metal-organic compounds
Bis[2-(1H-benzimidazol-2-yl)acetato-κ2N3,O]bis(ethanol-κO)nickel(II)
aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: Niejianhua.crystal@yahoo.com
In the title compound, [Ni(C9H7N2O2)2(C2H5OH)2], the NiII ion is situated on an inversion center and is coordinated by two N and two O atoms from two 2-(1H-benzimidazol-2-yl)acetate (L) ligands and by two O atoms from two ethanol ligands in a distorted octahedral geometry. In the L ligand, the acetate group deviates significantly from the benzimidazole plane, the C—C—C—O(coordinating) torsion angle being 34.2 (5)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the molecules into a two-dimensional supramolecular network parallel to the bc plane.
Related literature
For related structures, see: Chen et al. (2010); Gao et al. (2011); Guo et al. (2007); Peng et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053681204514X/cv5355sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681204514X/cv5355Isup2.hkl
A mixture of NiCl2 (0.40 mmol), HL (0.40 mmol) and 8 ml C2H5OH was sealed into a 15 ml Teflon-lined stainless steel autoclave and then heated at 373 K for 72 h under autogenous pressure. After cooling to room temperature at a rate of 2 K /h, green block crystals of the title compound suitable for X-ray diffraction were obtained (yield: 35%).
C– and N-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C), Uiso(H) = 1.2Ueq(N). Hydroxy H atoms were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H)= 1.2Ueq(O).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C9H7N2O2)2(C2H6O)2] | F(000) = 524 |
Mr = 501.18 | Dx = 1.458 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1078 reflections |
a = 10.441 (5) Å | θ = 2.8–21.1° |
b = 9.639 (4) Å | µ = 0.90 mm−1 |
c = 11.480 (5) Å | T = 298 K |
β = 98.956 (6)° | Block, green |
V = 1141.3 (9) Å3 | 0.28 × 0.26 × 0.23 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 2231 independent reflections |
Radiation source: fine-focus sealed tube | 1411 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
phi and ω scans | θmax = 26.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −8→12 |
Tmin = 0.788, Tmax = 0.821 | k = −11→11 |
6022 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0364P)2] where P = (Fo2 + 2Fc2)/3 |
2231 reflections | (Δ/σ)max < 0.001 |
152 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
[Ni(C9H7N2O2)2(C2H6O)2] | V = 1141.3 (9) Å3 |
Mr = 501.18 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.441 (5) Å | µ = 0.90 mm−1 |
b = 9.639 (4) Å | T = 298 K |
c = 11.480 (5) Å | 0.28 × 0.26 × 0.23 mm |
β = 98.956 (6)° |
Bruker APEXII CCD area-detector diffractometer | 2231 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1411 reflections with I > 2σ(I) |
Tmin = 0.788, Tmax = 0.821 | Rint = 0.061 |
6022 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.36 e Å−3 |
2231 reflections | Δρmin = −0.45 e Å−3 |
152 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.0000 | 0.0000 | 0.0295 (2) | |
C7 | 0.5632 (4) | 0.2871 (4) | −0.0656 (3) | 0.0303 (9) | |
C1 | 0.7327 (4) | 0.3710 (4) | 0.0516 (3) | 0.0372 (10) | |
C6 | 0.7025 (4) | 0.2385 (4) | 0.0887 (3) | 0.0310 (9) | |
C8 | 0.4525 (4) | 0.2834 (4) | −0.1641 (3) | 0.0357 (10) | |
H8A | 0.4655 | 0.3559 | −0.2197 | 0.043* | |
H8B | 0.3741 | 0.3059 | −0.1325 | 0.043* | |
C5 | 0.7763 (4) | 0.1803 (4) | 0.1874 (4) | 0.0451 (11) | |
H5 | 0.7568 | 0.0929 | 0.2141 | 0.054* | |
C4 | 0.8787 (4) | 0.2548 (5) | 0.2444 (4) | 0.0564 (13) | |
H4 | 0.9294 | 0.2178 | 0.3109 | 0.068* | |
C2 | 0.8367 (4) | 0.4466 (4) | 0.1082 (4) | 0.0538 (12) | |
H2 | 0.8568 | 0.5341 | 0.0821 | 0.065* | |
C3 | 0.9081 (4) | 0.3863 (4) | 0.2039 (4) | 0.0574 (13) | |
H3 | 0.9789 | 0.4340 | 0.2440 | 0.069* | |
C9 | 0.4305 (4) | 0.1481 (4) | −0.2311 (3) | 0.0302 (9) | |
O2 | 0.3884 (3) | 0.1537 (2) | −0.3388 (2) | 0.0435 (7) | |
O1 | 0.4545 (2) | 0.0357 (2) | −0.1765 (2) | 0.0357 (7) | |
N1 | 0.5959 (3) | 0.1869 (3) | 0.0125 (3) | 0.0300 (8) | |
N2 | 0.6410 (3) | 0.3986 (3) | −0.0456 (3) | 0.0382 (8) | |
H2A | 0.6347 | 0.4739 | −0.0864 | 0.046* | |
O3 | 0.3382 (2) | 0.1147 (2) | 0.0343 (2) | 0.0367 (7) | |
H3A | 0.3398 | 0.2025 | 0.0416 | 0.044* | |
C10 | 0.2225 (5) | 0.0637 (5) | 0.0670 (5) | 0.0627 (14) | |
H10A | 0.2386 | 0.0401 | 0.1502 | 0.075* | |
H10B | 0.1984 | −0.0209 | 0.0233 | 0.075* | |
C11 | 0.1146 (5) | 0.1594 (6) | 0.0467 (6) | 0.112 (2) | |
H11A | 0.1364 | 0.2427 | 0.0913 | 0.168* | |
H11B | 0.0397 | 0.1175 | 0.0710 | 0.168* | |
H11C | 0.0962 | 0.1817 | −0.0358 | 0.168* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0404 (5) | 0.0212 (4) | 0.0268 (4) | −0.0017 (3) | 0.0044 (3) | 0.0004 (3) |
C7 | 0.039 (3) | 0.022 (2) | 0.031 (2) | −0.0052 (18) | 0.0072 (18) | −0.0016 (17) |
C1 | 0.045 (3) | 0.029 (2) | 0.037 (2) | −0.002 (2) | 0.003 (2) | −0.0036 (18) |
C6 | 0.035 (3) | 0.027 (2) | 0.031 (2) | −0.0018 (18) | 0.0041 (19) | −0.0012 (17) |
C8 | 0.050 (3) | 0.024 (2) | 0.031 (2) | 0.0009 (19) | 0.000 (2) | 0.0009 (17) |
C5 | 0.052 (3) | 0.037 (2) | 0.044 (3) | −0.003 (2) | −0.002 (2) | −0.002 (2) |
C4 | 0.057 (4) | 0.054 (3) | 0.051 (3) | −0.001 (3) | −0.013 (2) | 0.000 (2) |
C2 | 0.059 (3) | 0.038 (3) | 0.060 (3) | −0.015 (2) | −0.002 (3) | 0.004 (2) |
C3 | 0.053 (3) | 0.049 (3) | 0.065 (3) | −0.014 (3) | −0.007 (3) | −0.015 (3) |
C9 | 0.032 (2) | 0.027 (2) | 0.032 (2) | −0.0036 (18) | 0.0043 (18) | −0.0002 (18) |
O2 | 0.071 (2) | 0.0274 (15) | 0.0280 (16) | −0.0006 (14) | −0.0061 (14) | 0.0026 (12) |
O1 | 0.0565 (19) | 0.0214 (14) | 0.0283 (15) | 0.0004 (12) | 0.0041 (12) | 0.0010 (11) |
N1 | 0.038 (2) | 0.0250 (17) | 0.0270 (18) | −0.0005 (15) | 0.0042 (15) | 0.0012 (14) |
N2 | 0.051 (2) | 0.0258 (18) | 0.037 (2) | −0.0079 (16) | 0.0018 (17) | 0.0063 (15) |
O3 | 0.0414 (18) | 0.0256 (14) | 0.0448 (17) | −0.0020 (13) | 0.0118 (13) | −0.0006 (12) |
C10 | 0.058 (4) | 0.051 (3) | 0.083 (4) | −0.007 (3) | 0.025 (3) | −0.014 (3) |
C11 | 0.054 (4) | 0.089 (5) | 0.195 (8) | 0.013 (4) | 0.025 (4) | 0.012 (5) |
Ni1—O1i | 2.037 (3) | C5—H5 | 0.9300 |
Ni1—O1 | 2.037 (3) | C4—C3 | 1.400 (6) |
Ni1—N1i | 2.055 (3) | C4—H4 | 0.9300 |
Ni1—N1 | 2.055 (3) | C2—C3 | 1.358 (6) |
Ni1—O3i | 2.107 (2) | C2—H2 | 0.9300 |
Ni1—O3 | 2.107 (2) | C3—H3 | 0.9300 |
C7—N1 | 1.325 (4) | C9—O2 | 1.247 (4) |
C7—N2 | 1.346 (4) | C9—O1 | 1.257 (4) |
C7—C8 | 1.487 (5) | N2—H2A | 0.8600 |
C1—N2 | 1.379 (5) | O3—C10 | 1.409 (5) |
C1—C2 | 1.384 (5) | O3—H3A | 0.8500 |
C1—C6 | 1.398 (5) | C10—C11 | 1.447 (6) |
C6—C5 | 1.386 (5) | C10—H10A | 0.9700 |
C6—N1 | 1.395 (5) | C10—H10B | 0.9700 |
C8—C9 | 1.514 (5) | C11—H11A | 0.9600 |
C8—H8A | 0.9700 | C11—H11B | 0.9600 |
C8—H8B | 0.9700 | C11—H11C | 0.9600 |
C5—C4 | 1.367 (5) | ||
O1i—Ni1—O1 | 180.0 | C5—C4—H4 | 119.6 |
O1i—Ni1—N1i | 87.54 (10) | C3—C4—H4 | 119.6 |
O1—Ni1—N1i | 92.46 (10) | C3—C2—C1 | 116.5 (4) |
O1i—Ni1—N1 | 92.46 (10) | C3—C2—H2 | 121.7 |
O1—Ni1—N1 | 87.54 (10) | C1—C2—H2 | 121.7 |
N1i—Ni1—N1 | 180.0 | C2—C3—C4 | 122.3 (4) |
O1i—Ni1—O3i | 91.58 (10) | C2—C3—H3 | 118.8 |
O1—Ni1—O3i | 88.42 (10) | C4—C3—H3 | 118.8 |
N1i—Ni1—O3i | 85.58 (11) | O2—C9—O1 | 123.0 (3) |
N1—Ni1—O3i | 94.42 (11) | O2—C9—C8 | 117.9 (3) |
O1i—Ni1—O3 | 88.42 (10) | O1—C9—C8 | 119.1 (3) |
O1—Ni1—O3 | 91.58 (10) | C9—O1—Ni1 | 129.7 (2) |
N1i—Ni1—O3 | 94.42 (11) | C7—N1—C6 | 105.1 (3) |
N1—Ni1—O3 | 85.58 (11) | C7—N1—Ni1 | 121.3 (2) |
O3i—Ni1—O3 | 180.0 | C6—N1—Ni1 | 133.5 (2) |
N1—C7—N2 | 112.5 (3) | C7—N2—C1 | 107.9 (3) |
N1—C7—C8 | 125.8 (3) | C7—N2—H2A | 126.0 |
N2—C7—C8 | 121.7 (3) | C1—N2—H2A | 126.0 |
N2—C1—C2 | 132.4 (4) | C10—O3—Ni1 | 127.8 (2) |
N2—C1—C6 | 105.2 (3) | C10—O3—H3A | 109.0 |
C2—C1—C6 | 122.4 (4) | Ni1—O3—H3A | 122.5 |
C5—C6—N1 | 131.0 (3) | O3—C10—C11 | 114.4 (4) |
C5—C6—C1 | 119.7 (4) | O3—C10—H10A | 108.7 |
N1—C6—C1 | 109.3 (3) | C11—C10—H10A | 108.7 |
C7—C8—C9 | 116.4 (3) | O3—C10—H10B | 108.7 |
C7—C8—H8A | 108.2 | C11—C10—H10B | 108.7 |
C9—C8—H8A | 108.2 | H10A—C10—H10B | 107.6 |
C7—C8—H8B | 108.2 | C10—C11—H11A | 109.5 |
C9—C8—H8B | 108.2 | C10—C11—H11B | 109.5 |
H8A—C8—H8B | 107.3 | H11A—C11—H11B | 109.5 |
C4—C5—C6 | 118.2 (4) | C10—C11—H11C | 109.5 |
C4—C5—H5 | 120.9 | H11A—C11—H11C | 109.5 |
C6—C5—H5 | 120.9 | H11B—C11—H11C | 109.5 |
C5—C4—C3 | 120.8 (4) | ||
N2—C1—C6—C5 | −178.9 (3) | N2—C7—N1—Ni1 | −177.1 (2) |
C2—C1—C6—C5 | 1.7 (6) | C8—C7—N1—Ni1 | 4.1 (5) |
N2—C1—C6—N1 | 1.4 (4) | C5—C6—N1—C7 | 179.3 (4) |
C2—C1—C6—N1 | −178.0 (4) | C1—C6—N1—C7 | −1.1 (4) |
N1—C7—C8—C9 | −41.6 (5) | C5—C6—N1—Ni1 | −3.7 (6) |
N2—C7—C8—C9 | 139.7 (3) | C1—C6—N1—Ni1 | 175.9 (2) |
N1—C6—C5—C4 | 178.5 (4) | O1i—Ni1—N1—C7 | −154.3 (3) |
C1—C6—C5—C4 | −1.1 (6) | O1—Ni1—N1—C7 | 25.7 (3) |
C6—C5—C4—C3 | −0.1 (7) | O3i—Ni1—N1—C7 | 114.0 (3) |
N2—C1—C2—C3 | 179.8 (4) | O3—Ni1—N1—C7 | −66.0 (3) |
C6—C1—C2—C3 | −1.0 (7) | O1i—Ni1—N1—C6 | 29.2 (3) |
C1—C2—C3—C4 | −0.2 (7) | O1—Ni1—N1—C6 | −150.8 (3) |
C5—C4—C3—C2 | 0.8 (7) | O3i—Ni1—N1—C6 | −62.6 (3) |
C7—C8—C9—O2 | −146.1 (4) | O3—Ni1—N1—C6 | 117.4 (3) |
C7—C8—C9—O1 | 34.2 (5) | N1—C7—N2—C1 | 0.5 (4) |
O2—C9—O1—Ni1 | −171.0 (3) | C8—C7—N2—C1 | 179.4 (3) |
C8—C9—O1—Ni1 | 8.7 (5) | C2—C1—N2—C7 | 178.1 (4) |
N1i—Ni1—O1—C9 | 145.8 (3) | C6—C1—N2—C7 | −1.2 (4) |
N1—Ni1—O1—C9 | −34.2 (3) | O1i—Ni1—O3—C10 | −73.1 (3) |
O3i—Ni1—O1—C9 | −128.7 (3) | O1—Ni1—O3—C10 | 106.9 (3) |
O3—Ni1—O1—C9 | 51.3 (3) | N1i—Ni1—O3—C10 | 14.3 (3) |
N2—C7—N1—C6 | 0.4 (4) | N1—Ni1—O3—C10 | −165.7 (3) |
C8—C7—N1—C6 | −178.4 (4) | Ni1—O3—C10—C11 | −160.5 (4) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2ii | 0.85 | 1.96 | 2.672 (3) | 141 |
N2—H2A···O2iii | 0.86 | 1.93 | 2.788 (4) | 173 |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C9H7N2O2)2(C2H6O)2] |
Mr | 501.18 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 10.441 (5), 9.639 (4), 11.480 (5) |
β (°) | 98.956 (6) |
V (Å3) | 1141.3 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.90 |
Crystal size (mm) | 0.28 × 0.26 × 0.23 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.788, 0.821 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6022, 2231, 1411 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.107, 1.04 |
No. of reflections | 2231 |
No. of parameters | 152 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.45 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2i | 0.85 | 1.96 | 2.672 (3) | 140.5 |
N2—H2A···O2ii | 0.86 | 1.93 | 2.788 (4) | 172.6 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z−1/2. |
Acknowledgements
The authors gratefully acknowledge the Science and Technology Research Project of Zhongshan City (grant No. 20114 A256).
References
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chen, W., Yang, B. Q., Ma, S. S., Shao, X. X. & Jiang, S. (2010). Chin. J. Struct. Chem. 29, 1241–1249. CAS Google Scholar
Gao, J., Wang, J. & Dai, C. (2011). Acta Cryst. E67, m75. Web of Science CrossRef IUCr Journals Google Scholar
Guo, Z. G., Li, X. J., Gao, S. Y. & Li, Y. F. (2007). J. Mol. Struct. 846, 123–127. Web of Science CSD CrossRef CAS Google Scholar
Peng, G., Qiu, Y. C., Liu, Z. H., Liu, B. & Deng, H. (2010). Cryst. Growth Des. 10, 114–121. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multidentate ligands containing N donors and carboxylic groups are often employed to construct new metal coordination polymers with different structures (Chen et al., 2010; Gao et al., 2011; Guo et al., 2007; Peng et al., 2010). The main reason is that they have various coordination modes and can form high-dimensional polymers through hydrogen-bonding interactions in the process of self-assembly. In this work, we chose 2-(1H-benzimidazol-2-yl)acetic acid (HL), which contains two N atoms of an imidazole group and one carboxylate group, as the building block to prepare new metal coordination polymers. To date, only three mononuclear complexes based on the HL ligand have been reported (Chen et al.,2010). In this paper, we report the synthesis and structure of the title compound, (I), obtained by the solvothermal reaction of NiCl2 and HL ligand.
In (I) (Fig. 1), the Ni(II) ion is coordinated by two N and two O atoms from two bidentate chelating L ligands and two O atoms from two ethanol molecules in a distorted octahedral geometry. The Ni—N bond length is equal to 2.055 (3) Å, and the Ni—O distances vary from 2.037 (3) to 2.107 (2) Å. In the crystal, intermolecular O—H···O and N–H···O hydrogen bonds (Table1) involving the carboxylate O atoms, the imidazole N atoms and the coordinated ethanol O atoms link the molecules into a two-dimensional supramolecular network parallel to the bc plane (Fig. 2).