint = 0.022
49345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
7589 reflectionsΔρmin = 0.43 e Å3
334 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 3975 frames were collected with a frame width of 0.5° covering up to θ = 28.39° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.23801 (12)0.90129 (11)0.13276 (8)0.0128 (2)
H130.22040.82140.17040.015*
Ru10.291263 (9)1.021309 (9)0.364239 (6)0.01185 (3)
Cl20.35692 (3)0.82818 (3)0.330250 (19)0.01576 (6)
Cl10.51362 (3)1.14613 (3)0.310072 (19)0.01539 (6)
P10.20357 (3)1.02428 (3)0.210321 (19)0.01140 (6)
C210.20563 (14)1.02643 (15)0.22475 (9)0.0240 (3)
H210.25631.08780.22540.029*
C240.05677 (13)0.84778 (13)0.22298 (9)0.0199 (2)
H240.00660.7860.22280.024*
C70.27287 (12)1.18293 (11)0.15452 (8)0.0141 (2)
H70.37141.18940.14160.017*
C30.34809 (14)1.10795 (13)0.50804 (8)0.0205 (2)
H30.43421.15120.53830.025*
C190.01393 (12)0.97891 (12)0.21045 (8)0.0151 (2)
C120.28055 (14)1.29985 (12)0.21791 (8)0.0189 (2)
H12A0.18561.30190.23140.023*
H12B0.32851.29140.27710.023*
C150.17462 (13)0.74268 (12)0.00063 (8)0.0184 (2)
H15A0.14780.66830.04130.022*
H15B0.11770.71910.05850.022*
C60.08641 (13)0.98146 (14)0.42244 (8)0.0207 (3)
H60.00290.93890.39630.025*
C50.16284 (14)0.91076 (14)0.47028 (9)0.0217 (3)
H50.12820.81930.4720.026*
C90.28183 (16)1.32479 (12)0.01475 (9)0.0227 (3)
H9A0.37641.32320.00040.027*
H9B0.23231.3340.04360.027*
C230.19916 (14)0.80717 (14)0.23563 (10)0.0247 (3)
H230.24550.71810.24320.03*
C20.27617 (14)1.18010 (13)0.45379 (8)0.0197 (2)
H20.31731.26980.44490.024*
C10.14425 (13)1.11748 (13)0.41362 (8)0.0199 (2)
H10.0941.16590.38070.024*
C200.06275 (13)1.06759 (13)0.21126 (8)0.0188 (2)
H200.01741.15660.20260.023*
C220.27381 (14)0.89684 (15)0.23717 (9)0.0255 (3)
H220.37070.86940.24670.031*
C40.29264 (14)0.97544 (14)0.51658 (8)0.0216 (3)
H40.34020.92790.55280.026*
C170.42054 (13)0.81708 (12)0.06445 (8)0.0166 (2)
H17A0.51910.83970.04780.02*
H17B0.40370.74630.10950.02*
C80.20528 (14)1.19726 (12)0.05982 (8)0.0187 (2)
H8A0.20671.12430.01880.022*
H8B0.10731.19410.06790.022*
C290.13687 (16)0.64750 (15)0.65832 (10)0.0294 (3)
H290.20340.71360.62760.035*
C250.08721 (15)0.49053 (14)0.65995 (11)0.0298 (3)
H250.1740.44840.63010.036*
C100.29188 (18)1.44049 (13)0.07790 (10)0.0281 (3)
H10A0.19791.44860.08690.034*
H10B0.34761.52030.04850.034*
C300.00960 (16)0.58659 (15)0.61498 (10)0.0297 (3)
H300.01090.61080.55460.036*
C110.35888 (16)1.42569 (12)0.17166 (10)0.0257 (3)
H11A0.35981.49980.21230.031*
H11B0.45621.42660.16320.031*
C270.06923 (17)0.51601 (14)0.79164 (10)0.0281 (3)
H270.08950.49180.85210.034*
C280.16672 (16)0.61169 (14)0.74646 (10)0.0288 (3)
H280.25410.65280.77590.035*
C260.05788 (16)0.45575 (13)0.74830 (11)0.0284 (3)
H260.1250.39050.77930.034*
C180.39160 (12)0.93493 (11)0.10898 (8)0.0143 (2)
H18A0.41451.0080.06580.017*
H18B0.45040.96120.16580.017*
C140.14528 (13)0.86015 (12)0.04474 (8)0.0176 (2)
H14A0.04650.8380.06070.021*
H14B0.16410.93250.00090.021*
C160.32791 (13)0.77092 (12)0.02223 (8)0.0180 (2)
H16A0.35210.83810.06990.022*
H16B0.34470.69180.04720.022*
C310.52440 (16)0.43687 (14)0.57897 (10)0.0283 (3)
H310.5410.39360.6330.034*
C320.59078 (16)0.42566 (14)0.49868 (11)0.0293 (3)
H320.65320.37480.49770.035*
C330.43334 (16)0.51160 (14)0.58070 (11)0.0291 (3)
H330.38780.51970.63580.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.0132 (5)0.0144 (5)0.0112 (5)0.0050 (4)0.0004 (4)0.0011 (4)
Ru10.01057 (5)0.01581 (5)0.00970 (5)0.00475 (3)0.00032 (3)0.00017 (3)
Cl20.01653 (13)0.01590 (12)0.01587 (12)0.00649 (10)0.00139 (10)0.00159 (10)
Cl10.01180 (12)0.01761 (13)0.01576 (12)0.00284 (10)0.00064 (10)0.00031 (10)
P10.01084 (13)0.01358 (13)0.01068 (13)0.00509 (10)0.00095 (10)0.00060 (10)
C210.0192 (6)0.0392 (8)0.0191 (6)0.0170 (6)0.0003 (5)0.0004 (5)
C240.0154 (6)0.0228 (6)0.0218 (6)0.0060 (5)0.0005 (5)0.0028 (5)
C70.0158 (5)0.0138 (5)0.0134 (5)0.0055 (4)0.0009 (4)0.0000 (4)
C30.0196 (6)0.0323 (7)0.0105 (5)0.0097 (5)0.0018 (4)0.0046 (5)
C190.0121 (5)0.0222 (6)0.0121 (5)0.0067 (4)0.0013 (4)0.0019 (4)
C120.0259 (6)0.0163 (5)0.0156 (5)0.0085 (5)0.0024 (5)0.0023 (4)
C150.0220 (6)0.0181 (6)0.0152 (5)0.0064 (5)0.0021 (5)0.0037 (4)
C60.0143 (6)0.0338 (7)0.0138 (5)0.0065 (5)0.0035 (4)0.0019 (5)
C50.0214 (6)0.0282 (7)0.0150 (6)0.0057 (5)0.0069 (5)0.0040 (5)
C90.0350 (7)0.0187 (6)0.0165 (6)0.0108 (5)0.0019 (5)0.0030 (5)
C230.0160 (6)0.0296 (7)0.0247 (7)0.0008 (5)0.0011 (5)0.0029 (5)
C20.0232 (6)0.0252 (6)0.0128 (5)0.0103 (5)0.0004 (5)0.0049 (5)
C10.0191 (6)0.0322 (7)0.0128 (5)0.0144 (5)0.0012 (4)0.0027 (5)
C200.0181 (6)0.0260 (6)0.0150 (5)0.0107 (5)0.0000 (4)0.0001 (5)
C220.0122 (6)0.0445 (8)0.0195 (6)0.0080 (6)0.0002 (5)0.0022 (6)
C40.0234 (6)0.0347 (7)0.0100 (5)0.0133 (6)0.0024 (5)0.0042 (5)
C170.0179 (6)0.0187 (5)0.0155 (5)0.0086 (5)0.0023 (4)0.0001 (4)
C80.0247 (6)0.0181 (6)0.0138 (5)0.0075 (5)0.0029 (5)0.0006 (4)
C290.0274 (7)0.0277 (7)0.0265 (7)0.0026 (6)0.0052 (6)0.0001 (6)
C250.0208 (7)0.0254 (7)0.0402 (8)0.0026 (5)0.0036 (6)0.0017 (6)
C100.0477 (9)0.0177 (6)0.0219 (6)0.0143 (6)0.0010 (6)0.0028 (5)
C300.0328 (8)0.0284 (7)0.0251 (7)0.0048 (6)0.0028 (6)0.0004 (6)
C110.0376 (8)0.0147 (6)0.0238 (7)0.0066 (5)0.0025 (6)0.0016 (5)
C270.0383 (8)0.0232 (6)0.0234 (7)0.0100 (6)0.0012 (6)0.0002 (5)
C280.0249 (7)0.0286 (7)0.0280 (7)0.0011 (6)0.0031 (6)0.0057 (6)
C260.0276 (7)0.0185 (6)0.0376 (8)0.0036 (5)0.0098 (6)0.0035 (5)
C180.0143 (5)0.0154 (5)0.0138 (5)0.0050 (4)0.0018 (4)0.0001 (4)
C140.0184 (6)0.0212 (6)0.0148 (5)0.0089 (5)0.0043 (4)0.0049 (4)
C160.0237 (6)0.0182 (6)0.0141 (5)0.0094 (5)0.0016 (5)0.0017 (4)
C310.0353 (8)0.0228 (6)0.0273 (7)0.0108 (6)0.0125 (6)0.0045 (5)
C320.0307 (7)0.0253 (7)0.0353 (8)0.0147 (6)0.0106 (6)0.0079 (6)
C330.0328 (8)0.0269 (7)0.0283 (7)0.0106 (6)0.0043 (6)0.0071 (6)
Geometric parameters (Å, º) top
C13—C181.5352 (16)C23—C221.393 (2)
C13—C141.5422 (15)C23—H230.95
C13—P11.8536 (11)C2—C11.4111 (18)
C13—H131C2—H20.95
Ru1—C52.1708 (13)C1—H10.95
Ru1—C12.1808 (12)C20—H200.95
Ru1—C62.1816 (13)C22—H220.95
Ru1—C22.1919 (12)C4—H40.95
Ru1—C42.2667 (12)C17—C161.5328 (17)
Ru1—C32.2677 (12)C17—C181.5333 (16)
Ru1—P12.3786 (3)C17—H17A0.99
Ru1—Cl12.4137 (3)C17—H17B0.99
Ru1—Cl22.4239 (3)C8—H8A0.99
P1—C191.8312 (12)C8—H8B0.99
P1—C71.8564 (12)C29—C281.387 (2)
C21—C221.387 (2)C29—C301.389 (2)
C21—C201.3993 (18)C29—H290.95
C21—H210.95C25—C301.384 (2)
C24—C231.3925 (18)C25—C261.385 (2)
C24—C191.4067 (18)C25—H250.95
C24—H240.95C10—C111.5295 (19)
C7—C121.5422 (16)C10—H10A0.99
C7—C81.5429 (16)C10—H10B0.99
C7—H71C30—H300.95
C3—C41.388 (2)C11—H11A0.99
C3—C21.4351 (18)C11—H11B0.99
C3—H30.95C27—C261.387 (2)
C19—C201.3986 (17)C27—C281.387 (2)
C12—C111.5318 (18)C27—H270.95
C12—H12A0.99C28—H280.95
C12—H12B0.99C26—H260.95
C15—C161.5290 (18)C18—H18A0.99
C15—C141.5366 (16)C18—H18B0.99
C15—H15A0.99C14—H14A0.99
C15—H15B0.99C14—H14B0.99
C6—C51.4074 (19)C16—H16A0.99
C6—C11.426 (2)C16—H16B0.99
C6—H60.95C31—C321.382 (2)
C5—C41.4357 (19)C31—C331.391 (2)
C5—H50.95C31—H310.95
C9—C101.5249 (18)C32—C33i1.391 (2)
C9—C81.5330 (18)C32—H320.95
C9—H9A0.99C33—C32i1.391 (2)
C9—H9B0.99C33—H330.95
C18—C13—C14110.24 (9)H9A—C9—H9B107.9
C18—C13—P1111.93 (8)C24—C23—C22120.14 (13)
C14—C13—P1118.23 (8)C24—C23—H23119.9
C18—C13—H13105.1C22—C23—H23119.9
C14—C13—H13105.1C1—C2—C3119.86 (12)
P1—C13—H13105.1C1—C2—Ru170.74 (7)
C5—Ru1—C168.40 (5)C3—C2—Ru174.12 (7)
C5—Ru1—C637.73 (5)C1—C2—H2120.1
C1—Ru1—C638.15 (5)C3—C2—H2120.1
C5—Ru1—C280.54 (5)Ru1—C2—H2127
C1—Ru1—C237.65 (5)C2—C1—C6119.93 (12)
C6—Ru1—C268.32 (5)C2—C1—Ru171.60 (7)
C5—Ru1—C437.68 (5)C6—C1—Ru170.96 (7)
C1—Ru1—C479.39 (5)C2—C1—H1120
C6—Ru1—C467.44 (5)C6—C1—H1120
C2—Ru1—C466.63 (5)Ru1—C1—H1129.9
C5—Ru1—C366.62 (5)C19—C20—C21120.63 (13)
C1—Ru1—C367.21 (5)C19—C20—H20119.7
C6—Ru1—C379.24 (5)C21—C20—H20119.7
C2—Ru1—C337.50 (5)C21—C22—C23119.51 (12)
C4—Ru1—C335.64 (5)C21—C22—H22120.2
C5—Ru1—P1121.28 (4)C23—C22—H22120.2
C1—Ru1—P190.39 (3)C3—C4—C5119.47 (12)
C6—Ru1—P193.12 (3)C3—C4—Ru172.22 (7)
C2—Ru1—P1115.10 (3)C5—C4—Ru167.54 (7)
C4—Ru1—P1158.87 (4)C3—C4—H4120.3
C3—Ru1—P1152.44 (4)C5—C4—H4120.3
C5—Ru1—Cl1151.18 (4)Ru1—C4—H4133
C1—Ru1—Cl1120.39 (4)C16—C17—C18111.25 (10)
C6—Ru1—Cl1158.52 (4)C16—C17—H17A109.4
C2—Ru1—Cl192.13 (4)C18—C17—H17A109.4
C4—Ru1—Cl1114.00 (4)C16—C17—H17B109.4
C3—Ru1—Cl190.67 (4)C18—C17—H17B109.4
P1—Ru1—Cl187.124 (11)H17A—C17—H17B108
C5—Ru1—Cl286.78 (4)C9—C8—C7111.20 (10)
C1—Ru1—Cl2151.53 (4)C9—C8—H8A109.4
C6—Ru1—Cl2113.39 (4)C7—C8—H8A109.4
C2—Ru1—Cl2153.91 (3)C9—C8—H8B109.4
C4—Ru1—Cl289.50 (4)C7—C8—H8B109.4
C3—Ru1—Cl2116.42 (3)H8A—C8—H8B108
P1—Ru1—Cl290.969 (10)C28—C29—C30119.92 (14)
Cl1—Ru1—Cl288.071 (11)C28—C29—H29120
C19—P1—C13103.21 (5)C30—C29—H29120
C19—P1—C7110.18 (5)C30—C25—C26120.13 (14)
C13—P1—C7106.93 (5)C30—C25—H25119.9
C19—P1—Ru1109.13 (4)C26—C25—H25119.9
C13—P1—Ru1113.89 (4)C9—C10—C11111.01 (11)
C7—P1—Ru1113.03 (4)C9—C10—H10A109.4
C22—C21—C20120.56 (12)C11—C10—H10A109.4
C22—C21—H21119.7C9—C10—H10B109.4
C20—C21—H21119.7C11—C10—H10B109.4
C23—C24—C19121.02 (12)H10A—C10—H10B108
C23—C24—H24119.5C25—C30—C29119.91 (14)
C19—C24—H24119.5C25—C30—H30120
C12—C7—C8110.59 (9)C29—C30—H30120
C12—C7—P1114.10 (8)C10—C11—C12111.49 (12)
C8—C7—P1115.61 (8)C10—C11—H11A109.3
C12—C7—H7105.1C12—C11—H11A109.3
C8—C7—H7105.1C10—C11—H11B109.3
P1—C7—H7105.1C12—C11—H11B109.3
C4—C3—C2120.40 (12)H11A—C11—H11B108
C4—C3—Ru172.14 (7)C26—C27—C28119.83 (14)
C2—C3—Ru168.39 (7)C26—C27—H27120.1
C4—C3—H3119.8C28—C27—H27120.1
C2—C3—H3119.8C27—C28—C29120.08 (14)
Ru1—C3—H3132.8C27—C28—H28120
C20—C19—C24118.14 (11)C29—C28—H28120
C20—C19—P1124.07 (10)C25—C26—C27120.12 (14)
C24—C19—P1117.23 (9)C25—C26—H26119.9
C11—C12—C7110.46 (10)C27—C26—H26119.9
C11—C12—H12A109.6C17—C18—C13109.57 (10)
C7—C12—H12A109.6C17—C18—H18A109.8
C11—C12—H12B109.6C13—C18—H18A109.8
C7—C12—H12B109.6C17—C18—H18B109.8
H12A—C12—H12B108.1C13—C18—H18B109.8
C16—C15—C14111.35 (10)H18A—C18—H18B108.2
C16—C15—H15A109.4C15—C14—C13109.76 (10)
C14—C15—H15A109.4C15—C14—H14A109.7
C16—C15—H15B109.4C13—C14—H14A109.7
C14—C15—H15B109.4C15—C14—H14B109.7
H15A—C15—H15B108C13—C14—H14B109.7
C5—C6—C1119.38 (12)H14A—C14—H14B108.2
C5—C6—Ru170.72 (7)C15—C16—C17111.11 (10)
C1—C6—Ru170.89 (7)C15—C16—H16A109.4
C5—C6—H6120.3C17—C16—H16A109.4
C1—C6—H6120.3C15—C16—H16B109.4
Ru1—C6—H6130.6C17—C16—H16B109.4
C6—C5—C4120.66 (13)H16A—C16—H16B108
C6—C5—Ru171.55 (7)C32—C31—C33119.98 (14)
C4—C5—Ru174.79 (7)C32—C31—H31120
C6—C5—H5119.7C33—C31—H31120
C4—C5—H5119.7C31—C32—C33i120.33 (14)
Ru1—C5—H5125.8C31—C32—H32119.8
C10—C9—C8111.74 (11)C33i—C32—H32119.8
C10—C9—H9A109.3C32i—C33—C31119.69 (15)
C8—C9—H9A109.3C32i—C33—H33120.2
C10—C9—H9B109.3C31—C33—H33120.2
C8—C9—H9B109.3
C18—C13—P1—C19169.93 (8)P1—Ru1—C5—C4177.46 (6)
C14—C13—P1—C1940.18 (10)Cl1—Ru1—C5—C413.27 (13)
C18—C13—P1—C753.70 (9)Cl2—Ru1—C5—C493.36 (7)
C14—C13—P1—C776.05 (10)C19—C24—C23—C220.8 (2)
C18—C13—P1—Ru171.90 (8)C4—C3—C2—C13.99 (18)
C14—C13—P1—Ru1158.35 (8)Ru1—C3—C2—C156.04 (10)
C5—Ru1—P1—C1921.52 (6)C4—C3—C2—Ru152.05 (11)
C1—Ru1—P1—C1943.22 (6)C5—Ru1—C2—C166.72 (8)
C6—Ru1—P1—C195.15 (6)C6—Ru1—C2—C129.53 (8)
C2—Ru1—P1—C1972.63 (6)C4—Ru1—C2—C1103.39 (9)
C4—Ru1—P1—C1917.21 (11)C3—Ru1—C2—C1130.37 (12)
C3—Ru1—P1—C1977.71 (9)P1—Ru1—C2—C153.49 (8)
Cl1—Ru1—P1—C19163.64 (4)Cl1—Ru1—C2—C1141.32 (7)
Cl2—Ru1—P1—C19108.34 (4)Cl2—Ru1—C2—C1128.72 (8)
C5—Ru1—P1—C1393.20 (6)C5—Ru1—C2—C363.64 (8)
C1—Ru1—P1—C13157.94 (6)C1—Ru1—C2—C3130.37 (12)
C6—Ru1—P1—C13119.87 (6)C6—Ru1—C2—C3100.84 (9)
C2—Ru1—P1—C13172.65 (6)C4—Ru1—C2—C326.98 (8)
C4—Ru1—P1—C1397.51 (11)P1—Ru1—C2—C3176.14 (7)
C3—Ru1—P1—C13167.57 (8)Cl1—Ru1—C2—C388.32 (8)
Cl1—Ru1—P1—C1381.64 (4)Cl2—Ru1—C2—C31.64 (14)
Cl2—Ru1—P1—C136.38 (4)C3—C2—C1—C63.71 (18)
C5—Ru1—P1—C7144.49 (6)Ru1—C2—C1—C653.97 (10)
C1—Ru1—P1—C779.75 (6)C3—C2—C1—Ru157.67 (10)
C6—Ru1—P1—C7117.83 (6)C5—C6—C1—C20.86 (18)
C2—Ru1—P1—C750.34 (6)Ru1—C6—C1—C254.27 (10)
C4—Ru1—P1—C7140.19 (11)C5—C6—C1—Ru153.41 (10)
C3—Ru1—P1—C745.26 (9)C5—Ru1—C1—C2102.95 (9)
Cl1—Ru1—P1—C740.66 (4)C6—Ru1—C1—C2132.15 (11)
Cl2—Ru1—P1—C7128.68 (4)C4—Ru1—C1—C265.31 (8)
C19—P1—C7—C1280.39 (9)C3—Ru1—C1—C230.20 (8)
C13—P1—C7—C12168.11 (8)P1—Ru1—C1—C2133.29 (7)
Ru1—P1—C7—C1241.99 (9)Cl1—Ru1—C1—C246.40 (8)
C19—P1—C7—C849.53 (10)Cl2—Ru1—C1—C2133.96 (7)
C13—P1—C7—C861.97 (10)C5—Ru1—C1—C629.20 (7)
Ru1—P1—C7—C8171.91 (7)C2—Ru1—C1—C6132.15 (11)
C5—Ru1—C3—C428.75 (8)C4—Ru1—C1—C666.84 (8)
C1—Ru1—C3—C4104.07 (9)C3—Ru1—C1—C6101.94 (8)
C6—Ru1—C3—C466.10 (8)P1—Ru1—C1—C694.57 (7)
C2—Ru1—C3—C4134.39 (12)Cl1—Ru1—C1—C6178.54 (6)
P1—Ru1—C3—C4141.96 (7)Cl2—Ru1—C1—C61.81 (12)
Cl1—Ru1—C3—C4132.98 (7)C24—C19—C20—C210.37 (18)
Cl2—Ru1—C3—C444.80 (8)P1—C19—C20—C21170.69 (10)
C5—Ru1—C3—C2105.64 (9)C22—C21—C20—C190.27 (19)
C1—Ru1—C3—C230.32 (8)C20—C21—C22—C230.4 (2)
C6—Ru1—C3—C268.29 (8)C24—C23—C22—C210.9 (2)
C4—Ru1—C3—C2134.39 (12)C2—C3—C4—C50.32 (18)
P1—Ru1—C3—C27.57 (13)Ru1—C3—C4—C550.06 (10)
Cl1—Ru1—C3—C292.63 (8)C2—C3—C4—Ru150.38 (11)
Cl2—Ru1—C3—C2179.19 (7)C6—C5—C4—C34.96 (18)
C23—C24—C19—C200.15 (18)Ru1—C5—C4—C352.19 (11)
C23—C24—C19—P1171.83 (10)C6—C5—C4—Ru157.14 (10)
C13—P1—C19—C20142.05 (10)C5—Ru1—C4—C3133.75 (12)
C7—P1—C19—C2028.16 (12)C1—Ru1—C4—C365.49 (8)
Ru1—P1—C19—C2096.50 (10)C6—Ru1—C4—C3103.44 (9)
C13—P1—C19—C2446.81 (11)C2—Ru1—C4—C328.28 (8)
C7—P1—C19—C24160.70 (9)P1—Ru1—C4—C3127.73 (10)
Ru1—P1—C19—C2474.64 (10)Cl1—Ru1—C4—C353.20 (8)
C8—C7—C12—C1156.30 (14)Cl2—Ru1—C4—C3140.87 (7)
P1—C7—C12—C11171.32 (9)C1—Ru1—C4—C568.27 (8)
C1—Ru1—C6—C5132.16 (11)C6—Ru1—C4—C530.32 (8)
C2—Ru1—C6—C5102.99 (9)C2—Ru1—C4—C5105.47 (9)
C4—Ru1—C6—C530.27 (8)C3—Ru1—C4—C5133.75 (12)
C3—Ru1—C6—C565.51 (8)P1—Ru1—C4—C56.03 (15)
P1—Ru1—C6—C5141.19 (7)Cl1—Ru1—C4—C5173.04 (7)
Cl1—Ru1—C6—C5128.73 (9)Cl2—Ru1—C4—C585.38 (8)
Cl2—Ru1—C6—C548.78 (8)C10—C9—C8—C755.01 (15)
C5—Ru1—C6—C1132.16 (11)C12—C7—C8—C955.45 (14)
C2—Ru1—C6—C129.17 (7)P1—C7—C8—C9172.95 (9)
C4—Ru1—C6—C1101.89 (8)C8—C9—C10—C1155.02 (17)
C3—Ru1—C6—C166.65 (7)C26—C25—C30—C290.5 (2)
P1—Ru1—C6—C186.65 (7)C28—C29—C30—C250.2 (2)
Cl1—Ru1—C6—C13.44 (14)C9—C10—C11—C1256.16 (17)
Cl2—Ru1—C6—C1179.06 (6)C7—C12—C11—C1056.94 (15)
C1—C6—C5—C45.21 (18)C26—C27—C28—C290.3 (2)
Ru1—C6—C5—C458.71 (11)C30—C29—C28—C270.6 (2)
C1—C6—C5—Ru153.49 (10)C30—C25—C26—C270.7 (2)
C1—Ru1—C5—C629.50 (8)C28—C27—C26—C250.3 (2)
C2—Ru1—C5—C666.63 (8)C16—C17—C18—C1357.64 (13)
C4—Ru1—C5—C6130.38 (12)C14—C13—C18—C1759.41 (12)
C3—Ru1—C5—C6103.09 (9)P1—C13—C18—C17166.81 (8)
P1—Ru1—C5—C647.08 (9)C16—C15—C14—C1356.64 (13)
Cl1—Ru1—C5—C6143.65 (7)C18—C13—C14—C1558.94 (13)
Cl2—Ru1—C5—C6136.26 (8)P1—C13—C14—C15170.54 (8)
C1—Ru1—C5—C4100.88 (9)C14—C15—C16—C1755.08 (13)
C6—Ru1—C5—C4130.38 (12)C18—C17—C16—C1555.60 (13)
C2—Ru1—C5—C463.75 (8)C33—C31—C32—C33i0.2 (2)
C3—Ru1—C5—C427.30 (8)C32—C31—C33—C32i0.2 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C19–C24 and C31–C33/C31'–C33') benzene rings.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2ii0.952.763.6307 (13)153
C4—H4···Cl1ii0.952.73.6209 (13)163
C6—H6···Cg10.952.783.5086 (14)135
C2—H2···Cg2iii0.952.733.5869 (15)150
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[RuCl2(C6H6)(C18H27P)]·1.5C6H6
Mr641.61
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.0893 (8), 10.8325 (9), 14.4937 (12)
α, β, γ (°)90.346 (2), 91.748 (1), 106.979 (1)
V3)1514.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.43 × 0.17 × 0.16
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.734, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
49345, 7589, 7093
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.048, 1.03
No. of reflections7589
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.43

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C19–C24 and C31–C33/C31'–C33') benzene rings.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2i0.952.763.6307 (13)153.4
C4—H4···Cl1i0.952.73.6209 (13)162.9
C6—H6···Cg10.952.783.5086 (14)135
C2—H2···Cg2ii0.952.733.5869 (15)150
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z.
 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAydemir, M., Baysal, A., Meric, N., Kayan, C., Gümgüm, B., Özkar, S. & Şahin, E. (2011). Inorg. Chim. Acta, 356, 114–120.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Valentini, M., Pregosin, P. S. & Albinati, A. (2002). Inorg. Chim. Acta, 327, 4–14.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrochet, P., Fernández-Zumel, M. A., Beauquis, C. & Gimeno, J. (2003). Inorg. Chim. Acta, 356, 114–120.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStumpf, A. W., Saive, E., Demonceau, A. & Noels, A. F. (1995). J. Chem. Soc. Chem. Commun. pp. 1127–1128.  CrossRef Web of Science Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationWang, L., Yang, Q., Fu, H.-Y., Chen, H., Yuan, M.-L. & Li, R.-X. (2011). Appl. Organomet. Chem. 25, 626–631.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1446-m1447
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds