organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 6-oxo-4-phenyl-2-[(Z)-2-(pyridin-2-yl)ethen­yl]-1,4,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aLatvian Institute of Organic Synthesis, Riga, LV 1006, Latvia
*Correspondence e-mail: gduburs@osi.lv

(Received 15 November 2012; accepted 26 November 2012; online 30 November 2012)

In the title mol­ecule, C20H18N2O3, an intra­molecular N—H⋯O hydrogen bond leads to a cis conformation of the pyridinyl-vinyl fragment. The phenyl and pyridine rings are inclined to one another by 77.3 (1) °. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers. The dimers are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional structure.

Related literature

For applications of dihydro­pyridones, see: Dong et al. (2005[Dong, D., Bi, X., Liu, Q. & Cong, F. (2005). Chem. Commun. pp. 3580-3582.]); Elias et al. (2008[Elias, R. S., Saeed, B. A., Saour, K. Y. & Al-Masoudi, N. A. (2008). Tetrahedron Lett. 49, 3049-3051.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O3

  • Mr = 334.36

  • Monoclinic, P 21 /c

  • a = 5.5746 (2) Å

  • b = 16.4083 (6) Å

  • c = 18.0930 (8) Å

  • β = 96.5018 (14)°

  • V = 1644.32 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.41 × 0.12 × 0.07 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 7024 measured reflections

  • 4206 independent reflections

  • 2483 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.149

  • S = 0.96

  • 4206 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C13 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O15i 0.93 2.42 3.257 (3) 150
C24—H24⋯O7ii 0.93 2.49 3.318 (3) 149
C13—H13⋯O16iii 0.93 2.54 3.300 (3) 139
C23—H23⋯Cgii 0.93 2.66 3.480 147
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z.

Data collection: KappaCCD Server Software (Nonius, 1999[Nonius (1999). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: maXus (Mackay et al., 1999[Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Bruker-Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.]).

Supporting information


Comment top

Dihydropyridones are important intermediates for the synthesis of natural products, particularly alkaloids (Dong et al., 2005; Elias et al., 2008). They have been extensively investigated as valuable building blocks for the construction of piperidines, perhydroquinolines, indolizidines, quinolizidines and other alkaloid systems, with a wide range of biological and pharmacological activities. Herewith we present the title compound (I).

The main feature of (I) (Fig. 1) is cis-conformation of the pyridinylvinyl fragment, see Table 1 for selected torsion angles. A search of the Cambridge Structural Database (CSD, Version 5.33; November, 2012) (Allen, 2002) indicates that there is no entry containing pyridinylvinyl substituent in cis-conformation. Molecular cis-conformation is stabilized by strong intramolecular hydrogen bond of NH···N type (Table 2). By means of this bond the additional seven-membered cycle is formed in the molecular structure. In the molecule there is also an intramolecular hydrogen bond of CH···O type (Table 2). This bond leads to formation of the additional six-membered cycle in the molecule.

In the crystal structure there are shortened C···O contacts. These contacts can be described as weak CH···O type intermolecular hydrogen bonds. Also it should be noted a weak CH···π type H-bond. The geometrical parameters of these H-bonds are given in Table 2.

Related literature top

For applications of dihydropyridones, see: Dong et al. (2005); Elias et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

In a 50 ml RB was placed 0.59 g (0.001 mol) of the DHPOD 6-methyltriphenylphosphonium bromide and dissolved in 25 ml dry THF. Under an Ar atmosphere while stirring magnetically 0.22 g (0.001 mol) of tBuOK was added. The orange solution was stirred for 30 min and 0.11 g (0.001 mol) of 2-pyridinecarboxaldehyde was added. The solution was allowed to stir at RT overnight, 3 ml of aqueous solution containing 0.6 g NH4Cl was added and after stirring 15 min the layers were separated. The THF was removed under reduced pressure and the sticky reaction product was dissolved in min. EtOAc. After addition of hexane the precipitated triphenylphosphine oxide was filtered off and the solvent removed to leave 0.55 g of product. The product was purified using prep. HPLC with 50% EtOAc / DCM as eluent. The solvent was removed providing 0.21 g of product (62% yield) which was recrystallized from EtOH giving 100 mg of light green needles.

Refinement top

Atoms H1, H4, H18 and H19 were located on a difference map and isotropically refined. All other H-atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(parent atom).

Computing details top

Data collection: KappaCCD (Nonius, 1999); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: maXus (Mackay et al., 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines denote intramolecular hydrogen bonds.
Methyl 6-oxo-4-phenyl-2-[(Z)-2-(pyridin-2-yl)ethenyl]- 1,4,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C20H18N2O3Dx = 1.351 Mg m3
Mr = 334.36Melting point: 504 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5746 (2) ÅCell parameters from 2317 reflections
b = 16.4083 (6) Åθ = 0.9–27.5°
c = 18.0930 (8) ŵ = 0.09 mm1
β = 96.5018 (14)°T = 193 K
V = 1644.32 (11) Å3Needle, colourless
Z = 40.41 × 0.12 × 0.07 mm
F(000) = 704
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2483 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 28.6°, θmin = 1.6°
ϕ and ω scanh = 77
7024 measured reflectionsk = 2022
4206 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.7901P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.019
4206 reflectionsΔρmax = 0.23 e Å3
242 parametersΔρmin = 0.22 e Å3
0 restraints
Crystal data top
C20H18N2O3V = 1644.32 (11) Å3
Mr = 334.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5746 (2) ŵ = 0.09 mm1
b = 16.4083 (6) ÅT = 193 K
c = 18.0930 (8) Å0.41 × 0.12 × 0.07 mm
β = 96.5018 (14)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2483 reflections with I > 2σ(I)
7024 measured reflectionsRint = 0.053
4206 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.23 e Å3
4206 reflectionsΔρmin = 0.22 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3841 (3)0.31397 (11)0.68159 (10)0.0317 (4)
H10.249 (4)0.3452 (16)0.6900 (13)0.050 (7)*
C20.4865 (4)0.26644 (13)0.73871 (12)0.0343 (5)
C30.7199 (4)0.22630 (13)0.72613 (12)0.0349 (5)
H3A0.73850.17710.75590.042*
H3B0.85190.26260.74330.042*
C40.7383 (3)0.20413 (12)0.64446 (11)0.0281 (5)
H40.910 (4)0.1941 (13)0.6403 (11)0.030 (5)*
C50.6556 (3)0.27567 (12)0.59458 (11)0.0275 (4)
C60.4830 (3)0.32727 (12)0.61506 (11)0.0281 (4)
O70.3935 (3)0.26137 (10)0.79683 (9)0.0471 (4)
C80.6075 (3)0.12466 (12)0.62263 (11)0.0266 (4)
C90.7212 (4)0.05100 (13)0.64153 (13)0.0357 (5)
H90.87570.05100.66710.043*
C100.6078 (4)0.02244 (14)0.62283 (14)0.0429 (6)
H100.68620.07120.63600.052*
C110.3794 (4)0.02351 (14)0.58485 (13)0.0442 (6)
H110.30440.07280.57150.053*
C120.2630 (4)0.04892 (15)0.56682 (13)0.0411 (5)
H120.10780.04840.54180.049*
C130.3754 (4)0.12274 (13)0.58566 (12)0.0327 (5)
H130.29450.17130.57340.039*
C140.7626 (4)0.28495 (13)0.52436 (12)0.0320 (5)
O150.7451 (4)0.34235 (11)0.48210 (12)0.0704 (6)
O160.8913 (3)0.21953 (9)0.50878 (8)0.0371 (4)
C171.0023 (4)0.22380 (15)0.44055 (13)0.0441 (6)
H17A1.09040.17450.43440.053*
H17B1.11070.26940.44260.053*
H17C0.87950.23040.39930.053*
C180.3926 (4)0.39772 (13)0.57107 (13)0.0357 (5)
H180.468 (4)0.4026 (15)0.5270 (14)0.043 (6)*
C190.2314 (4)0.45687 (14)0.58015 (13)0.0378 (5)
H190.219 (4)0.4957 (15)0.5424 (14)0.045 (7)*
C200.0609 (4)0.47713 (12)0.63325 (12)0.0323 (5)
N210.0217 (3)0.42656 (10)0.68919 (10)0.0313 (4)
C220.1441 (4)0.44794 (13)0.73342 (12)0.0348 (5)
H220.17080.41310.77220.042*
C230.2784 (4)0.51884 (14)0.72480 (13)0.0398 (5)
H230.39420.53070.75640.048*
C240.2370 (4)0.57122 (14)0.66859 (14)0.0429 (6)
H240.32290.61970.66160.052*
C250.0651 (4)0.55059 (14)0.62245 (13)0.0400 (5)
H250.03330.58550.58430.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0379 (9)0.0272 (9)0.0312 (10)0.0031 (8)0.0090 (7)0.0037 (8)
C20.0473 (12)0.0256 (11)0.0303 (12)0.0044 (9)0.0058 (9)0.0001 (9)
C30.0420 (12)0.0286 (11)0.0321 (12)0.0019 (9)0.0040 (9)0.0029 (9)
C40.0249 (10)0.0252 (10)0.0338 (12)0.0011 (8)0.0016 (8)0.0029 (9)
C50.0270 (9)0.0234 (10)0.0316 (11)0.0020 (8)0.0013 (8)0.0019 (8)
C60.0302 (10)0.0258 (10)0.0284 (11)0.0023 (8)0.0031 (8)0.0019 (8)
O70.0687 (11)0.0392 (9)0.0355 (9)0.0043 (8)0.0157 (8)0.0077 (7)
C80.0288 (10)0.0251 (10)0.0273 (10)0.0023 (8)0.0097 (8)0.0012 (8)
C90.0344 (11)0.0308 (11)0.0437 (13)0.0054 (9)0.0116 (9)0.0019 (10)
C100.0577 (15)0.0250 (11)0.0505 (15)0.0047 (10)0.0256 (12)0.0005 (10)
C110.0577 (15)0.0345 (13)0.0444 (14)0.0161 (11)0.0233 (12)0.0118 (11)
C120.0380 (12)0.0459 (14)0.0397 (13)0.0108 (11)0.0061 (9)0.0067 (11)
C130.0313 (10)0.0321 (11)0.0348 (12)0.0009 (9)0.0045 (8)0.0003 (9)
C140.0327 (10)0.0263 (11)0.0377 (12)0.0021 (9)0.0074 (9)0.0029 (9)
O150.0974 (15)0.0479 (11)0.0770 (14)0.0346 (10)0.0584 (12)0.0312 (10)
O160.0439 (8)0.0318 (8)0.0377 (9)0.0096 (7)0.0129 (7)0.0041 (7)
C170.0530 (14)0.0389 (13)0.0432 (14)0.0117 (11)0.0183 (11)0.0049 (11)
C180.0422 (12)0.0329 (12)0.0339 (13)0.0065 (10)0.0132 (10)0.0072 (10)
C190.0449 (12)0.0332 (12)0.0375 (13)0.0080 (10)0.0139 (10)0.0106 (11)
C200.0379 (11)0.0279 (11)0.0316 (12)0.0015 (9)0.0069 (9)0.0019 (9)
N210.0373 (9)0.0262 (9)0.0315 (10)0.0027 (7)0.0081 (7)0.0007 (7)
C220.0419 (11)0.0319 (11)0.0319 (12)0.0051 (10)0.0098 (9)0.0028 (9)
C230.0431 (12)0.0377 (13)0.0406 (13)0.0009 (10)0.0142 (10)0.0060 (11)
C240.0520 (13)0.0318 (12)0.0470 (15)0.0113 (10)0.0141 (11)0.0005 (11)
C250.0511 (13)0.0293 (11)0.0418 (13)0.0069 (10)0.0143 (10)0.0056 (10)
Geometric parameters (Å, º) top
N1—C21.367 (3)C12—H120.9300
N1—C61.397 (3)C13—H130.9300
N1—H10.94 (3)C14—O151.210 (3)
C2—O71.227 (3)C14—O161.339 (2)
C2—C31.498 (3)O16—C171.444 (3)
C3—C41.537 (3)C17—H17A0.9600
C3—H3A0.9700C17—H17B0.9600
C3—H3B0.9700C17—H17C0.9600
C4—C51.520 (3)C18—C191.345 (3)
C4—C81.524 (3)C18—H180.95 (2)
C4—H40.98 (2)C19—C201.465 (3)
C5—C61.364 (3)C19—H190.93 (3)
C5—C141.471 (3)C20—N211.346 (3)
C6—C181.460 (3)C20—C251.398 (3)
C8—C131.388 (3)N21—C221.337 (3)
C8—C91.389 (3)C22—C231.383 (3)
C9—C101.385 (3)C22—H220.9300
C9—H90.9300C23—C241.371 (3)
C10—C111.377 (3)C23—H230.9300
C10—H100.9300C24—C251.382 (3)
C11—C121.375 (3)C24—H240.9300
C11—H110.9300C25—H250.9300
C12—C131.388 (3)
C2—N1—C6124.69 (18)C11—C12—H12119.7
C2—N1—H1117.6 (15)C13—C12—H12119.7
C6—N1—H1117.2 (15)C8—C13—C12120.6 (2)
O7—C2—N1120.4 (2)C8—C13—H13119.7
O7—C2—C3124.0 (2)C12—C13—H13119.7
N1—C2—C3115.55 (19)O15—C14—O16119.9 (2)
C2—C3—C4113.83 (17)O15—C14—C5127.9 (2)
C2—C3—H3A108.8O16—C14—C5112.22 (17)
C4—C3—H3A108.8C14—O16—C17115.65 (17)
C2—C3—H3B108.8O16—C17—H17A109.5
C4—C3—H3B108.8O16—C17—H17B109.5
H3A—C3—H3B107.7H17A—C17—H17B109.5
C5—C4—C8113.75 (16)O16—C17—H17C109.5
C5—C4—C3109.83 (17)H17A—C17—H17C109.5
C8—C4—C3111.70 (16)H17B—C17—H17C109.5
C5—C4—H4108.5 (12)C19—C18—C6134.3 (2)
C8—C4—H4106.1 (12)C19—C18—H18114.0 (15)
C3—C4—H4106.6 (12)C6—C18—H18111.6 (15)
C6—C5—C14122.53 (18)C18—C19—C20137.4 (2)
C6—C5—C4119.60 (18)C18—C19—H19113.4 (15)
C14—C5—C4117.85 (17)C20—C19—H19109.1 (15)
C5—C6—N1119.77 (18)N21—C20—C25121.03 (19)
C5—C6—C18123.61 (19)N21—C20—C19121.74 (19)
N1—C6—C18116.62 (18)C25—C20—C19117.21 (19)
C13—C8—C9118.24 (19)C22—N21—C20118.07 (18)
C13—C8—C4122.47 (17)N21—C22—C23123.8 (2)
C9—C8—C4119.28 (17)N21—C22—H22118.1
C10—C9—C8120.9 (2)C23—C22—H22118.1
C10—C9—H9119.5C24—C23—C22118.5 (2)
C8—C9—H9119.5C24—C23—H23120.8
C11—C10—C9120.3 (2)C22—C23—H23120.8
C11—C10—H10119.9C23—C24—C25118.8 (2)
C9—C10—H10119.9C23—C24—H24120.6
C12—C11—C10119.5 (2)C25—C24—H24120.6
C12—C11—H11120.3C24—C25—C20119.9 (2)
C10—C11—H11120.3C24—C25—H25120.1
C11—C12—C13120.5 (2)C20—C25—H25120.1
C6—N1—C2—O7176.29 (19)C10—C11—C12—C130.9 (3)
C6—N1—C2—C30.7 (3)C9—C8—C13—C121.4 (3)
O7—C2—C3—C4151.0 (2)C4—C8—C13—C12179.99 (19)
N1—C2—C3—C432.2 (3)C11—C12—C13—C80.4 (3)
C2—C3—C4—C546.1 (2)C6—C5—C14—O1511.9 (4)
C2—C3—C4—C881.1 (2)C4—C5—C14—O15169.8 (2)
C8—C4—C5—C695.1 (2)C6—C5—C14—O16167.78 (17)
C3—C4—C5—C630.9 (2)C4—C5—C14—O1610.6 (2)
C8—C4—C5—C1483.3 (2)O15—C14—O16—C170.2 (3)
C3—C4—C5—C14150.69 (18)C5—C14—O16—C17179.93 (18)
C14—C5—C6—N1178.39 (18)C5—C6—C18—C19178.3 (2)
C4—C5—C6—N10.1 (3)N1—C6—C18—C191.3 (4)
C14—C5—C6—C181.9 (3)C6—C18—C19—C204.9 (5)
C4—C5—C6—C18179.75 (18)C18—C19—C20—N215.5 (4)
C2—N1—C6—C518.1 (3)C18—C19—C20—C25176.1 (3)
C2—N1—C6—C18161.56 (19)C25—C20—N21—C221.1 (3)
C5—C4—C8—C1327.0 (3)C19—C20—N21—C22177.3 (2)
C3—C4—C8—C1398.1 (2)C20—N21—C22—C230.3 (3)
C5—C4—C8—C9154.43 (19)N21—C22—C23—C241.2 (3)
C3—C4—C8—C980.6 (2)C22—C23—C24—C250.7 (3)
C13—C8—C9—C101.1 (3)C23—C24—C25—C200.6 (4)
C4—C8—C9—C10179.8 (2)N21—C20—C25—C241.6 (3)
C8—C9—C10—C110.1 (3)C19—C20—C25—C24176.9 (2)
C9—C10—C11—C121.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C25—H25···O15i0.932.423.257 (3)150
C24—H24···O7ii0.932.493.318 (3)149
C13—H13···O16iii0.932.543.300 (3)139
C19—H19···O15i0.93 (3)2.71 (3)3.489 (3)142 (2)
C23—H23···Cgii0.932.663.480147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H18N2O3
Mr334.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)5.5746 (2), 16.4083 (6), 18.0930 (8)
β (°) 96.5018 (14)
V3)1644.32 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.12 × 0.07
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7024, 4206, 2483
Rint0.053
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.149, 0.96
No. of reflections4206
No. of parameters242
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: KappaCCD (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), maXus (Mackay et al., 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C25—H25···O15i0.932.423.257 (3)150
C24—H24···O7ii0.932.493.318 (3)149
C13—H13···O16iii0.932.543.300 (3)139
C23—H23···Cgii0.932.663.480147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x1, y, z.
 

Acknowledgements

This study was supported by the Latvian National Research Programme 2010-2013 Development of prevention, treatment, diagnostic means and practice and biomedicine technologies for improvement of public health.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, D., Bi, X., Liu, Q. & Cong, F. (2005). Chem. Commun. pp. 3580–3582.  Web of Science CrossRef Google Scholar
First citationElias, R. S., Saeed, B. A., Saour, K. Y. & Al-Masoudi, N. A. (2008). Tetrahedron Lett. 49, 3049–3051.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Bruker–Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.  Google Scholar
First citationNonius (1999). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds