metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1,5-Di­phenyl­thio­carbazonato-κS)tri­methyl­tin(IV)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa, bDepartment of Chemistry, St Francis Xavier University, PO Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada, and cDepartment of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada
*Correspondence e-mail: veschwkg@ufs.ac.za

(Received 6 November 2012; accepted 16 November 2012; online 24 November 2012)

In the title compound, [Sn(C13H11N4S)(CH3)3], the SnIV atom is coordinated by an S atom from the 1,5-diphenyl­thio­carbazonato (L) ligand [Sn—S 2.4710 (6) Å] and by three methyl groups [Sn—C 2.123 (3)–2.130 (2) Å] in a distorted tetra­hedral geometry. The aromatic rings of the L ligand form a dihedral angle of 2.1 (1)°.

Related literature

For general background to dithizone and dithizonato metal complexes, see: Irving (1977[Irving, H. M. N. H. (1977). Dithizone. London: Chemical Society.]). For the synthesis of dithizone, see: Pelkis et al. (1957[Pelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR. 27, 2190-2194.]). For structural aspects of dithizone and its oxidation products and observed solvatochromism and concentratochromism, see: Von Eschwege et al. (2011a[Von Eschwege, K. G., Conradie, J. & Kuhn, A. (2011a). J. Phys. Chem. A, 115, 14637-14646.]). For related ligand and complex structures, see: Harrowfield et al. (1983[Harrowfield, J. M., Pakawatchai, C. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 1109-1113.]); Kong & Wong (1999[Kong, F. & Wong, W. (1999). J. Chem. Soc. Dalton Trans. pp. 2497-2501.]); Herbstein & Schwotzer (1984[Herbstein, F. H. & Schwotzer, W. (1984). J. Am. Chem. Soc. 106, 2367-2373.]); Fernandes et al. (2002[Fernandes, R. M., Lang, E. S., Lopez, E. M. V. & De Souza, G. F. (2002). Polyhedron, 21, 1149-1153.]); Von Eschwege et al. (2008[Von Eschwege, K. G., Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. A, 112, 2211-2218.]); Laing et al. (1971[Laing, M., Sommerville, P. & Alsop, P. A. (1971). J. Chem. Soc. A, pp. 1247-1251.]). For electrochemical studies of dithizone and its Hg complex, see: Von Eschwege & Swarts (2010[Von Eschwege, K. G. & Swarts, J. C. (2010). Polyhedron, 29, 1727-1733.]); Von Eschwege et al. (2011b[Von Eschwege, K. G., Van As, L. & Swarts, J. C. (2011b). Electrochim. Acta, 56, 10064-10068.]). For femto second laser spectroscopy studies on a photochromic dithizonatomercury complex, see: Schwoerer et al. (2011[Schwoerer, H., Von Eschwege, K. G., Bosman, G., Krok, P. & Conradie, J. (2011). ChemPhysChem, pp. 2653-2658.]). For the weighting scheme, see: Carruthers & Watkin (1979[Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C13H11N4S)(CH3)3]

  • Mr = 419.11

  • Monoclinic, P 21 /n

  • a = 11.1058 (4) Å

  • b = 7.2672 (3) Å

  • c = 22.5024 (9) Å

  • β = 101.0116 (11)°

  • V = 1782.69 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 223 K

  • 0.20 × 0.19 × 0.08 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.751, Tmax = 0.886

  • 17952 measured reflections

  • 4092 independent reflections

  • 3344 reflections with F2 > 2.0σ(F2)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.027

  • S = 1.07

  • 3344 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Watkin et al., 1999[Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1999). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.]); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

During a study of the reactions of dimethylamino-trimethyltin, orange crystals of the title compound suitable for X-ray crystallography, were isolated from a diethyl ether solution. The structure revealed distorted tetrahedral coordination geometry around tin, with S—Sn—C bond angles 110.5 (4)°, 105.0 (4)° and 98.0 (9)°. Contrary to most bidentate metal-dithizonate complexes, but with the exception of one ligand in In(HDz)3 (Harrowfield et al., 1983) and in an osmium carbonyl cluster compound (Kong & Wong, 1999), coordination of dithizone to trimethyltin(IV) was found to be monodentate, through the sulfur atom alone. The dithizonate ligand clearly illustrates a high degree of planarity, with the ligand backbone being linear, comparable to that of uncoordinated dithizone (Herbstein & Schwotzer, 1984). The Sn—S bond length of 2.4710 (6) Å agrees well with the value of 2.433 (2) Å in a related compound, 4,6-dimethylpyrimidine-2-thione triphenyltin(IV),Ph3Sn(Me2Pymt), reported by Fernandes et al. (2002). The less bulky pyrimidine-thione ligand, however, is bidentately coordinated to Sn through both sulfur and nitrogen, forming a four-membered ring, as opposed to the usual 5-membered metal-dithizonate rings, as seen in PhHgHDz (Von Eschwege et al., 2008). In the case of Me3Sn(HDz), the metal lies completely outside the ligand plane, whereas in most other metal dithizonates the carbon-sulfur-metal angle is in the direction of the nitrogen (N4) that does not carry the imine proton, H2 (Laing et al., 1971). The three methyl carbons, being at bond distances of 2.13 (2) Å, hold the metal in the sterically more favourable out-of-plane position. Bond lengths along the ligand backbone are neither typically single nor double bond in character. However, the N3—N4 bond length of 1.267 (9) Å and the N1—C1 bond length of 1.308 (9) Å are close to typical double bond lengths of 1.25 Å and 1.29 Å respectively. Even the N1—N2 bond (1.327 (14) Å), which is expected to be a single bond, has more double bond character than single. N—N single bonds are typically 1.45 Å in length. The N3—C1 bond length of 1.40 (2) Å is shorter than an N—C single bond length of 1.47 Å. Observed deviation from single and double bond distances is further evidence of the high degree of electron delocalization along the dithizonate backbone.

Related literature top

For general background to dithizone and dithizonato metal complexes, see: Irving (1977). For the synthesis of dithizone, see: Pelkis et al. (1957). For structural aspects of dithizone and its oxidation products and observed solvatochromism and concentratochromism, see: Von Eschwege et al. (2011a). For related ligand and complex structures, see: Harrowfield et al. (1983); Kong & Wong (1999); Herbstein & Schwotzer (1984); Fernandes et al. (2002); Von Eschwege et al. (2008); Laing et al. (1971). For electrochemical studies of dithizone and its Hg complex, see: Von Eschwege & Swarts (2010); Von Eschwege et al. (2011b). For femto second laser spectroscopy studies on the photochromic dithizonatomercury complex, see: Schwoerer et al. (2011). For the weighting scheme, see: Carruthers & Watkin (1979).

Experimental top

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. Dithizone (0.1 g, 0.39 mmol) was dissolved in dry benzene (100 ml) and dimethylamino-trimethyltin (0.082 g, 0.394 mmol) was added under nitrogen. The solvent was removed under reduced pressure, yielding 0.157 g (97%) orange dithizonatotrimethyltin(IV), after crystallization from diethyl ether. The product proved to be unstable in most solvents, except benzene and diethyl ether. M.p. 134°C, λmax/nm (diethyl ether) 442, δH (300 MHz, C6D6, Spectrum A7)/p.p.m.: 0.47 (6 H, s, 2 × CH3), 0.54 (3 H, s, CH3), 6.85 – 8.09 (10 H, 3 × m, C6H5).

Refinement top

The amino H atom was located on a difference map and isotropically refined. C-bound H atoms were placed in calculated positions [C—H = 0.93 Å], and refined as riding, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Watkin et al., 1999); molecular graphics: CrystalStructure (Rigaku/MSC, 2002); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2002).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the molecular packing of the title compound.
(1,5-Diphenylthiocarbazonato-κS)trimethyltin(IV) top
Crystal data top
[Sn(C13H11N4S)(CH3)3]F(000) = 840.00
Mr = 419.11Dx = 1.561 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 16795 reflections
a = 11.1058 (4) Åθ = 3.0–27.6°
b = 7.2672 (3) ŵ = 1.55 mm1
c = 22.5024 (9) ÅT = 223 K
β = 101.0116 (11)°Needle, orange
V = 1782.69 (12) Å30.20 × 0.19 × 0.08 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3344 reflections with F2 > 2.0σ(F2)
Detector resolution: 6.85 pixels mm-1Rint = 0.023
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1414
Tmin = 0.751, Tmax = 0.886k = 99
17952 measured reflectionsl = 2928
4092 independent reflections
Refinement top
Refinement on FH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 Chebychev polynomial with 3 parameters (Carruthers & Watkin, 1979) 3.3785 -1.5365 2.4749
wR(F2) = 0.027(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.32 e Å3
3344 reflectionsΔρmin = 0.36 e Å3
223 parameters
Crystal data top
[Sn(C13H11N4S)(CH3)3]V = 1782.69 (12) Å3
Mr = 419.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1058 (4) ŵ = 1.55 mm1
b = 7.2672 (3) ÅT = 223 K
c = 22.5024 (9) Å0.20 × 0.19 × 0.08 mm
β = 101.0116 (11)°
Data collection top
Rigaku SCXmini
diffractometer
4092 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3344 reflections with F2 > 2.0σ(F2)
Tmin = 0.751, Tmax = 0.886Rint = 0.023
17952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027223 parameters
wR(F2) = 0.027H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.32 e Å3
3344 reflectionsΔρmin = 0.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using reflections with F2 > 3.0 σ(F2). The weighted R-factor(wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.584750 (10)0.72516 (2)0.103690 (10)0.03181 (4)
S20.48283 (6)0.42282 (9)0.08476 (3)0.03382 (14)
N10.54036 (19)0.2246 (3)0.18902 (10)0.0345 (5)
N20.4294 (2)0.2702 (3)0.19760 (10)0.0376 (5)
N30.69296 (19)0.2259 (3)0.13655 (9)0.0342 (5)
N40.73146 (18)0.2866 (3)0.09132 (9)0.0327 (4)
C10.6418 (3)0.7378 (5)0.19937 (13)0.0556 (9)
C20.7339 (2)0.7446 (3)0.05745 (14)0.0432 (7)
C30.4335 (2)0.8952 (3)0.06533 (13)0.0433 (7)
C40.5753 (2)0.2867 (3)0.14066 (11)0.0313 (5)
C50.3905 (2)0.2214 (3)0.25098 (10)0.0288 (5)
C60.2710 (2)0.2653 (3)0.25609 (11)0.0331 (5)
C70.2291 (2)0.2216 (3)0.30840 (12)0.0371 (6)
C80.3056 (2)0.1336 (4)0.35559 (11)0.0392 (6)
C90.4242 (2)0.0906 (3)0.35032 (11)0.0372 (6)
C100.4679 (2)0.1334 (3)0.29838 (11)0.0342 (6)
C110.8525 (2)0.2291 (3)0.08796 (11)0.0312 (5)
C120.8917 (2)0.2776 (3)0.03507 (11)0.0367 (6)
C131.0091 (2)0.2330 (4)0.02757 (13)0.0456 (7)
C141.0872 (2)0.1392 (4)0.07256 (15)0.0476 (8)
C151.0482 (2)0.0905 (4)0.12533 (14)0.0447 (7)
C160.9316 (2)0.1346 (3)0.13339 (12)0.0372 (6)
H10.66000.85890.21100.067*
H20.57920.69460.21780.067*
H30.71130.66520.21110.067*
H40.74330.86630.04630.052*
H50.80540.70500.08280.052*
H60.71850.67120.02300.052*
H70.37810.90040.09150.052*
H80.46151.01310.05940.052*
H90.39490.84620.02840.052*
H100.21940.32390.22430.040*
H110.14930.25160.31190.044*
H120.27720.10340.39070.047*
H130.47550.03190.38220.045*
H140.54790.10370.29520.041*
H150.83910.34010.00460.044*
H161.03540.26630.00780.055*
H171.16590.10880.06740.057*
H181.10110.02750.15560.054*
H190.90580.10150.16890.045*
H200.386 (3)0.335 (4)0.1727 (14)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02999 (9)0.03258 (9)0.03273 (9)0.00214 (7)0.00567 (6)0.00547 (7)
S20.0313 (2)0.0345 (3)0.0352 (3)0.0008 (2)0.0050 (2)0.0076 (2)
N10.0357 (10)0.0341 (10)0.0367 (10)0.0043 (8)0.0142 (8)0.0069 (8)
N20.0350 (10)0.0453 (12)0.0352 (10)0.0091 (9)0.0133 (8)0.0130 (9)
N30.0337 (9)0.0347 (10)0.0360 (10)0.0022 (8)0.0112 (8)0.0070 (8)
N40.0312 (9)0.0357 (10)0.0319 (9)0.0010 (8)0.0075 (7)0.0026 (8)
C10.0575 (18)0.067 (2)0.0384 (14)0.0051 (15)0.0006 (12)0.0010 (14)
C20.0373 (12)0.0429 (16)0.0514 (15)0.0042 (10)0.0133 (11)0.0021 (11)
C30.0409 (14)0.0390 (14)0.0482 (15)0.0051 (11)0.0044 (12)0.0079 (11)
C40.0313 (11)0.0298 (10)0.0343 (11)0.0013 (9)0.0102 (9)0.0046 (9)
C50.0316 (10)0.0256 (10)0.0308 (10)0.0018 (9)0.0096 (8)0.0020 (8)
C60.0315 (11)0.0331 (12)0.0348 (11)0.0006 (9)0.0068 (9)0.0012 (9)
C70.0305 (11)0.0404 (12)0.0432 (12)0.0035 (10)0.0144 (9)0.0032 (11)
C80.0439 (14)0.0459 (15)0.0302 (12)0.0090 (11)0.0134 (10)0.0007 (10)
C90.0442 (14)0.0370 (13)0.0284 (11)0.0020 (10)0.0020 (10)0.0046 (9)
C100.0301 (11)0.0350 (12)0.0376 (12)0.0017 (9)0.0070 (9)0.0033 (10)
C110.0339 (11)0.0290 (11)0.0313 (10)0.0021 (9)0.0077 (8)0.0034 (9)
C120.0381 (12)0.0432 (13)0.0306 (11)0.0008 (11)0.0108 (9)0.0017 (10)
C130.0467 (14)0.0540 (17)0.0416 (13)0.0017 (13)0.0221 (11)0.0056 (12)
C140.0363 (14)0.0462 (16)0.0628 (18)0.0056 (11)0.0159 (12)0.0108 (14)
C150.0404 (14)0.0387 (14)0.0528 (16)0.0080 (11)0.0036 (12)0.0023 (12)
C160.0411 (13)0.0363 (13)0.0346 (12)0.0017 (10)0.0080 (10)0.0049 (10)
Geometric parameters (Å, º) top
Sn1—S22.4710 (6)C15—C161.380 (4)
Sn1—C12.127 (2)N2—H200.82 (3)
Sn1—C22.123 (3)C1—H10.930
Sn1—C32.130 (2)C1—H20.930
S2—C41.766 (2)C1—H30.930
N1—N21.325 (3)C2—H40.930
N1—C41.304 (3)C2—H50.930
N2—C51.398 (3)C2—H60.930
N3—N41.257 (3)C3—H70.930
N3—C41.400 (3)C3—H80.930
N4—C111.423 (3)C3—H90.930
C5—C61.391 (3)C6—H100.930
C5—C101.391 (3)C7—H110.930
C6—C71.383 (3)C8—H120.930
C7—C81.383 (3)C9—H130.930
C8—C91.381 (4)C10—H140.930
C9—C101.384 (3)C12—H150.930
C11—C121.389 (3)C13—H160.930
C11—C161.395 (3)C14—H170.930
C12—C131.385 (4)C15—H180.930
C13—C141.380 (4)C16—H190.930
C14—C151.385 (4)
C3···C4i3.526 (3)H7···C8iv3.204
C4···C3ii3.526 (3)H7···H4viii3.565
C13···C13iii3.599 (4)H7···H11iv2.499
C13···C14iii3.552 (4)H7···H12iv2.839
C14···C13iii3.552 (4)H7···H15v3.399
Sn1···H11iv3.506H7···H17x2.766
S2···H6v3.045H8···S2i3.033
S2···H8ii3.033H8···N1i3.266
S2···H12iv3.314H8···N3i3.211
N1···H1ii2.970H8···N4i3.554
N1···H3vi3.237H8···C2viii3.542
N1···H7ii3.479H8···C3viii3.306
N1···H8ii3.266H8···C4i2.831
N2···H7ii3.568H8···H4viii3.088
N3···H1ii3.208H8···H6viii3.359
N3···H3vi3.419H8···H8viii2.963
N3···H4ii3.420H8···H9viii2.948
N3···H8ii3.211H8···H17x3.395
N4···H4ii3.228H9···N4v2.952
N4···H8ii3.554H9···C11v3.458
N4···H9v2.952H9···C12v3.354
C1···H11iv3.196H9···H4viii2.926
C1···H14vii3.561H9···H8viii2.948
C1···H19vii3.263H9···H12iv3.379
C2···H8viii3.542H9···H15v2.898
C2···H16ix2.985H9···H17x3.426
C2···H17ix3.386H10···C5iv3.225
C3···H4viii3.360H10···C6iv3.236
C3···H8viii3.306H10···C7iv3.063
C3···H11iv3.247H10···C8iv2.861
C3···H12iv3.441H10···C9iv2.845
C3···H15v3.570H10···C10iv3.039
C3···H17x3.362H10···C15xii3.136
C4···H1ii3.534H10···H11iv3.592
C4···H8ii2.831H10···H12iv3.296
C5···H10xi3.225H10···H13iv3.276
C5···H18vii3.050H10···H14iv3.555
C6···H10xi3.236H10···H18xii2.826
C6···H18xii3.168H10···H18vii3.378
C6···H18vii2.919H11···Sn1xi3.506
C7···H2xi3.367H11···C1xi3.196
C7···H7xi3.034H11···C3xi3.247
C7···H10xi3.063H11···H1xi3.464
C7···H18vii2.927H11···H2xi2.532
C7···H20xi3.15 (3)H11···H7xi2.499
C8···H7xi3.204H11···H10xi3.592
C8···H10xi2.861H11···H18vii3.386
C8···H15xiii3.308H11···H20xi3.079
C8···H18vii3.071H12···S2xi3.314
C8···H20xi3.02 (3)H12···C3xi3.441
C9···H5vi3.202H12···C12xiii3.368
C9···H10xi2.845H12···H7xi2.839
C9···H16xiii3.361H12···H9xi3.379
C9···H18vii3.188H12···H10xi3.296
C10···H5vi3.345H12···H15xiii2.558
C10···H10xi3.039H12···H16xiii3.440
C10···H18vii3.189H12···H18vii3.598
C11···H4ii2.978H12···H20xi2.853
C11···H9v3.458H13···C11vi2.907
C11···H13vii2.907H13···C12vi2.830
C12···H4ii3.446H13···C13vi2.956
C12···H9v3.354H13···C14vi3.152
C12···H12xiv3.368H13···C15vi3.221
C12···H13vii2.830H13···C16vi3.109
C12···H16ix3.494H13···H5vi2.719
C13···H4ix3.548H13···H10xi3.276
C13···H5ix3.545H13···H15vi3.266
C13···H6ix3.499H13···H15xiii3.514
C13···H13vii2.956H13···H16vi3.444
C13···H17iii3.596H13···H16xiii2.845
C14···H4ix3.553H14···C1vi3.561
C14···H6ix3.599H14···H1ii3.033
C14···H13vii3.152H14···H2ii3.496
C14···H16iii3.450H14···H3vi2.742
C15···H10xv3.136H14···H5vi3.004
C15···H13vii3.221H14···H10xi3.555
C16···H2vi3.401H15···C3v3.570
C16···H4ii3.232H15···C8xiv3.308
C16···H5ii3.521H15···H7v3.399
C16···H13vii3.109H15···H9v2.898
H1···N1i2.970H15···H12xiv2.558
H1···N3i3.208H15···H13vii3.266
H1···C4i3.534H15···H13xiv3.514
H1···H3vii3.019H15···H16ix3.177
H1···H11iv3.464H16···C2ix2.985
H1···H14i3.033H16···C9xiv3.361
H1···H19i3.529H16···C12ix3.494
H1···H19vii3.477H16···C14iii3.450
H2···C7iv3.367H16···H4ix2.921
H2···C16vii3.401H16···H5ix2.676
H2···H11iv2.532H16···H6ix2.855
H2···H14i3.496H16···H12xiv3.440
H2···H19vii2.612H16···H13vii3.444
H3···N1vii3.237H16···H13xiv2.845
H3···N3vii3.419H16···H15ix3.177
H3···H1vi3.019H16···H16ix3.519
H3···H14vii2.742H17···C2ix3.386
H3···H19vii3.247H17···C3xvi3.362
H4···N3i3.420H17···C13iii3.596
H4···N4i3.228H17···H4ix2.931
H4···C3viii3.360H17···H6ix3.057
H4···C11i2.978H17···H7xvi2.766
H4···C12i3.446H17···H8xvi3.395
H4···C13ix3.548H17···H9xvi3.426
H4···C14ix3.553H17···H20xv3.479
H4···C16i3.232H18···C5vi3.050
H4···H7viii3.565H18···C6xv3.168
H4···H8viii3.088H18···C6vi2.919
H4···H9viii2.926H18···C7vi2.927
H4···H16ix2.921H18···C8vi3.071
H4···H17ix2.931H18···C9vi3.188
H4···H19i3.448H18···C10vi3.189
H5···C9vii3.202H18···H10xv2.826
H5···C10vii3.345H18···H10vi3.378
H5···C13ix3.545H18···H11vi3.386
H5···C16i3.521H18···H12vi3.598
H5···H13vii2.719H19···C1vi3.263
H5···H14vii3.004H19···H1ii3.529
H5···H16ix2.676H19···H1vi3.477
H5···H19i3.532H19···H2vi2.612
H6···S2v3.045H19···H3vi3.247
H6···C13ix3.499H19···H4ii3.448
H6···C14ix3.599H19···H5ii3.532
H6···H8viii3.359H20···C7iv3.15 (3)
H6···H16ix2.855H20···C8iv3.02 (3)
H6···H17ix3.057H20···H11iv3.079
H7···N1i3.479H20···H12iv2.853
H7···N2i3.568H20···H17xii3.479
H7···C7iv3.034
S2—Sn1—C1104.53 (9)H1—C1—H2109.5
S2—Sn1—C2110.46 (7)H1—C1—H3109.5
S2—Sn1—C398.40 (7)H2—C1—H3109.5
C1—Sn1—C2112.56 (12)Sn1—C2—H4109.5
C1—Sn1—C3116.40 (12)Sn1—C2—H5109.5
C2—Sn1—C3113.04 (11)Sn1—C2—H6109.5
Sn1—S2—C4100.97 (8)H4—C2—H5109.5
N2—N1—C4117.9 (2)H4—C2—H6109.5
N1—N2—C5120.7 (2)H5—C2—H6109.5
N4—N3—C4114.15 (19)Sn1—C3—H7109.5
N3—N4—C11114.26 (19)Sn1—C3—H8109.5
S2—C4—N1124.29 (18)Sn1—C3—H9109.5
S2—C4—N3123.56 (18)H7—C3—H8109.5
N1—C4—N3112.1 (2)H7—C3—H9109.5
N2—C5—C6118.0 (2)H8—C3—H9109.5
N2—C5—C10121.9 (2)C5—C6—H10120.0
C6—C5—C10120.1 (2)C7—C6—H10120.0
C5—C6—C7120.0 (2)C6—C7—H11119.9
C6—C7—C8120.2 (2)C8—C7—H11119.9
C7—C8—C9119.6 (2)C7—C8—H12120.2
C8—C9—C10121.1 (2)C9—C8—H12120.2
C5—C10—C9119.1 (2)C8—C9—H13119.5
N4—C11—C12115.2 (2)C10—C9—H13119.5
N4—C11—C16125.1 (2)C5—C10—H14120.5
C12—C11—C16119.7 (2)C9—C10—H14120.5
C11—C12—C13120.1 (2)C11—C12—H15119.9
C12—C13—C14120.0 (2)C13—C12—H15119.9
C13—C14—C15120.0 (2)C12—C13—H16120.0
C14—C15—C16120.5 (2)C14—C13—H16120.0
C11—C16—C15119.6 (2)C13—C14—H17120.0
N1—N2—H20119 (2)C15—C14—H17120.0
C5—N2—H20120 (2)C14—C15—H18119.7
Sn1—C1—H1109.5C16—C15—H18119.7
Sn1—C1—H2109.5C11—C16—H19120.2
Sn1—C1—H3109.5C15—C16—H19120.2
C(1)—Sn(1)—S(2)—C(4)36.42 (13)N(2)—C(5)—C(10)—C(9)179.3 (2)
C(2)—Sn(1)—S(2)—C(4)84.89 (12)C(6)—C(5)—C(10)—C(9)0.0 (3)
C(3)—Sn(1)—S(2)—C(4)156.59 (12)C(10)—C(5)—C(6)—C(7)0.1 (2)
Sn(1)—S(2)—C(4)—N(1)108.4 (2)C(5)—C(6)—C(7)—C(8)0.3 (3)
Sn(1)—S(2)—C(4)—N(3)74.7 (2)C(6)—C(7)—C(8)—C(9)0.4 (4)
N(2)—N(1)—C(4)—S(2)1.7 (3)C(7)—C(8)—C(9)—C(10)0.3 (4)
N(2)—N(1)—C(4)—N(3)178.9 (2)C(8)—C(9)—C(10)—C(5)0.1 (3)
C(4)—N(1)—N(2)—C(5)174.5 (2)N(4)—C(11)—C(12)—C(13)178.3 (2)
N(1)—N(2)—C(5)—C(6)176.9 (2)N(4)—C(11)—C(16)—C(15)178.3 (2)
N(1)—N(2)—C(5)—C(10)3.8 (3)C(12)—C(11)—C(16)—C(15)0.1 (3)
N(4)—N(3)—C(4)—S(2)4.5 (3)C(16)—C(11)—C(12)—C(13)0.3 (3)
N(4)—N(3)—C(4)—N(1)178.3 (2)C(11)—C(12)—C(13)—C(14)0.4 (4)
C(4)—N(3)—N(4)—C(11)178.29 (19)C(12)—C(13)—C(14)—C(15)0.3 (4)
N(3)—N(4)—C(11)—C(12)173.2 (2)C(13)—C(14)—C(15)—C(16)0.1 (3)
N(3)—N(4)—C(11)—C(16)8.3 (3)C(14)—C(15)—C(16)—C(11)0.0 (3)
N(2)—C(5)—C(6)—C(7)179.2 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+2, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+3/2, y1/2, z+1/2; (vii) x+3/2, y+1/2, z+1/2; (viii) x+1, y+2, z; (ix) x+2, y+1, z; (x) x1, y+1, z; (xi) x+1/2, y1/2, z+1/2; (xii) x1, y, z; (xiii) x1/2, y+1/2, z+1/2; (xiv) x+1/2, y+1/2, z1/2; (xv) x+1, y, z; (xvi) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Sn(C13H11N4S)(CH3)3]
Mr419.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)11.1058 (4), 7.2672 (3), 22.5024 (9)
β (°) 101.0116 (11)
V3)1782.69 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.20 × 0.19 × 0.08
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.751, 0.886
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
17952, 4092, 3344
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.027, 1.07
No. of reflections3344
No. of parameters223
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.36

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), CRYSTALS (Watkin et al., 1999).

 

Acknowledgements

We acknowledge the Central Research Fund of the University of the Free State for financial assistance.

References

First citationCarruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698–699.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFernandes, R. M., Lang, E. S., Lopez, E. M. V. & De Souza, G. F. (2002). Polyhedron, 21, 1149–1153.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrowfield, J. M., Pakawatchai, C. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 1109–1113.  CSD CrossRef Web of Science Google Scholar
First citationHerbstein, F. H. & Schwotzer, W. (1984). J. Am. Chem. Soc. 106, 2367–2373.  CSD CrossRef CAS Web of Science Google Scholar
First citationIrving, H. M. N. H. (1977). Dithizone. London: Chemical Society.  Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKong, F. & Wong, W. (1999). J. Chem. Soc. Dalton Trans. pp. 2497–2501.  Web of Science CSD CrossRef Google Scholar
First citationLaing, M., Sommerville, P. & Alsop, P. A. (1971). J. Chem. Soc. A, pp. 1247–1251.  CrossRef Google Scholar
First citationPelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR. 27, 2190–2194.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSchwoerer, H., Von Eschwege, K. G., Bosman, G., Krok, P. & Conradie, J. (2011). ChemPhysChem, pp. 2653–2658.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVon Eschwege, K. G., Conradie, J. & Kuhn, A. (2011a). J. Phys. Chem. A, 115, 14637–14646.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVon Eschwege, K. G., Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. A, 112, 2211–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVon Eschwege, K. G. & Swarts, J. C. (2010). Polyhedron, 29, 1727–1733.  Web of Science CrossRef CAS Google Scholar
First citationVon Eschwege, K. G., Van As, L. & Swarts, J. C. (2011b). Electrochim. Acta, 56, 10064–10068.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1999). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds