metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido{N-[(di­ethyl­amino)­di­methyl­sil­yl]anilido-κN}(N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine-κ2N,N′)iron(II)

aDepartment of Chemistry, Taiyuan Teachers College, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: sdbai@sxu.edu.cn

(Received 18 October 2012; accepted 29 October 2012; online 3 November 2012)

In the title iron(II) complex, [Fe(C12H21N2Si)Cl(C6H16N2)], the FeII cation is coordinated by two N atoms from the tetramethylethane-1,2-diamine ligand [Fe—N = 2.191 (5) and 2.215 (4) Å], one N atom from the N-[(diethyl­amino)­dimethyl­sil­yl]anilide ligand [Fe—N = 1.943 (4) Å] and a chloride ligand [Fe—Cl = 2.2798 (16) Å] in a distorted tetra­hedral geometry. The N—Si—N angle is 113.9 (3)°. The crystal packing exhibits no short inter­molecular contacts.

Related literature

For FeII complexes with N-donor ligand and utility in fixation of dinitro­gen, see: Smith et al. (2001[Smith, J. M., Lachicotte, R. J. & Holland, P. L. (2001). Chem. Commun. pp. 1542-1543.]); Rodriguez et al. (2011[Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. (2011). Science, 334, 780-783.]). For reviews of related metal amides, see: Holm et al. (1996[Holm, R. H., Kenneppohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Kempe (2000[Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468-493.]). For catalytic applications of the related N-silylated anilido group 4 metal compounds towards olefin polymerization, see: Gibson et al. (1998[Gibson, V. C., Kimberley, B. S., White, A. J. P., Willianms, D. J. & Howard, P. (1998). Chem. Commun. pp. 313-314.]); Hill & Hitchcock (2002[Hill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 3258-3262.]); Yuan et al. (2010[Yuan, S. F., Wei, X. H., Tong, H. B., Zhang, L. P., Liu, D. S. & Sun, W. H. (2010). Organometallics, 29, 2085-2092.]). For related organometallic compounds with analogous anilido ligands, see: Schumann et al. (2000[Schumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747-758.]); Chen (2008[Chen, J. (2008). Acta Cryst. E64, m938.], 2009[Chen, J. (2009). Acta Cryst. E65, m1307.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C12H21N2Si)Cl(C6H16N2)]

  • Mr = 428.91

  • Monoclinic, P 21 /c

  • a = 16.2317 (10) Å

  • b = 10.7821 (6) Å

  • c = 14.2098 (8) Å

  • β = 105.157 (1)°

  • V = 2400.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.826, Tmax = 0.890

  • 12665 measured reflections

  • 4222 independent reflections

  • 2584 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.190

  • S = 1.02

  • 4222 reflections

  • 226 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal amides have valuable applications in various industrial and biological processes (Holm et al., 1996; Kempe, 2000). Group 4 metals amides supported with the N-silylated anilido ligands are active catalysts for olefin polymerization (Gibson et al., 1998; Hill & Hitchcock, 2002). Moreover, a class of monoionic N-silylated anilido ligands bearing a pendant amino group were paid much attentions. It was presumed that the empty d-orbitals on silicon would interact with the lone-pair electrons on the p-orbital of nitrogen center through d—pπ interaction throughout the N—Si—N motif. Analogous compounds with different metals including Zn (Schumann et al., 2000) and Zr (Chen, 2009) have been synthesized. A group of zirconium amides with the similar ligand were reported showing good performance in ethylene polymerization (Yuan et al., 2010). On the other hand, some iron(II) complexes with the N-donor ligands were active in fixation of dinitrogen (Smith et al., 2001; Rodriguez et al., 2011). Here, the synthesis and crystal structure of a new iron(II) anilido-complex will be described.

The title compound, (I), was prepared by a one-pot reaction of n-LiBu, N-[(diethylamino)dimethylsilyl]aniline, 1,2-bis(dimethylamino)ethane (tmeda) and FeCl2. The suitable for X-ray investigation single-crystal of (I) was obtained by recrystallization in toluene. In (I) , the metal Fe center is coordinated by a chlorido ligand, a chelating tmeda molecule and the anilido-ligand. The neutral donor molecule coordinates metal center in N,N'-chelating mode. Though the anilido-ligand has a pendant amino group, exhibting an N—Si—N chelating moiety, it connects Fe(II) only with a σ-bond, Fe—Nanilide being 1.943 (4) Å. It suggests the less affinity between the pendant amino-group and the metal center in comparing with tmeda. The N1—Si1—N2 angle is 113.9 (3)°. The four-coordinate Fe atom demonstrates a slightly distorted tetrahedral geometry. In an iron(III) complex with the similar ligand, the N—Si—N unit bit the FeIII metal center and the angle was 95.49 (9)° (Chen, 2008).

Related literature top

For FeII complexes with N-donor ligand and utility in fixation of dinitrogen, see: Smith et al. (2001); Rodriguez et al. (2011). For reviews of related metal amides, see: Holm et al. (1996); Kempe (2000). For catalytic applications of the related N-silylated analido group 4 metal compounds towards olefin polymerization, see: Gibson et al. (1998); Hill & Hitchcock (2002); Yuan et al. (2010). For related organometallic compounds with analogous analido ligands, see: Schumann et al. (2000); Chen (2008, 2009).

Experimental top

A solution of n-LiBu (1.6 M, 2.1 ml, 3.3 mmol) in hexane was slowly added into a mixture of N-[(diethylamino)dimethylsilyl]aniline (0.73 g, 3.3 mmol) and tmeda (0.38 g, 3.3 mmol) in Et2O (20 ml) at 273 K by syringe. The mixture was stirred at room temperature for two hours and then added to a stirring suspension of FeCl2 (0.42 g, 3.3 mmol) in Et2O (20 ml) at 273 K. The resulting mixture was stirred at room temperature for 8 h. Then all the volatiles were removed under vacuum. The residue was extracted with toluene (25 ml). The filtrate was concentrated to 2 ml to yield the title compound as colorless crystals (yield 1.07 g, 76%; m.p. 357–358 K). MS (EI, 70 eV): m/z 429 [M]+. Anal. Calc. for C18H37ClFeN4Si: C, 50.40; H, 8.70; N, 13.06%. Found: C, 50.08; H, 8.61; N, 12.98%.

Refinement top

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C–C, C–N and C–Si bonds. The methylene H atoms were constrained with C—H distances of 0.97 Å and Uiso(H) = 1.2Ueq(C). The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Chlorido{N-[(diethylamino)dimethylsilyl]anilido- κN}(N,N,N',N'-tetramethylethane- 1,2-diamine-κ2N,N')iron(II) top
Crystal data top
[Fe(C12H21N2Si)Cl(C6H16N2)]F(000) = 920
Mr = 428.91Dx = 1.187 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3162 reflections
a = 16.2317 (10) Åθ = 2.2–25.3°
b = 10.7821 (6) ŵ = 0.80 mm1
c = 14.2098 (8) ÅT = 293 K
β = 105.157 (1)°Block, colourless
V = 2400.4 (2) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
4222 independent reflections
Radiation source: fine-focus sealed tube2584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1914
Tmin = 0.826, Tmax = 0.890k = 1112
12665 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1016P)2 + 1.3944P]
where P = (Fo2 + 2Fc2)/3
4222 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.71 e Å3
14 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Fe(C12H21N2Si)Cl(C6H16N2)]V = 2400.4 (2) Å3
Mr = 428.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2317 (10) ŵ = 0.80 mm1
b = 10.7821 (6) ÅT = 293 K
c = 14.2098 (8) Å0.25 × 0.20 × 0.15 mm
β = 105.157 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
4222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2584 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.890Rint = 0.053
12665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06014 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.02Δρmax = 0.71 e Å3
4222 reflectionsΔρmin = 0.65 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.82680 (5)0.53246 (6)0.32605 (5)0.0438 (3)
Si10.67995 (11)0.45040 (15)0.42532 (12)0.0577 (5)
Cl10.89234 (12)0.69105 (14)0.42333 (13)0.0771 (5)
N10.7543 (3)0.4097 (4)0.3648 (3)0.0482 (11)
N20.5867 (4)0.3658 (6)0.3912 (5)0.0988 (17)
N30.7721 (3)0.6122 (4)0.1794 (3)0.0625 (13)
N40.9258 (3)0.4720 (4)0.2568 (3)0.0591 (12)
C10.7874 (3)0.2877 (4)0.3770 (3)0.0434 (12)
C20.8678 (4)0.2640 (5)0.4374 (4)0.0542 (14)
H2A0.89870.32860.47340.065*
C30.9035 (4)0.1458 (5)0.4455 (4)0.0598 (15)
H3A0.95850.13310.48470.072*
C40.8583 (5)0.0484 (5)0.3961 (5)0.0659 (17)
H4A0.88160.03090.40240.079*
C50.7778 (5)0.0696 (5)0.3371 (5)0.0732 (19)
H5A0.74640.00380.30320.088*
C60.7430 (4)0.1871 (5)0.3275 (4)0.0622 (16)
H6A0.68850.19920.28690.075*
C70.7246 (5)0.4311 (8)0.5602 (5)0.095 (2)
H7A0.73760.34520.57490.142*
H7B0.68330.45850.59330.142*
H7C0.77570.47950.58160.142*
C80.6537 (5)0.6178 (6)0.3978 (6)0.084 (2)
H8A0.63070.62830.32880.126*
H8B0.70460.66670.41930.126*
H8C0.61240.64420.43120.126*
C90.5430 (6)0.3069 (9)0.4576 (7)0.1194 (19)
H9A0.56350.34360.52180.143*
H9B0.48230.32410.43490.143*
C100.5550 (7)0.1785 (11)0.4652 (9)0.166 (3)
H10A0.52500.14550.50950.250*
H10B0.61480.16070.48910.250*
H10C0.53350.14120.40220.250*
C110.5383 (5)0.3602 (8)0.2873 (7)0.102 (3)
H11A0.52740.27400.26850.123*
H11B0.57300.39520.24780.123*
C120.4542 (6)0.4289 (10)0.2661 (11)0.170 (5)
H12A0.42570.42170.19800.255*
H12B0.46450.51490.28270.255*
H12C0.41900.39390.30410.255*
C130.6850 (5)0.5640 (8)0.1353 (6)0.106 (3)
H13A0.66290.60020.07200.159*
H13B0.64840.58520.17620.159*
H13C0.68710.47550.12930.159*
C140.7685 (6)0.7484 (6)0.1864 (5)0.099 (3)
H14A0.74490.78280.12270.148*
H14B0.82510.78040.21260.148*
H14C0.73330.77080.22850.148*
C150.8280 (5)0.5752 (7)0.1178 (5)0.079 (2)
H15A0.82510.63710.06760.095*
H15B0.80830.49700.08610.095*
C160.9170 (5)0.5619 (6)0.1763 (5)0.079 (2)
H16A0.93800.64210.20320.095*
H16B0.95190.53510.13420.095*
C171.0132 (5)0.4808 (8)0.3220 (6)0.097 (2)
H17A1.05360.45340.28780.145*
H17B1.01750.42930.37820.145*
H17C1.02510.56530.34230.145*
C180.9109 (5)0.3440 (6)0.2185 (5)0.087 (2)
H18A0.95550.32090.18910.131*
H18B0.85690.34010.17070.131*
H18C0.91060.28820.27100.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0509 (5)0.0347 (4)0.0478 (4)0.0028 (3)0.0164 (3)0.0015 (3)
Si10.0617 (11)0.0552 (10)0.0614 (10)0.0002 (8)0.0253 (9)0.0016 (7)
Cl10.0842 (12)0.0554 (9)0.0855 (11)0.0140 (8)0.0114 (10)0.0227 (8)
N10.052 (3)0.035 (2)0.060 (3)0.001 (2)0.019 (2)0.000 (2)
N20.086 (4)0.094 (4)0.127 (4)0.019 (3)0.047 (3)0.011 (3)
N30.068 (3)0.060 (3)0.057 (3)0.007 (3)0.013 (3)0.010 (2)
N40.063 (3)0.060 (3)0.063 (3)0.006 (2)0.030 (3)0.004 (2)
C10.049 (3)0.042 (3)0.043 (3)0.002 (2)0.018 (3)0.002 (2)
C20.066 (4)0.047 (3)0.052 (3)0.005 (3)0.019 (3)0.005 (2)
C30.065 (4)0.062 (4)0.055 (3)0.011 (3)0.019 (3)0.012 (3)
C40.087 (5)0.043 (3)0.076 (4)0.009 (3)0.037 (4)0.007 (3)
C50.080 (5)0.041 (3)0.103 (5)0.010 (3)0.032 (4)0.018 (3)
C60.057 (4)0.054 (3)0.073 (4)0.005 (3)0.012 (3)0.016 (3)
C70.108 (6)0.116 (6)0.065 (4)0.014 (5)0.032 (4)0.007 (4)
C80.084 (5)0.062 (4)0.119 (6)0.013 (4)0.050 (5)0.002 (4)
C90.107 (4)0.114 (4)0.143 (5)0.024 (4)0.043 (4)0.020 (4)
C100.151 (6)0.146 (6)0.186 (6)0.016 (6)0.015 (6)0.038 (6)
C110.062 (5)0.099 (6)0.135 (7)0.013 (4)0.006 (5)0.007 (5)
C120.087 (7)0.137 (9)0.260 (15)0.010 (7)0.001 (9)0.013 (9)
C130.087 (6)0.140 (7)0.075 (5)0.002 (5)0.006 (5)0.015 (5)
C140.131 (7)0.059 (4)0.102 (6)0.027 (4)0.022 (5)0.034 (4)
C150.098 (6)0.083 (5)0.063 (4)0.013 (4)0.034 (4)0.021 (3)
C160.092 (6)0.076 (4)0.085 (5)0.002 (4)0.049 (4)0.016 (4)
C170.060 (5)0.128 (7)0.102 (6)0.022 (4)0.022 (4)0.007 (5)
C180.128 (7)0.072 (4)0.082 (5)0.022 (4)0.064 (5)0.001 (4)
Geometric parameters (Å, º) top
Fe1—N11.943 (4)C8—H8B0.9600
Fe1—N42.191 (5)C8—H8C0.9600
Fe1—N32.215 (4)C9—C101.399 (11)
Fe1—Cl12.2798 (16)C9—H9A0.9700
Si1—N11.713 (5)C9—H9B0.9700
Si1—N21.726 (7)C10—H10A0.9600
Si1—C81.872 (7)C10—H10B0.9600
Si1—C71.876 (7)C10—H10C0.9600
N1—C11.414 (6)C11—C121.513 (11)
N2—C91.464 (10)C11—H11A0.9700
N2—C111.481 (9)C11—H11B0.9700
N3—C151.470 (8)C12—H12A0.9600
N3—C141.474 (8)C12—H12B0.9600
N3—C131.483 (9)C12—H12C0.9600
N4—C161.477 (8)C13—H13A0.9600
N4—C181.479 (8)C13—H13B0.9600
N4—C171.481 (9)C13—H13C0.9600
C1—C21.386 (7)C14—H14A0.9600
C1—C61.387 (7)C14—H14B0.9600
C2—C31.392 (8)C14—H14C0.9600
C2—H2A0.9300C15—C161.473 (10)
C3—C41.365 (8)C15—H15A0.9700
C3—H3A0.9300C15—H15B0.9700
C4—C51.375 (9)C16—H16A0.9700
C4—H4A0.9300C16—H16B0.9700
C5—C61.379 (8)C17—H17A0.9600
C5—H5A0.9300C17—H17B0.9600
C6—H6A0.9300C17—H17C0.9600
C7—H7A0.9600C18—H18A0.9600
C7—H7B0.9600C18—H18B0.9600
C7—H7C0.9600C18—H18C0.9600
C8—H8A0.9600
N1—Fe1—N4119.58 (18)C10—C9—N2113.4 (9)
N1—Fe1—N3114.07 (19)C10—C9—H9A108.9
N4—Fe1—N381.55 (19)N2—C9—H9A108.9
N1—Fe1—Cl1124.06 (14)C10—C9—H9B108.9
N4—Fe1—Cl1102.41 (14)N2—C9—H9B108.9
N3—Fe1—Cl1106.74 (14)H9A—C9—H9B107.7
N1—Si1—N2113.9 (3)C9—C10—H10A109.5
N1—Si1—C8107.1 (3)C9—C10—H10B109.5
N2—Si1—C8108.4 (3)H10A—C10—H10B109.5
N1—Si1—C7110.5 (3)C9—C10—H10C109.5
N2—Si1—C7107.7 (4)H10A—C10—H10C109.5
C8—Si1—C7109.1 (4)H10B—C10—H10C109.5
C1—N1—Si1118.1 (3)N2—C11—C12113.2 (9)
C1—N1—Fe1115.5 (3)N2—C11—H11A108.9
Si1—N1—Fe1121.7 (2)C12—C11—H11A108.9
C9—N2—C11113.9 (7)N2—C11—H11B108.9
C9—N2—Si1125.8 (6)C12—C11—H11B108.9
C11—N2—Si1119.9 (5)H11A—C11—H11B107.7
C15—N3—C14110.7 (5)C11—C12—H12A109.5
C15—N3—C13108.8 (6)C11—C12—H12B109.5
C14—N3—C13109.1 (6)H12A—C12—H12B109.5
C15—N3—Fe1107.3 (4)C11—C12—H12C109.5
C14—N3—Fe1109.6 (4)H12A—C12—H12C109.5
C13—N3—Fe1111.4 (4)H12B—C12—H12C109.5
C16—N4—C18110.7 (5)N3—C13—H13A109.5
C16—N4—C17109.0 (6)N3—C13—H13B109.5
C18—N4—C17109.1 (6)H13A—C13—H13B109.5
C16—N4—Fe1102.6 (4)N3—C13—H13C109.5
C18—N4—Fe1112.0 (4)H13A—C13—H13C109.5
C17—N4—Fe1113.2 (4)H13B—C13—H13C109.5
C2—C1—C6116.7 (5)N3—C14—H14A109.5
C2—C1—N1120.8 (4)N3—C14—H14B109.5
C6—C1—N1122.4 (5)H14A—C14—H14B109.5
C1—C2—C3121.6 (5)N3—C14—H14C109.5
C1—C2—H2A119.2H14A—C14—H14C109.5
C3—C2—H2A119.2H14B—C14—H14C109.5
C4—C3—C2120.3 (6)N3—C15—C16110.9 (6)
C4—C3—H3A119.8N3—C15—H15A109.5
C2—C3—H3A119.8C16—C15—H15A109.5
C3—C4—C5118.9 (6)N3—C15—H15B109.5
C3—C4—H4A120.5C16—C15—H15B109.5
C5—C4—H4A120.5H15A—C15—H15B108.0
C4—C5—C6120.8 (6)C15—C16—N4112.5 (6)
C4—C5—H5A119.6C15—C16—H16A109.1
C6—C5—H5A119.6N4—C16—H16A109.1
C5—C6—C1121.6 (6)C15—C16—H16B109.1
C5—C6—H6A119.2N4—C16—H16B109.1
C1—C6—H6A119.2H16A—C16—H16B107.8
Si1—C7—H7A109.5N4—C17—H17A109.5
Si1—C7—H7B109.5N4—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B109.5
Si1—C7—H7C109.5N4—C17—H17C109.5
H7A—C7—H7C109.5H17A—C17—H17C109.5
H7B—C7—H7C109.5H17B—C17—H17C109.5
Si1—C8—H8A109.5N4—C18—H18A109.5
Si1—C8—H8B109.5N4—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
Si1—C8—H8C109.5N4—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5

Experimental details

Crystal data
Chemical formula[Fe(C12H21N2Si)Cl(C6H16N2)]
Mr428.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.2317 (10), 10.7821 (6), 14.2098 (8)
β (°) 105.157 (1)
V3)2400.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.826, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
12665, 4222, 2584
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.190, 1.02
No. of reflections4222
No. of parameters226
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.65

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

 

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (20702029) and the Natural Science Foundation of Shanxi Province (2008011024).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J. (2008). Acta Cryst. E64, m938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, J. (2009). Acta Cryst. E65, m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGibson, V. C., Kimberley, B. S., White, A. J. P., Willianms, D. J. & Howard, P. (1998). Chem. Commun. pp. 313–314.  Web of Science CSD CrossRef Google Scholar
First citationHill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 3258–3262.  Web of Science CSD CrossRef CAS Google Scholar
First citationHolm, R. H., Kenneppohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKempe, R. (2000). Angew. Chem. Int. Ed. 39, 468–493.  CrossRef CAS Google Scholar
First citationRodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. (2011). Science, 334, 780–783.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747–758.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, J. M., Lachicotte, R. J. & Holland, P. L. (2001). Chem. Commun. pp. 1542–1543.  Web of Science CSD CrossRef Google Scholar
First citationYuan, S. F., Wei, X. H., Tong, H. B., Zhang, L. P., Liu, D. S. & Sun, W. H. (2010). Organometallics, 29, 2085–2092.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds