organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Meth­­oxy­benzyl­­idene)-2-m-tolyl­acetohydrazide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 12 November 2012; accepted 15 November 2012; online 24 November 2012)

In the title mol­ecule, C17H18N2O2, the benzene rings form a dihedral angle of 83.0 (7)°. In the crystal, N—H⋯O hydrogen bonds, in an R22(8) graph-set motif, link mol­ecules into centrocymmetric dimers, and weak C—H⋯π inter­actions further link these dimers into columns in [100].

Related literature

For the biological activity of Schiff bases, see: Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]); El-Masry et al. (2000[El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429—1438.]); Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]); Pandey et al. (1999[Pandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Il Farmaco, 54, 624-628.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]). For Schiff bases employed as ligands for complexation of metal ions, see: Aydogan et al. (2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]). For Schiff bases with applications in dyes and pigments, see: Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For related structures, see: Akkurt et al. (2011[Akkurt, M., Güzeldemirci, N. U., Karaman, B. & Büyükgüngör, O. (2011). Acta Cryst. E67, o184-o185.]); Lv et al. (2009a[Lv, L.-P., Yu, T.-M., Yu, W.-B., Li, W.-W. & Hu, X.-C. (2009a). Acta Cryst. E65, o1990.],b[Lv, L.-P., Yu, T.-M., Yu, W.-B., Li, W.-W. & Hu, X.-C. (2009b). Acta Cryst. E65, o1989.]); Yu & Lv (2010[Yu, T.-M. & Lv, L.-P. (2010). Acta Cryst. E66, o2666.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O2

  • Mr = 282.33

  • Triclinic, [P \overline 1]

  • a = 6.4961 (8) Å

  • b = 9.8047 (10) Å

  • c = 12.7464 (13) Å

  • α = 112.130 (9)°

  • β = 95.507 (10)°

  • γ = 96.601 (9)°

  • V = 738.45 (14) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 173 K

  • 0.34 × 0.14 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.735, Tmax = 1.000

  • 4418 measured reflections

  • 2840 independent reflections

  • 2032 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.158

  • S = 1.04

  • 2840 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.04 2.902 (2) 178
C15—H15⋯Cgii 0.93 2.63 3.557 (2) 173
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are known to have biological activities such as antimicrobial (El-Masry et al., 2000; Pandey et al., 1999), antifungal (Singh et al., 1988), antitumor (Hodnett et al., 1970; Desai et al., 2001), and as herbicides. Schiff bases have also been employed as ligands for complexation of metal ions (Aydogan et al., 2001). On the industrial scale, they have wide range of applications such as dyes and pigments (Taggi et al., 2002). The crystal structures of some Schiff base hydrazines, viz., N'-(2-methoxybenzylidene) acetohydrazide (Yu & Lv, 2010), 2-[6-(4-chlorophenyl)imidazo[2,1-b][1,3] thiazol-2-yl]-N'-[(E)-4-methoxybenzylidene]acetohydrazide (Akkurt et al., 2011), N'-(3-methoxybenzylidene)acetohydrazide and N'-(3,4-dimethoxybenzylidene)acetohydrazide (Lv et al., 2009a,b). In view of the importance of hydrazides, the crystal structure of title compound (I) is reported.

In the title molecule, C17H18N2O2, two benzene rings form a dihedral angle of 83.0 (7)° (Fig. 1). Bond lengths are in normal ranges (Allen, 1987). In the crystal, N—H···O hydrogen bonds (Table 1), in an R22(8) graph set motif, link molecules into centrocymmetric dimers, and weak C–H···π interactions (Table 1) link further these dimers into columns in [100] (Fig. 2).

Related literature top

For the biological activity of Schiff bases, see: Desai et al. (2001); El-Masry et al. (2000); Hodnett & Dunn (1970); Pandey et al. (1999); Singh & Dash (1988). For Schiff bases employed as ligands for complexation of metal ions, see: Aydogan et al. (2001). For Schiff bases with applications in dyes and pigments, see: Taggi et al. (2002). For related structures, see: Akkurt et al. (2011); Lv et al. (2009a,b); Yu & Lv (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a stirred solution of 2-m-tolylacetohydrazide (1 g, 6.09 mmol) in ethanol (10 mL), 4-methoxybenzaldehyde (0.79 g, 6.09 mmol) was added (Fig. 3) and strirred at room temperature for 30 minutes. Precipitated solid was filtered and dried. The single crystal was grown from ethyl acetate by slow evaporation method and yield of the compound was 94% (m.p.: 403-405 K).

Refinement top

All H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.97Å (CH2), 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH, CH2), 1.49 (CH3) or 1.21 (NH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate N—H···O hydrogen bonds. The remaining H atoms have been removed for clarity.
[Figure 3] Fig. 3. Synthesis of the title compound.
(E)-N'-(4-Methoxybenzylidene)-2-m-tolylacetohydrazide top
Crystal data top
C17H18N2O2Z = 2
Mr = 282.33F(000) = 300
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.4961 (8) ÅCell parameters from 1237 reflections
b = 9.8047 (10) Åθ = 3.8–72.4°
c = 12.7464 (13) ŵ = 0.68 mm1
α = 112.130 (9)°T = 173 K
β = 95.507 (10)°Chunk, colorless
γ = 96.601 (9)°0.34 × 0.14 × 0.06 mm
V = 738.45 (14) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2840 independent reflections
Radiation source: Enhance (Cu) X-ray Source2032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.0416 pixels mm-1θmax = 72.6°, θmin = 3.8°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 128
Tmin = 0.735, Tmax = 1.000l = 1115
4418 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.064P)2 + 0.071P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2840 reflectionsΔρmax = 0.21 e Å3
193 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0097 (12)
Crystal data top
C17H18N2O2γ = 96.601 (9)°
Mr = 282.33V = 738.45 (14) Å3
Triclinic, P1Z = 2
a = 6.4961 (8) ÅCu Kα radiation
b = 9.8047 (10) ŵ = 0.68 mm1
c = 12.7464 (13) ÅT = 173 K
α = 112.130 (9)°0.34 × 0.14 × 0.06 mm
β = 95.507 (10)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2840 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2032 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 1.000Rint = 0.034
4418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
2840 reflectionsΔρmin = 0.20 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4694 (2)0.19694 (16)0.05426 (13)0.0429 (4)
O21.6491 (2)0.04156 (17)0.38486 (13)0.0482 (4)
N10.7161 (2)0.09164 (19)0.04553 (14)0.0363 (4)
H10.66450.00520.04860.044*
N20.8879 (2)0.10557 (19)0.09800 (14)0.0365 (4)
C10.6266 (3)0.2111 (2)0.01087 (17)0.0376 (5)
C20.7332 (4)0.3634 (2)0.02237 (19)0.0447 (5)
H2A0.81380.35280.03970.054*
H2B0.62880.42550.01880.054*
C30.8763 (3)0.4349 (2)0.13628 (19)0.0397 (5)
C41.0802 (4)0.4059 (2)0.1471 (2)0.0488 (6)
H41.13540.35040.08260.059*
C51.2004 (4)0.4600 (3)0.2543 (3)0.0584 (7)
H51.33650.44020.26170.070*
C61.1199 (4)0.5432 (3)0.3507 (3)0.0596 (7)
H61.20230.57840.42220.071*
C70.9182 (4)0.5748 (2)0.3419 (2)0.0487 (6)
C80.7994 (3)0.5198 (2)0.2336 (2)0.0419 (5)
H80.66400.54080.22620.050*
C90.9579 (3)0.0161 (2)0.14981 (17)0.0353 (5)
H90.89270.10520.14900.042*
C101.1381 (3)0.0163 (2)0.20977 (16)0.0336 (4)
C111.2404 (3)0.1120 (2)0.21651 (17)0.0365 (5)
H111.19290.20200.18180.044*
C121.4114 (3)0.1087 (2)0.27377 (18)0.0376 (5)
H121.47810.19580.27710.045*
C131.4832 (3)0.0259 (2)0.32644 (17)0.0362 (5)
C141.3827 (3)0.1543 (2)0.31983 (18)0.0403 (5)
H141.43100.24410.35410.048*
C151.2124 (3)0.1503 (2)0.26320 (17)0.0379 (5)
H151.14580.23770.26030.045*
C161.7630 (3)0.0894 (3)0.3878 (2)0.0523 (6)
H16A1.67330.13180.42720.078*
H16B1.88070.06430.42720.078*
H16C1.81180.16050.31090.078*
C170.8251 (5)0.6648 (3)0.4450 (2)0.0709 (8)
H17A0.77220.74570.43250.106*
H17B0.93120.70390.51140.106*
H17C0.71280.60200.45680.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0382 (8)0.0476 (9)0.0442 (8)0.0160 (7)0.0149 (7)0.0148 (7)
O20.0452 (9)0.0510 (10)0.0483 (9)0.0128 (7)0.0216 (7)0.0144 (7)
N10.0370 (9)0.0360 (9)0.0391 (9)0.0108 (7)0.0137 (7)0.0150 (7)
N20.0349 (9)0.0411 (10)0.0373 (9)0.0126 (7)0.0123 (7)0.0163 (8)
C10.0375 (11)0.0448 (12)0.0347 (10)0.0177 (9)0.0081 (9)0.0164 (9)
C20.0544 (13)0.0416 (12)0.0501 (13)0.0228 (10)0.0188 (10)0.0245 (10)
C30.0438 (12)0.0301 (10)0.0523 (13)0.0117 (9)0.0164 (10)0.0204 (9)
C40.0453 (13)0.0380 (12)0.0692 (16)0.0117 (10)0.0231 (12)0.0232 (11)
C50.0348 (12)0.0457 (14)0.096 (2)0.0049 (10)0.0052 (13)0.0307 (14)
C60.0587 (16)0.0412 (13)0.0705 (18)0.0021 (11)0.0082 (13)0.0199 (12)
C70.0599 (14)0.0317 (11)0.0513 (14)0.0062 (10)0.0098 (11)0.0127 (10)
C80.0418 (12)0.0312 (10)0.0584 (14)0.0134 (9)0.0173 (10)0.0194 (10)
C90.0378 (11)0.0337 (10)0.0366 (10)0.0095 (8)0.0089 (8)0.0144 (8)
C100.0347 (10)0.0361 (10)0.0310 (10)0.0106 (8)0.0071 (8)0.0126 (8)
C110.0397 (11)0.0330 (10)0.0391 (11)0.0134 (8)0.0097 (9)0.0135 (9)
C120.0389 (11)0.0360 (11)0.0403 (11)0.0089 (8)0.0086 (9)0.0160 (9)
C130.0348 (10)0.0428 (11)0.0310 (10)0.0098 (8)0.0075 (8)0.0130 (9)
C140.0429 (12)0.0357 (11)0.0405 (11)0.0149 (9)0.0126 (9)0.0091 (9)
C150.0426 (11)0.0320 (10)0.0400 (11)0.0095 (8)0.0103 (9)0.0132 (9)
C160.0429 (13)0.0643 (16)0.0530 (14)0.0051 (11)0.0186 (11)0.0249 (12)
C170.096 (2)0.0541 (16)0.0542 (16)0.0169 (15)0.0162 (15)0.0096 (13)
Geometric parameters (Å, º) top
O1—C11.225 (2)C7—C171.508 (3)
O2—C131.358 (2)C8—H80.9300
O2—C161.422 (3)C9—C101.457 (3)
N1—C11.352 (2)C9—H90.9300
N1—N21.374 (2)C10—C111.390 (3)
N1—H10.8600C10—C151.399 (3)
N2—C91.286 (2)C11—C121.383 (3)
C1—C21.520 (3)C11—H110.9300
C2—C31.513 (3)C12—C131.394 (3)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.386 (3)
C3—C81.385 (3)C14—C151.374 (3)
C3—C41.391 (3)C14—H140.9300
C4—C51.383 (4)C15—H150.9300
C4—H40.9300C16—H16A0.9600
C5—C61.383 (4)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—C71.384 (3)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—C81.389 (3)C17—H17C0.9600
C13—O2—C16117.66 (17)N2—C9—H9119.5
C1—N1—N2121.37 (17)C10—C9—H9119.5
C1—N1—H1119.3C11—C10—C15118.04 (18)
N2—N1—H1119.3C11—C10—C9122.64 (18)
C9—N2—N1115.66 (17)C15—C10—C9119.32 (18)
O1—C1—N1121.0 (2)C12—C11—C10121.44 (18)
O1—C1—C2121.47 (18)C12—C11—H11119.3
N1—C1—C2117.52 (18)C10—C11—H11119.3
C3—C2—C1108.30 (17)C11—C12—C13119.67 (19)
C3—C2—H2A110.0C11—C12—H12120.2
C1—C2—H2A110.0C13—C12—H12120.2
C3—C2—H2B110.0O2—C13—C14116.24 (18)
C1—C2—H2B110.0O2—C13—C12124.44 (19)
H2A—C2—H2B108.4C14—C13—C12119.32 (19)
C8—C3—C4118.9 (2)C15—C14—C13120.69 (19)
C8—C3—C2119.98 (19)C15—C14—H14119.7
C4—C3—C2120.8 (2)C13—C14—H14119.7
C5—C4—C3119.6 (2)C14—C15—C10120.84 (19)
C5—C4—H4120.2C14—C15—H15119.6
C3—C4—H4120.2C10—C15—H15119.6
C4—C5—C6120.6 (2)O2—C16—H16A109.5
C4—C5—H5119.7O2—C16—H16B109.5
C6—C5—H5119.7H16A—C16—H16B109.5
C5—C6—C7120.8 (3)O2—C16—H16C109.5
C5—C6—H6119.6H16A—C16—H16C109.5
C7—C6—H6119.6H16B—C16—H16C109.5
C6—C7—C8117.9 (2)C7—C17—H17A109.5
C6—C7—C17122.3 (3)C7—C17—H17B109.5
C8—C7—C17119.8 (2)H17A—C17—H17B109.5
C3—C8—C7122.1 (2)C7—C17—H17C109.5
C3—C8—H8119.0H17A—C17—H17C109.5
C7—C8—H8119.0H17B—C17—H17C109.5
N2—C9—C10120.92 (18)
C1—N1—N2—C9179.39 (18)C17—C7—C8—C3179.1 (2)
N2—N1—C1—O1177.62 (17)N1—N2—C9—C10179.35 (16)
N2—N1—C1—C24.8 (3)N2—C9—C10—C111.4 (3)
O1—C1—C2—C383.1 (2)N2—C9—C10—C15178.72 (18)
N1—C1—C2—C394.5 (2)C15—C10—C11—C120.2 (3)
C1—C2—C3—C888.4 (2)C9—C10—C11—C12179.85 (18)
C1—C2—C3—C485.9 (2)C10—C11—C12—C130.2 (3)
C8—C3—C4—C51.0 (3)C16—O2—C13—C14176.56 (19)
C2—C3—C4—C5173.3 (2)C16—O2—C13—C123.1 (3)
C3—C4—C5—C60.3 (3)C11—C12—C13—O2179.91 (18)
C4—C5—C6—C70.3 (4)C11—C12—C13—C140.5 (3)
C5—C6—C7—C80.3 (4)O2—C13—C14—C15179.62 (18)
C5—C6—C7—C17179.8 (2)C12—C13—C14—C150.7 (3)
C4—C3—C8—C71.2 (3)C13—C14—C15—C100.7 (3)
C2—C3—C8—C7173.23 (19)C11—C10—C15—C140.5 (3)
C6—C7—C8—C30.5 (3)C9—C10—C15—C14179.58 (18)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.042.902 (2)178
C15—H15···Cgii0.932.633.557 (2)173
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC17H18N2O2
Mr282.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.4961 (8), 9.8047 (10), 12.7464 (13)
α, β, γ (°)112.130 (9), 95.507 (10), 96.601 (9)
V3)738.45 (14)
Z2
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.34 × 0.14 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.735, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4418, 2840, 2032
Rint0.034
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.158, 1.04
No. of reflections2840
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.042.902 (2)177.6
C15—H15···Cgii0.932.633.557 (2)173.0
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
 

Acknowledgements

ASP thanks UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAkkurt, M., Güzeldemirci, N. U., Karaman, B. & Büyükgüngör, O. (2011). Acta Cryst. E67, o184–o185.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationEl-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429—1438.  Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLv, L.-P., Yu, T.-M., Yu, W.-B., Li, W.-W. & Hu, X.-C. (2009a). Acta Cryst. E65, o1990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLv, L.-P., Yu, T.-M., Yu, W.-B., Li, W.-W. & Hu, X.-C. (2009b). Acta Cryst. E65, o1989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Il Farmaco, 54, 624–628.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, T.-M. & Lv, L.-P. (2010). Acta Cryst. E66, o2666.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds