organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3304-o3305

Ethyl 4-oxo-8-tri­fluoro­methyl-1,4-di­hydro­quinoline-3-carboxyl­ate

aNational Institute of Technology-Karnataka, Department of Chemistry, Organic Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bNational Institute of Technology-Karnataka, Department of Physics, Surathkal, Mangalore 575 025, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 25 October 2012; accepted 2 November 2012; online 10 November 2012)

The asymmetric unit of the title compound, C13H10F3NO3, contains two independent mol­ecules with similar conformations. In the crystal, N—H⋯O hydrogen bonds link alternating independent mol­ecules into chains in [-110]. In the chain, the quinoline planes of the independent mol­ecules are almost perpendicular to each other, forming a dihedral angle of 89.8 (1)°. ππ inter­actions between the aromatic rings of quinoline bicycles related by inversion centres [for two independent centrosymmetric dimers, the shortest centroid–centroid distances are 3.495 (1) and 3.603 (1) Å] link the hydrogen-bonded chains into layers parallel to (110). Weak C—H⋯F and C—H⋯O inter­actions further consolidate the crystal packing.

Related literature

For background information about the pharmacological properties of quinoline derivatives, see: Holla et al. (2006[Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Akbarali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040-2047.]); Bekhit et al. (2004[Bekhit, A. A., El-Sayed, O. A., Aboulmagd, E. & Park, J. Y. (2004). Eur. J. Med. Chem. 39, 249-255.]); Kaur et al. (2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Vijesh et al. (2011[Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591-5597.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis of the title compound, see: Thomas et al. (2011[Thomas, K. D., Adhikari, A. V., Telkar, S., Chowdhury, I. H., Mahmood, R., Pal, N. K., Row, G. & Sumesh, E. (2011). Eur. J. Med. Chem. 46, 5283-5292.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10F3NO3

  • Mr = 285.22

  • Triclinic, [P \overline 1]

  • a = 9.8248 (3) Å

  • b = 11.0222 (3) Å

  • c = 12.3450 (4) Å

  • α = 72.934 (1)°

  • β = 74.167 (1)°

  • γ = 74.059 (1)°

  • V = 1201.67 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 200 K

  • 0.53 × 0.38 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.956

  • 21419 measured reflections

  • 5963 independent reflections

  • 5051 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.04

  • 5963 reflections

  • 371 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O21i 0.892 (19) 1.875 (19) 2.6588 (13) 145.5 (16)
N2—H2⋯O11ii 0.851 (18) 2.011 (17) 2.7178 (13) 139.9 (16)
N2—H2⋯O12ii 0.851 (18) 2.487 (17) 3.0380 (15) 123.2 (14)
C212—H21B⋯F22iii 0.99 2.46 3.0909 (18) 121
C204—H204⋯O13iv 0.95 2.60 3.4691 (18) 153
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) x+1, y, z; (iv) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinoline derivatives constitute an important class of compounds that are widely found in plants. A number of synthetic analogues have been developed over the years. Some of them exhibit remarkable effects such as antimicrobial, anti-inflammatory and antimalarial (Holla et al., 2006; Bekhit et al., 2004; Kaur et al., 2010). This follows a broader trend that shows nitrogen-containing heterocycles to be among pharmaceutically active and interesting compounds (Isloor et al., 2009; Vijesh et al., 2011) which justifies our continuing efforts in designing novel heterocyclic molecules of biological importance and study their respective molecular and crystal structure.

The title compound is a derivative of 1,4-dihydroquinoline and does not adopt its aromatic tautomeric form as a quinoline derivative. There are two independent molecules in the asymmetric unit (Fig. 1).

In the crystal, classical N—H···O hydrogen bonds (Table 1) link the alternating independent molecules into chains in [-110] (Fig. 2). In the chain, the quinoline planes of independent molecules are almost perpendicular to each other forming a dihedral angle of 89.8 (1)°. The ππ interactions between the aromatic rings of the quinoline bicycles related by inversion centres [for two independent centrosymmetric dimers the shortest intercentroid distances are 3.495 (1) and 3.603 (1) Å, respectively] link hydrogen-bonded chains into layers parallel to the (110) plane. Weak intermolecular C–H···F contacts are observed next to intermolecular C–H···O contacts (Table 1). In every case, the range of these contacts falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them. While the C–H···O contacts stem from one of the hydrogen atoms on the phenyl moiety bearing the trifluoromethyl substituent and apply the ethereal oxygen atom as acceptor, the classical hydrogen bonds invariably have double bonded oxygen atoms as acceptors. These hydrogen bonds intermittently connect the two different molecules present in the asymmetric unit into chains along [-110] and show bifurcation between the two double bonded oxygen atoms in one case. In total, these contacts connect the molecules to planes parallel to ab. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unary level (taking into account the bifurcation). The descriptor for the C–H···O contacts is D while a C11(11) descriptor is found for the C–H···F contacts on the same level.

Related literature top

For background information about the pharmacological properties of quinoline derivatives, see: Holla et al. (2006); Bekhit et al. (2004); Kaur et al. (2010); Isloor et al. (2009); Vijesh et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the synthesis of the title compound, see: Thomas et al. (2011).

Experimental top

Diethyl({[3-(trifluoromethyl)phenyl]amino}methylene)malonate (10.0 g, 0.030 mol) and Dowtherm (100 ml) were heated to 250 °C for 5 h. The reaction mixture was then cooled to 25 °C and stirred in n-hexane (150 ml) for 10 min. The solid product obtained was filtered, dried and recrystallized from ethanol, yield: 8.0 g (93.0%) (Thomas et al., 2011).

Refinement top

C-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic and vinylic carbon atoms and C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Two independent molecules of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the c axis. Dashed lines denote classical N–H···O hydrogen bonds. Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.
Ethyl 4-oxo-8-trifluoromethyl-1,4-dihydroquinoline-3-carboxylate top
Crystal data top
C13H10F3NO3Z = 4
Mr = 285.22F(000) = 584
Triclinic, P1Dx = 1.577 Mg m3
Hall symbol: -P 1Melting point = 570–568 K
a = 9.8248 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0222 (3) ÅCell parameters from 9882 reflections
c = 12.3450 (4) Åθ = 2.5–28.3°
α = 72.934 (1)°µ = 0.14 mm1
β = 74.167 (1)°T = 200 K
γ = 74.059 (1)°Platelet, colourless
V = 1201.67 (6) Å30.53 × 0.38 × 0.32 mm
Data collection top
Bruker APEXII CCD
diffractometer
5963 independent reflections
Radiation source: fine-focus sealed tube5051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.928, Tmax = 0.956k = 1414
21419 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.3846P]
where P = (Fo2 + 2Fc2)/3
5963 reflections(Δ/σ)max < 0.001
371 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H10F3NO3γ = 74.059 (1)°
Mr = 285.22V = 1201.67 (6) Å3
Triclinic, P1Z = 4
a = 9.8248 (3) ÅMo Kα radiation
b = 11.0222 (3) ŵ = 0.14 mm1
c = 12.3450 (4) ÅT = 200 K
α = 72.934 (1)°0.53 × 0.38 × 0.32 mm
β = 74.167 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5963 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5051 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.956Rint = 0.016
21419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
5963 reflectionsΔρmin = 0.23 e Å3
371 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F110.33975 (9)0.25175 (8)0.03791 (8)0.0439 (2)
F120.44442 (10)0.35929 (10)0.09612 (10)0.0568 (3)
F130.47655 (10)0.37218 (10)0.08575 (9)0.0631 (3)
F210.16132 (9)0.25934 (8)0.55061 (8)0.0470 (2)
F220.05981 (10)0.16771 (11)0.71858 (8)0.0581 (3)
F230.01521 (11)0.13966 (11)0.56807 (11)0.0657 (3)
O110.20937 (11)0.70312 (9)0.17938 (8)0.0405 (2)
O120.33287 (11)0.58234 (11)0.40381 (10)0.0474 (3)
O130.19356 (10)0.39636 (9)0.48120 (8)0.0360 (2)
O210.71392 (13)0.18698 (10)0.68194 (9)0.0488 (3)
O220.83982 (11)0.07326 (11)0.79574 (11)0.0533 (3)
O230.69974 (11)0.11050 (11)0.84210 (9)0.0445 (2)
N10.12165 (11)0.38724 (9)0.19918 (9)0.0270 (2)
H10.190 (2)0.3151 (18)0.2098 (16)0.046 (5)*
N20.38130 (11)0.12577 (10)0.69417 (9)0.0276 (2)
H20.3130 (19)0.1915 (17)0.7026 (15)0.039 (4)*
C1010.13071 (12)0.48491 (11)0.09948 (10)0.0248 (2)
C1020.25053 (13)0.47904 (12)0.00530 (11)0.0291 (2)
C1030.25240 (14)0.57880 (13)0.09286 (11)0.0341 (3)
H1030.33310.57430.15600.041*
C1040.13755 (15)0.68645 (13)0.10101 (11)0.0345 (3)
H1040.13990.75430.16950.041*
C1050.02133 (14)0.69401 (11)0.00978 (11)0.0307 (2)
H1050.05660.76750.01540.037*
C1060.01622 (12)0.59419 (11)0.09183 (10)0.0251 (2)
C1070.37692 (14)0.36615 (14)0.01239 (12)0.0372 (3)
C1080.11013 (12)0.60598 (11)0.18858 (10)0.0269 (2)
C1090.10586 (12)0.49925 (11)0.28998 (10)0.0255 (2)
C1100.00998 (12)0.39563 (11)0.28906 (10)0.0261 (2)
H1100.01070.32600.35620.031*
C1110.22344 (12)0.50028 (11)0.39440 (10)0.0281 (2)
C1120.29520 (15)0.38902 (15)0.59208 (11)0.0383 (3)
H11A0.29590.29700.63180.046*
H11B0.39390.43290.57940.046*
C1130.25346 (18)0.45247 (16)0.66662 (13)0.0459 (3)
H11C0.15460.41060.67700.069*
H11D0.32020.44350.74230.069*
H11E0.25830.54480.62920.069*
C2010.36760 (13)0.02791 (11)0.65228 (10)0.0278 (2)
C2020.24340 (14)0.03303 (13)0.61281 (11)0.0333 (3)
C2030.23449 (18)0.07003 (15)0.57567 (13)0.0445 (3)
H2030.15040.06690.55020.053*
C2040.3472 (2)0.17898 (15)0.57496 (14)0.0498 (4)
H2040.33960.24970.54940.060*
C2050.46903 (18)0.18417 (13)0.61103 (12)0.0423 (3)
H2050.54610.25820.60930.051*
C2060.48144 (14)0.08153 (11)0.65054 (10)0.0309 (3)
C2070.12056 (14)0.14904 (15)0.61157 (12)0.0390 (3)
C2080.61343 (14)0.09151 (12)0.69029 (10)0.0322 (3)
C2090.61215 (13)0.01330 (12)0.73845 (10)0.0295 (2)
C2100.49545 (13)0.11609 (11)0.73754 (10)0.0277 (2)
H2100.49590.18440.76970.033*
C2110.73085 (13)0.00904 (13)0.79296 (11)0.0341 (3)
C2120.79490 (17)0.11036 (17)0.91340 (13)0.0465 (4)
H21A0.80030.20070.90670.056*
H21B0.89360.06230.88570.056*
C2130.74080 (19)0.04817 (17)1.03738 (13)0.0484 (4)
H21C0.64260.09501.06430.073*
H21D0.80480.05111.08460.073*
H21E0.73950.04241.04440.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F110.0417 (4)0.0334 (4)0.0518 (5)0.0007 (3)0.0053 (4)0.0137 (4)
F120.0366 (4)0.0627 (6)0.0764 (7)0.0050 (4)0.0282 (5)0.0237 (5)
F130.0424 (5)0.0589 (6)0.0598 (6)0.0010 (4)0.0196 (4)0.0110 (5)
F210.0428 (5)0.0386 (4)0.0502 (5)0.0027 (3)0.0098 (4)0.0021 (4)
F220.0385 (5)0.0789 (7)0.0411 (5)0.0022 (4)0.0011 (4)0.0130 (5)
F230.0512 (6)0.0676 (7)0.0894 (8)0.0103 (5)0.0422 (6)0.0120 (6)
O110.0428 (5)0.0338 (5)0.0311 (5)0.0145 (4)0.0083 (4)0.0078 (4)
O120.0306 (5)0.0467 (6)0.0462 (6)0.0050 (4)0.0015 (4)0.0042 (5)
O130.0353 (5)0.0409 (5)0.0252 (4)0.0031 (4)0.0036 (3)0.0049 (4)
O210.0574 (6)0.0394 (5)0.0384 (5)0.0243 (5)0.0201 (5)0.0154 (4)
O220.0336 (5)0.0522 (6)0.0669 (8)0.0066 (5)0.0198 (5)0.0091 (5)
O230.0421 (5)0.0527 (6)0.0424 (6)0.0029 (4)0.0195 (4)0.0136 (5)
N10.0258 (5)0.0247 (5)0.0271 (5)0.0029 (4)0.0081 (4)0.0061 (4)
N20.0264 (5)0.0251 (5)0.0278 (5)0.0028 (4)0.0066 (4)0.0078 (4)
C1010.0260 (5)0.0251 (5)0.0254 (5)0.0036 (4)0.0083 (4)0.0082 (4)
C1020.0270 (5)0.0310 (6)0.0305 (6)0.0051 (4)0.0058 (4)0.0101 (5)
C1030.0346 (6)0.0402 (7)0.0286 (6)0.0128 (5)0.0019 (5)0.0094 (5)
C1040.0448 (7)0.0322 (6)0.0274 (6)0.0126 (5)0.0099 (5)0.0020 (5)
C1050.0381 (6)0.0250 (5)0.0299 (6)0.0034 (4)0.0130 (5)0.0055 (4)
C1060.0283 (5)0.0241 (5)0.0243 (5)0.0021 (4)0.0094 (4)0.0076 (4)
C1070.0269 (6)0.0407 (7)0.0392 (7)0.0036 (5)0.0005 (5)0.0118 (6)
C1080.0285 (5)0.0263 (5)0.0258 (5)0.0023 (4)0.0099 (4)0.0094 (4)
C1090.0253 (5)0.0264 (5)0.0251 (5)0.0016 (4)0.0079 (4)0.0079 (4)
C1100.0274 (5)0.0252 (5)0.0248 (5)0.0017 (4)0.0090 (4)0.0050 (4)
C1110.0260 (5)0.0299 (5)0.0291 (6)0.0049 (4)0.0063 (4)0.0086 (4)
C1120.0366 (7)0.0491 (8)0.0279 (6)0.0163 (6)0.0004 (5)0.0061 (5)
C1130.0509 (8)0.0551 (9)0.0326 (7)0.0138 (7)0.0049 (6)0.0128 (6)
C2010.0341 (6)0.0260 (5)0.0197 (5)0.0044 (4)0.0050 (4)0.0026 (4)
C2020.0383 (6)0.0350 (6)0.0250 (6)0.0102 (5)0.0082 (5)0.0010 (5)
C2030.0595 (9)0.0459 (8)0.0352 (7)0.0221 (7)0.0159 (6)0.0045 (6)
C2040.0807 (12)0.0363 (7)0.0400 (8)0.0201 (7)0.0168 (8)0.0093 (6)
C2050.0650 (9)0.0265 (6)0.0319 (6)0.0031 (6)0.0107 (6)0.0074 (5)
C2060.0424 (7)0.0249 (5)0.0202 (5)0.0009 (5)0.0062 (5)0.0038 (4)
C2070.0313 (6)0.0496 (8)0.0348 (7)0.0095 (6)0.0103 (5)0.0042 (6)
C2080.0381 (6)0.0282 (6)0.0200 (5)0.0072 (5)0.0064 (4)0.0032 (4)
C2090.0283 (5)0.0296 (6)0.0233 (5)0.0018 (4)0.0053 (4)0.0029 (4)
C2100.0279 (5)0.0269 (5)0.0247 (5)0.0012 (4)0.0046 (4)0.0057 (4)
C2110.0295 (6)0.0372 (6)0.0282 (6)0.0037 (5)0.0066 (5)0.0010 (5)
C2120.0445 (8)0.0630 (9)0.0355 (7)0.0223 (7)0.0154 (6)0.0003 (6)
C2130.0564 (9)0.0523 (9)0.0335 (7)0.0136 (7)0.0072 (6)0.0055 (6)
Geometric parameters (Å, º) top
F11—C1071.3341 (16)C108—C1091.4457 (16)
F12—C1071.3470 (17)C109—C1101.3735 (15)
F13—C1071.3310 (16)C109—C1111.4782 (16)
F21—C2071.3307 (17)C110—H1100.9500
F22—C2071.3437 (17)C112—C1131.498 (2)
F23—C2071.3285 (16)C112—H11A0.9900
O11—C1081.2351 (14)C112—H11B0.9900
O12—C1111.2029 (15)C113—H11C0.9800
O13—C1111.3464 (15)C113—H11D0.9800
O13—C1121.4529 (15)C113—H11E0.9800
O21—C2081.2370 (15)C201—C2061.4027 (16)
O22—C2111.1994 (16)C201—C2021.4141 (17)
O23—C2111.3495 (18)C202—C2031.375 (2)
O23—C2121.4479 (17)C202—C2071.4976 (19)
N1—C1101.3355 (15)C203—C2041.393 (2)
N1—C1011.3773 (15)C203—H2030.9500
N1—H10.892 (19)C204—C2051.368 (2)
N2—C2101.3358 (15)C204—H2040.9500
N2—C2011.3763 (15)C205—C2061.4017 (18)
N2—H20.851 (18)C205—H2050.9500
C101—C1061.4043 (15)C206—C2081.4737 (18)
C101—C1021.4132 (16)C208—C2091.4420 (18)
C102—C1031.3765 (18)C209—C2101.3727 (15)
C102—C1071.4981 (17)C209—C2111.4815 (17)
C103—C1041.3956 (19)C210—H2100.9500
C103—H1030.9500C212—C2131.495 (2)
C104—C1051.3712 (18)C212—H21A0.9900
C104—H1040.9500C212—H21B0.9900
C105—C1061.4044 (16)C213—H21C0.9800
C105—H1050.9500C213—H21D0.9800
C106—C1081.4757 (16)C213—H21E0.9800
C111—O13—C112117.59 (10)H11C—C113—H11D109.5
C211—O23—C212117.55 (12)C112—C113—H11E109.5
C110—N1—C101121.95 (10)H11C—C113—H11E109.5
C110—N1—H1114.9 (12)H11D—C113—H11E109.5
C101—N1—H1123.2 (12)N2—C201—C206118.05 (11)
C210—N2—C201121.93 (10)N2—C201—C202122.66 (11)
C210—N2—H2115.4 (11)C206—C201—C202119.28 (11)
C201—N2—H2122.2 (11)C203—C202—C201119.74 (13)
N1—C101—C106118.41 (10)C203—C202—C207119.36 (13)
N1—C101—C102122.48 (10)C201—C202—C207120.90 (11)
C106—C101—C102119.12 (10)C202—C203—C204120.80 (14)
C103—C102—C101119.82 (11)C202—C203—H203119.6
C103—C102—C107119.71 (11)C204—C203—H203119.6
C101—C102—C107120.46 (11)C205—C204—C203120.02 (13)
C102—C103—C104121.00 (12)C205—C204—H204120.0
C102—C103—H103119.5C203—C204—H204120.0
C104—C103—H103119.5C204—C205—C206120.81 (13)
C105—C104—C103119.78 (11)C204—C205—H205119.6
C105—C104—H104120.1C206—C205—H205119.6
C103—C104—H104120.1C205—C206—C201119.33 (13)
C104—C105—C106120.70 (11)C205—C206—C208119.22 (12)
C104—C105—H105119.7C201—C206—C208121.44 (11)
C106—C105—H105119.7F23—C207—F21106.70 (11)
C101—C106—C105119.58 (11)F23—C207—F22106.69 (12)
C101—C106—C108121.19 (10)F21—C207—F22105.13 (12)
C105—C106—C108119.22 (10)F23—C207—C202112.96 (13)
F13—C107—F11106.66 (11)F21—C207—C202113.00 (11)
F13—C107—F12106.61 (11)F22—C207—C202111.81 (11)
F11—C107—F12105.45 (12)O21—C208—C209125.29 (13)
F13—C107—C102112.78 (12)O21—C208—C206119.16 (12)
F11—C107—C102113.23 (10)C209—C208—C206115.54 (10)
F12—C107—C102111.58 (11)C210—C209—C208118.91 (11)
O11—C108—C109124.72 (11)C210—C209—C211119.79 (11)
O11—C108—C106119.80 (11)C208—C209—C211121.25 (11)
C109—C108—C106115.48 (10)N2—C210—C209123.90 (11)
C110—C109—C108119.21 (10)N2—C210—H210118.0
C110—C109—C111119.66 (10)C209—C210—H210118.0
C108—C109—C111121.13 (10)O22—C211—O23123.44 (13)
N1—C110—C109123.71 (10)O22—C211—C209125.73 (13)
N1—C110—H110118.1O23—C211—C209110.82 (10)
C109—C110—H110118.1O23—C212—C213110.57 (12)
O12—C111—O13122.73 (11)O23—C212—H21A109.5
O12—C111—C109125.78 (11)C213—C212—H21A109.5
O13—C111—C109111.49 (10)O23—C212—H21B109.5
O13—C112—C113110.26 (11)C213—C212—H21B109.5
O13—C112—H11A109.6H21A—C212—H21B108.1
C113—C112—H11A109.6C212—C213—H21C109.5
O13—C112—H11B109.6C212—C213—H21D109.5
C113—C112—H11B109.6H21C—C213—H21D109.5
H11A—C112—H11B108.1C212—C213—H21E109.5
C112—C113—H11C109.5H21C—C213—H21E109.5
C112—C113—H11D109.5H21D—C213—H21E109.5
C110—N1—C101—C1062.05 (16)C210—N2—C201—C2063.23 (17)
C110—N1—C101—C102177.88 (10)C210—N2—C201—C202175.92 (11)
N1—C101—C102—C103178.98 (11)N2—C201—C202—C203177.79 (12)
C106—C101—C102—C1031.09 (17)C206—C201—C202—C2031.35 (18)
N1—C101—C102—C1072.20 (17)N2—C201—C202—C2071.81 (18)
C106—C101—C102—C107177.73 (11)C206—C201—C202—C207179.05 (11)
C101—C102—C103—C1040.15 (18)C201—C202—C203—C2040.8 (2)
C107—C102—C103—C104178.67 (12)C207—C202—C203—C204179.55 (13)
C102—C103—C104—C1050.53 (19)C202—C203—C204—C2050.3 (2)
C103—C104—C105—C1060.26 (19)C203—C204—C205—C2060.9 (2)
N1—C101—C106—C105178.71 (10)C204—C205—C206—C2010.4 (2)
C102—C101—C106—C1051.35 (16)C204—C205—C206—C208179.11 (13)
N1—C101—C106—C1080.99 (16)N2—C201—C206—C205178.44 (11)
C102—C101—C106—C108178.94 (10)C202—C201—C206—C2050.74 (18)
C104—C105—C106—C1010.69 (17)N2—C201—C206—C2081.05 (17)
C104—C105—C106—C108179.60 (11)C202—C201—C206—C208179.77 (11)
C103—C102—C107—F134.70 (18)C203—C202—C207—F232.68 (18)
C101—C102—C107—F13176.48 (11)C201—C202—C207—F23177.71 (12)
C103—C102—C107—F11125.94 (13)C203—C202—C207—F21123.94 (14)
C101—C102—C107—F1155.24 (16)C201—C202—C207—F2156.46 (16)
C103—C102—C107—F12115.27 (14)C203—C202—C207—F22117.68 (14)
C101—C102—C107—F1263.55 (15)C201—C202—C207—F2261.92 (16)
C101—C106—C108—O11179.90 (11)C205—C206—C208—O213.99 (18)
C105—C106—C108—O110.19 (17)C201—C206—C208—O21176.53 (12)
C101—C106—C108—C1090.70 (16)C205—C206—C208—C209175.03 (11)
C105—C106—C108—C109179.60 (10)C201—C206—C208—C2094.46 (17)
O11—C108—C109—C110179.19 (12)O21—C208—C209—C210177.19 (12)
C106—C108—C109—C1101.43 (15)C206—C208—C209—C2103.86 (16)
O11—C108—C109—C1111.12 (18)O21—C208—C209—C2115.5 (2)
C106—C108—C109—C111178.25 (10)C206—C208—C209—C211173.49 (11)
C101—N1—C110—C1091.34 (17)C201—N2—C210—C2093.95 (18)
C108—C109—C110—N10.50 (17)C208—C209—C210—N20.11 (18)
C111—C109—C110—N1179.19 (10)C211—C209—C210—N2177.50 (11)
C112—O13—C111—O123.68 (18)C212—O23—C211—O227.8 (2)
C112—O13—C111—C109175.91 (10)C212—O23—C211—C209171.24 (11)
C110—C109—C111—O12176.54 (12)C210—C209—C211—O22177.47 (13)
C108—C109—C111—O123.78 (19)C208—C209—C211—O225.2 (2)
C110—C109—C111—O133.89 (15)C210—C209—C211—O233.55 (16)
C108—C109—C111—O13175.80 (10)C208—C209—C211—O23173.77 (11)
C111—O13—C112—C11390.46 (14)C211—O23—C212—C21391.90 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O21i0.892 (19)1.875 (19)2.6588 (13)145.5 (16)
N2—H2···O11ii0.851 (18)2.011 (17)2.7178 (13)139.9 (16)
N2—H2···O12ii0.851 (18)2.487 (17)3.0380 (15)123.2 (14)
C212—H21B···F22iii0.992.463.0909 (18)121
C204—H204···O13iv0.952.603.4691 (18)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10F3NO3
Mr285.22
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.8248 (3), 11.0222 (3), 12.3450 (4)
α, β, γ (°)72.934 (1), 74.167 (1), 74.059 (1)
V3)1201.67 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.53 × 0.38 × 0.32
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.928, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
21419, 5963, 5051
Rint0.016
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.04
No. of reflections5963
No. of parameters371
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.23

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O21i0.892 (19)1.875 (19)2.6588 (13)145.5 (16)
N2—H2···O11ii0.851 (18)2.011 (17)2.7178 (13)139.9 (16)
N2—H2···O12ii0.851 (18)2.487 (17)3.0380 (15)123.2 (14)
C212—H21B···F22iii0.992.463.0909 (18)120.8
C204—H204···O13iv0.952.603.4691 (18)152.9
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z+1.
 

Acknowledgements

AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award.

References

First citationBekhit, A. A., El-Sayed, O. A., Aboulmagd, E. & Park, J. Y. (2004). Eur. J. Med. Chem. 39, 249–255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolla, B. S., Mahalinga, M., Karthikeyan, M. S., Akbarali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040–2047.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, K. D., Adhikari, A. V., Telkar, S., Chowdhury, I. H., Mahmood, R., Pal, N. K., Row, G. & Sumesh, E. (2011). Eur. J. Med. Chem. 46, 5283–5292.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3304-o3305
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds