metal-organic compounds
Bis[O-methyl (4-ethoxyphenyl)dithiophosphonato-κ2S,S′]nickel(II)
aSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: vanzylw@ukzn.ac.za
In the title compound, [Ni(C9H12O2PS2)2], the NiII atom resides on an inversion center and is coordinated by four S atoms [Ni—S = 2.2328 (4) and 2.2455 (3) Å] in a distorted square-planar geometry [S—Ni—S = 88.443 (13) and 91.557 (13)°]. In the crystal, molecules related by translation in [110] are linked into chains via weak C—H⋯O interactions. The crystal packing exhibits short intermolecular S⋯S contacts of 3.3366 (5) Å.
Related literature
For information on dithiophosphonate compounds, see: Van Zyl & Fackler (2000); Van Zyl (2010); Van Zyl & Woollins (2012). For related structures of nickel(II) dithiophosphonate complexes, see: Hartung (1967); Liu et al. (2004); Gray et al. (2004); Aragoni et al. (2007); Arca et al. (1997); Özcan et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812046314/cv5358sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046314/cv5358Isup2.hkl
A colorless methanol (40 ml) solution of NH4[S2P(OMe)(4-C6H4OEt)] (1.044 g, 4.474 mmol) was prepared. A second green solution of NiCl2.6H20 (540 mg, 2.272 mmol) in deionized water (20 ml) was prepared, and added to the colorless solution with stirring over a period of 5 min. This resulted in a purple precipitate indicating the formation of the title complex. The precipitate was collected by vacuum filtration, washed with water (3 x 10 ml) and allowed to dry under vacuum for a period of 3 hrs, yielding a dry, free-flowing purple powder. Purple crystals suitable for X-ray analysis were grown by the slow diffusion of hexane into a dichloromethane solution of the title complex. Yield: 1.004 g, 41%. M.p. 168°C.
31P NMR (CDCl3): δ (p.p.m.): 104.56. 1H NMR (CDCl3): δ (p.p.m.): 7.94 (2H, dd, J(31P-1H) = 12.76 Hz, J(1H -1H) = 10.08 Hz, o-ArH), 6.95 (2H, dd, J(31P-1H) = 8.76 Hz, J(1H-1H) = 3.08 Hz, m-ArH), 4.07 (2H, quart, J(1H-1H) = 6.96 Hz, ArOCH2), 3.96 (3H, d, J(31P-1H) = 14.8 Hz, POCH3), 1.41 (3H, t, J(1H-1H) = 6.98 Hz, ArOCH2CH3). 13C NMR (CDCl3): δ (p.p.m.): 162.64 (p-ArC), 131.78 (m-ArC), 128.68 (Ar—Cipso), 114.62 (o-ArC), 63.99 (ArOCH2), 52.73 (OCH3), 14.85 (ArOCH2CH3).
All hydrogen atoms were found in the difference electron density maps, then placed in idealized positions (C—H = 0.95–1.00 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C).
Data collection: APEX2 (Bruker, 2008); cell
SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title complex showing the atomic numbering and 50% probability displacement ellispoids [symmetry code: (i)-x + 2,-y + 2,-z + 2]. H atoms omitted for clarity. |
[Ni(C9H12O2PS2)2] | F(000) = 572 |
Mr = 553.26 | Dx = 1.583 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 19824 reflections |
a = 13.5866 (5) Å | θ = 2.9–28.4° |
b = 6.4212 (2) Å | µ = 1.36 mm−1 |
c = 14.1047 (5) Å | T = 173 K |
β = 109.389 (2)° | Block, purple |
V = 1160.74 (7) Å3 | 0.43 × 0.31 × 0.24 mm |
Z = 2 |
Bruker SMART APEXII CCD diffractometer | 2850 independent reflections |
Radiation source: fine-focus sealed tube | 2609 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 28.4°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −18→17 |
Tmin = 0.593, Tmax = 0.737 | k = −8→8 |
19824 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0281P)2 + 0.7956P] where P = (Fo2 + 2Fc2)/3 |
2850 reflections | (Δ/σ)max = 0.001 |
135 parameters | Δρmax = 0.56 e Å−3 |
2 restraints | Δρmin = −0.44 e Å−3 |
[Ni(C9H12O2PS2)2] | V = 1160.74 (7) Å3 |
Mr = 553.26 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.5866 (5) Å | µ = 1.36 mm−1 |
b = 6.4212 (2) Å | T = 173 K |
c = 14.1047 (5) Å | 0.43 × 0.31 × 0.24 mm |
β = 109.389 (2)° |
Bruker SMART APEXII CCD diffractometer | 2850 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2609 reflections with I > 2σ(I) |
Tmin = 0.593, Tmax = 0.737 | Rint = 0.036 |
19824 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 2 restraints |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.56 e Å−3 |
2850 reflections | Δρmin = −0.44 e Å−3 |
135 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.70393 (11) | 0.8288 (2) | 0.85131 (10) | 0.0149 (3) | |
C2 | 0.68704 (11) | 0.6590 (2) | 0.90614 (11) | 0.0175 (3) | |
H2 | 0.7398 | 0.5564 | 0.9306 | 0.021* | |
C3 | 0.59371 (12) | 0.6398 (2) | 0.92488 (12) | 0.0196 (3) | |
H3 | 0.5823 | 0.5237 | 0.9617 | 0.024* | |
C4 | 0.51619 (11) | 0.7913 (2) | 0.88969 (11) | 0.0167 (3) | |
C5 | 0.53108 (12) | 0.9588 (3) | 0.83320 (12) | 0.0202 (3) | |
H5 | 0.4777 | 1.0598 | 0.8075 | 0.024* | |
C6 | 0.62531 (12) | 0.9759 (3) | 0.81507 (12) | 0.0211 (3) | |
H6 | 0.6362 | 1.0905 | 0.7771 | 0.025* | |
C7 | 0.34352 (11) | 0.9068 (2) | 0.87693 (12) | 0.0199 (3) | |
H7A | 0.3191 | 0.9120 | 0.8026 | 0.024* | |
H7B | 0.3662 | 1.0480 | 0.9033 | 0.024* | |
C8 | 0.25769 (12) | 0.8303 (3) | 0.91356 (13) | 0.0258 (3) | |
H8A | 0.2401 | 0.6862 | 0.8915 | 0.039* | |
H8B | 0.1959 | 0.9186 | 0.8859 | 0.039* | |
H8C | 0.2812 | 0.8364 | 0.9871 | 0.039* | |
C9 | 0.88481 (12) | 0.8281 (3) | 0.67579 (12) | 0.0243 (3) | |
H9A | 0.9184 | 0.9650 | 0.6891 | 0.036* | |
H9B | 0.8562 | 0.8052 | 0.6031 | 0.036* | |
H9C | 0.9363 | 0.7197 | 0.7065 | 0.036* | |
O1 | 0.42818 (8) | 0.76065 (18) | 0.91366 (8) | 0.0210 (2) | |
O2 | 0.80067 (8) | 0.81965 (17) | 0.71841 (7) | 0.0172 (2) | |
P1 | 0.82716 (3) | 0.87053 (6) | 0.83456 (3) | 0.01290 (9) | |
S1 | 0.88018 (3) | 1.16115 (5) | 0.87163 (3) | 0.01505 (9) | |
S2 | 0.94269 (3) | 0.69659 (5) | 0.92450 (3) | 0.01547 (9) | |
Ni1 | 1.0000 | 1.0000 | 1.0000 | 0.01236 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0126 (6) | 0.0163 (7) | 0.0142 (6) | −0.0026 (5) | 0.0024 (5) | −0.0008 (5) |
C2 | 0.0168 (7) | 0.0162 (7) | 0.0186 (7) | 0.0021 (5) | 0.0050 (5) | 0.0025 (6) |
C3 | 0.0200 (7) | 0.0181 (7) | 0.0218 (7) | 0.0007 (6) | 0.0085 (6) | 0.0061 (6) |
C4 | 0.0156 (6) | 0.0187 (7) | 0.0157 (6) | −0.0013 (6) | 0.0050 (5) | −0.0007 (6) |
C5 | 0.0152 (7) | 0.0194 (7) | 0.0246 (7) | 0.0024 (6) | 0.0050 (6) | 0.0065 (6) |
C6 | 0.0177 (7) | 0.0201 (7) | 0.0252 (7) | 0.0005 (6) | 0.0067 (6) | 0.0088 (6) |
C7 | 0.0171 (7) | 0.0192 (7) | 0.0239 (7) | 0.0027 (6) | 0.0074 (6) | −0.0006 (6) |
C8 | 0.0209 (7) | 0.0271 (9) | 0.0324 (9) | 0.0015 (6) | 0.0127 (7) | −0.0004 (7) |
C9 | 0.0219 (7) | 0.0328 (9) | 0.0212 (7) | 0.0004 (7) | 0.0113 (6) | −0.0025 (7) |
O1 | 0.0176 (5) | 0.0231 (6) | 0.0251 (5) | 0.0041 (4) | 0.0107 (4) | 0.0069 (5) |
O2 | 0.0164 (5) | 0.0212 (5) | 0.0133 (5) | −0.0019 (4) | 0.0038 (4) | −0.0016 (4) |
P1 | 0.01195 (16) | 0.01266 (17) | 0.01283 (16) | −0.00089 (13) | 0.00241 (13) | 0.00025 (13) |
S1 | 0.01442 (16) | 0.01179 (16) | 0.01655 (16) | −0.00085 (12) | 0.00194 (13) | 0.00125 (13) |
S2 | 0.01453 (16) | 0.01163 (17) | 0.01733 (16) | 0.00058 (12) | 0.00138 (13) | −0.00038 (13) |
Ni1 | 0.01162 (12) | 0.01061 (13) | 0.01350 (12) | −0.00046 (9) | 0.00235 (9) | 0.00017 (9) |
C1—C6 | 1.390 (2) | C8—H8A | 0.9800 |
C1—C2 | 1.399 (2) | C8—H8B | 0.9800 |
C1—P1 | 1.7871 (14) | C8—H8C | 0.9800 |
C2—C3 | 1.384 (2) | C9—O2 | 1.4585 (17) |
C2—H2 | 0.9500 | C9—H9A | 0.9800 |
C3—C4 | 1.398 (2) | C9—H9B | 0.9800 |
C3—H3 | 0.9500 | C9—H9C | 0.9800 |
C4—O1 | 1.3606 (17) | O2—P1 | 1.5902 (10) |
C4—C5 | 1.393 (2) | P1—S2 | 1.9996 (5) |
C5—C6 | 1.391 (2) | P1—S1 | 2.0061 (5) |
C5—H5 | 0.9500 | P1—Ni1 | 2.8306 (4) |
C6—H6 | 0.9500 | S1—Ni1 | 2.2455 (3) |
C7—O1 | 1.4408 (18) | S2—Ni1 | 2.2328 (4) |
C7—C8 | 1.506 (2) | Ni1—S2i | 2.2328 (4) |
C7—H7A | 0.9900 | Ni1—S1i | 2.2455 (3) |
C7—H7B | 0.9900 | Ni1—P1i | 2.8306 (4) |
C6—C1—C2 | 119.07 (13) | O2—C9—H9C | 109.5 |
C6—C1—P1 | 119.25 (11) | H9A—C9—H9C | 109.5 |
C2—C1—P1 | 121.52 (11) | H9B—C9—H9C | 109.5 |
C3—C2—C1 | 120.23 (14) | C4—O1—C7 | 118.63 (12) |
C3—C2—H2 | 119.9 | C9—O2—P1 | 118.47 (9) |
C1—C2—H2 | 119.9 | O2—P1—C1 | 101.76 (6) |
C2—C3—C4 | 120.03 (14) | O2—P1—S2 | 113.60 (4) |
C2—C3—H3 | 120.0 | C1—P1—S2 | 113.88 (5) |
C4—C3—H3 | 120.0 | O2—P1—S1 | 113.49 (4) |
O1—C4—C5 | 124.08 (14) | C1—P1—S1 | 112.10 (5) |
O1—C4—C3 | 115.59 (13) | S2—P1—S1 | 102.47 (2) |
C5—C4—C3 | 120.33 (13) | O2—P1—Ni1 | 138.74 (4) |
C6—C5—C4 | 118.91 (14) | C1—P1—Ni1 | 119.49 (5) |
C6—C5—H5 | 120.5 | S2—P1—Ni1 | 51.639 (13) |
C4—C5—H5 | 120.5 | S1—P1—Ni1 | 51.985 (12) |
C1—C6—C5 | 121.39 (14) | P1—S1—Ni1 | 83.279 (16) |
C1—C6—H6 | 119.3 | P1—S2—Ni1 | 83.755 (17) |
C5—C6—H6 | 119.3 | S2i—Ni1—S2 | 180.0 |
O1—C7—C8 | 106.33 (13) | S2i—Ni1—S1 | 91.557 (13) |
O1—C7—H7A | 110.5 | S2—Ni1—S1 | 88.443 (13) |
C8—C7—H7A | 110.5 | S2i—Ni1—S1i | 88.443 (13) |
O1—C7—H7B | 110.5 | S2—Ni1—S1i | 91.557 (13) |
C8—C7—H7B | 110.5 | S1—Ni1—S1i | 180.0 |
H7A—C7—H7B | 108.7 | S2i—Ni1—P1i | 44.606 (11) |
C7—C8—H8A | 109.5 | S2—Ni1—P1i | 135.394 (11) |
C7—C8—H8B | 109.5 | S1—Ni1—P1i | 135.263 (12) |
H8A—C8—H8B | 109.5 | S1i—Ni1—P1i | 44.737 (12) |
C7—C8—H8C | 109.5 | S2i—Ni1—P1 | 135.394 (11) |
H8A—C8—H8C | 109.5 | S2—Ni1—P1 | 44.606 (11) |
H8B—C8—H8C | 109.5 | S1—Ni1—P1 | 44.737 (12) |
O2—C9—H9A | 109.5 | S1i—Ni1—P1 | 135.263 (12) |
O2—C9—H9B | 109.5 | P1i—Ni1—P1 | 180.0 |
H9A—C9—H9B | 109.5 | ||
C6—C1—C2—C3 | −0.8 (2) | C1—P1—S2—Ni1 | −109.65 (5) |
P1—C1—C2—C3 | 174.69 (12) | S1—P1—S2—Ni1 | 11.639 (18) |
C1—C2—C3—C4 | −0.5 (2) | P1—S2—Ni1—S2i | 67 (100) |
C2—C3—C4—O1 | −178.75 (14) | P1—S2—Ni1—S1 | −10.140 (16) |
C2—C3—C4—C5 | 1.9 (2) | P1—S2—Ni1—S1i | 169.860 (16) |
O1—C4—C5—C6 | 178.78 (14) | P1—S2—Ni1—P1i | 180.0 |
C3—C4—C5—C6 | −1.9 (2) | P1—S1—Ni1—S2i | −169.884 (16) |
C2—C1—C6—C5 | 0.7 (2) | P1—S1—Ni1—S2 | 10.116 (16) |
P1—C1—C6—C5 | −174.82 (13) | P1—S1—Ni1—S1i | −11 (100) |
C4—C5—C6—C1 | 0.6 (2) | P1—S1—Ni1—P1i | 180.0 |
C5—C4—O1—C7 | 1.5 (2) | O2—P1—Ni1—S2i | 97.35 (7) |
C3—C4—O1—C7 | −177.89 (13) | C1—P1—Ni1—S2i | −81.64 (6) |
C8—C7—O1—C4 | 178.93 (13) | S2—P1—Ni1—S2i | 180.000 (1) |
C9—O2—P1—C1 | −177.47 (12) | S1—P1—Ni1—S2i | 14.48 (2) |
C9—O2—P1—S2 | −54.64 (12) | O2—P1—Ni1—S2 | −82.65 (7) |
C9—O2—P1—S1 | 61.90 (12) | C1—P1—Ni1—S2 | 98.36 (6) |
C9—O2—P1—Ni1 | 3.43 (15) | S1—P1—Ni1—S2 | −165.52 (2) |
C6—C1—P1—O2 | −74.92 (13) | O2—P1—Ni1—S1 | 82.87 (7) |
C2—C1—P1—O2 | 109.62 (12) | C1—P1—Ni1—S1 | −96.12 (6) |
C6—C1—P1—S2 | 162.44 (11) | S2—P1—Ni1—S1 | 165.52 (2) |
C2—C1—P1—S2 | −13.02 (14) | O2—P1—Ni1—S1i | −97.13 (7) |
C6—C1—P1—S1 | 46.67 (13) | C1—P1—Ni1—S1i | 83.88 (6) |
C2—C1—P1—S1 | −128.78 (11) | S2—P1—Ni1—S1i | −14.48 (2) |
C6—C1—P1—Ni1 | 104.40 (12) | S1—P1—Ni1—S1i | 180.0 |
C2—C1—P1—Ni1 | −71.06 (13) | O2—P1—Ni1—P1i | −20 (100) |
O2—P1—S1—Ni1 | −134.48 (4) | C1—P1—Ni1—P1i | 161 (100) |
C1—P1—S1—Ni1 | 110.92 (5) | S2—P1—Ni1—P1i | 63 (100) |
S2—P1—S1—Ni1 | −11.583 (18) | S1—P1—Ni1—P1i | −102 (100) |
O2—P1—S2—Ni1 | 134.46 (5) |
Symmetry code: (i) −x+2, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1ii | 0.95 | 2.57 | 3.5123 (18) | 171 |
Symmetry code: (ii) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C9H12O2PS2)2] |
Mr | 553.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 13.5866 (5), 6.4212 (2), 14.1047 (5) |
β (°) | 109.389 (2) |
V (Å3) | 1160.74 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.36 |
Crystal size (mm) | 0.43 × 0.31 × 0.24 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.593, 0.737 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19824, 2850, 2609 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.062, 1.07 |
No. of reflections | 2850 |
No. of parameters | 135 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.44 |
Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.95 | 2.57 | 3.5123 (18) | 171 |
Symmetry code: (i) −x+1, −y+1, −z+2. |
Acknowledgements
The authors thank the National Research Foundation (NRF) and UKZN for financial support.
References
Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A., Soddu, S. & Verani, G. (2007). Dalton Trans. pp. 2127–2134. Web of Science CSD CrossRef Google Scholar
Arca, M., Cornia, A., Devillanova, F. A., Fabretti, A. C., Isaia, F., Lippolis, V. & Verani, G. (1997). Inorg. Chim. Acta, 262, 81–84. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477–2486. Web of Science CSD CrossRef Google Scholar
Hartung, H. (1967). Z. Chem. 7, 241. CrossRef Google Scholar
Liu, H.-L., Mao, H.-Y., Xu, C., Zhang, H.-Y., Hou, H.-W., Wu, Q., Zhu, Y., Ye, B.-X. & Yuan, L.-J. (2004). Polyhedron, 23, 1799–1804. Web of Science CSD CrossRef CAS Google Scholar
Özcan, Y., İde, S., Karakus, M. & Yılmaz, H. (2002). Acta Cryst. C58, m388–m389. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45. Web of Science CrossRef CAS Google Scholar
Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132. Web of Science CrossRef CAS Google Scholar
Van Zyl, W. E. & Woollins, J. D. (2012). Coord. Chem. Rev. doi:10.1016/j.ccr.2012.10.010. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The phosphor-1,1-dithiolate class of compounds is the heavier and softer congener of the popular phosphonate derivatives. It contains the S2P functionality as a common feature and several sub-categories are known which include the dithiophosphato [S2P(OR)2]¯, (R = typically alkyl), dithiophosphinato [S2PR2]¯ (R = alkyl or aryl), and dithiophosphonato [S2PR(OR')]¯, (R = typically aryl or ferrocenyl, R' = alkyl) monoanionic ligands. The latter may be described as a hybrid of the former two, and are also much less developed. Amongst all metals involved in the coordination chemistry of dithiophosphonato ligands, however, nickel(II) is by far the best represented (Van Zyl & Woollins, 2012) with the first X-ray structural report of a nickel(II) dithiophosphonate complex reported more than four decades ago (Hartung, 1967). The title complex, (I), was formed from the reaction between NiCl2.6H20 and the ammonium salt of [S2P(OMe)(4-C6H4OEt)] (molar ratio 1:2) in an aqueous/methanolic solution, the NH4Cl by-product was dissolved and the precipitated product filtered off and washed with water. General and convenient methods to prepare dithiophosphonate salt derivatives have been reported (Van Zyl & Fackler, 2000).
The structure of (I) (Fig. 1) does not differ significantly from related Ni(II) complexes previously reported (Aragoni et al., 2007; Arca et al. (1997); Gray et al. (2004); Liu et al. (2004); Özcan et al., 2002). The Ni atom in (I) resides on an inversion center and is coordinated by four S atoms [Ni—S 2.2328 (4), 2.2455 (3) Å] in a distorted square-planar geometry [S—Ni—S 88.443 (13), 91.557 (13)°]. Molecules related by translation in [110] are linked into chains via weak C—H···O interactions (Table 1). The crystal packing exhibits short intermolecular S···S contacts of 3.3366 (5) Å.