organic compounds
2-Chloro-3-(4-methylanilino)naphthalene-1,4-dione
aDepartment of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
*Correspondence e-mail: liu_yun3@sina.com.cn
In the title compound, C17H12ClNO2, the naphthoquinone system is essentially planar [maximum deviation = 0.078 (2) Å] and makes a dihedral angle of 52.38 (7)° with the benzene ring. The features N—H⋯O interactions.
Related literature
For the properties of substituted naphthoquinones, see: Batton et al. (2000); Monks et al. (1992). For standard bond lengths, see: Allen et al. (1987). For the structure of 2-hydroxyquinoxaline, see: Stępień et al. (1976).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812045229/ds2213sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812045229/ds2213Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812045229/ds2213Isup3.cml
To a stirred solution of naphthoquinone (1.0 eq) in 10 ml of acetonitrile, potassium carbonate (3.0 eq) was added. The mixture was stirred at room temperature for 5 min, followed by the addition of aniline (1.0 eq) and silver nitrate (0.1 mmol). The reaction mixture was refluxed for 10 h until complete consumption of starting material was observed on TLC. The reaction mixture was purified over silica gel (EtOAc/hexane)to afford the product in 96% yield.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C17H12ClNO2 | Dx = 1.433 Mg m−3 |
Mr = 297.73 | Melting point: 475 K |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 25 reflections |
a = 12.1614 (10) Å | θ = 9–12° |
b = 22.4915 (18) Å | µ = 0.28 mm−1 |
c = 5.0444 (4) Å | T = 296 K |
V = 1379.79 (19) Å3 | Block, red |
Z = 4 | 0.2 × 0.2 × 0.1 mm |
F(000) = 616 |
Enraf–Nonius CAD-4 diffractometer | 2420 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.036 |
Graphite monochromator | θmax = 25.4°, θmin = 1.8° |
ω/2θ scans | h = −14→14 |
Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995) | k = −26→27 |
Tmin = 0.946, Tmax = 0.972 | l = −6→6 |
15471 measured reflections | 3 standard reflections every 200 reflections |
2479 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0725P)2 + 0.1832P] where P = (Fo2 + 2Fc2)/3 |
S = 1.27 | (Δ/σ)max = 0.001 |
2479 reflections | Δρmax = 0.41 e Å−3 |
195 parameters | Δρmin = −0.42 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.083 (7) |
C17H12ClNO2 | V = 1379.79 (19) Å3 |
Mr = 297.73 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 12.1614 (10) Å | µ = 0.28 mm−1 |
b = 22.4915 (18) Å | T = 296 K |
c = 5.0444 (4) Å | 0.2 × 0.2 × 0.1 mm |
Enraf–Nonius CAD-4 diffractometer | 2420 reflections with I > 2σ(I) |
Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995) | Rint = 0.036 |
Tmin = 0.946, Tmax = 0.972 | 3 standard reflections every 200 reflections |
15471 measured reflections | intensity decay: none |
2479 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 1 restraint |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.27 | Δρmax = 0.41 e Å−3 |
2479 reflections | Δρmin = −0.42 e Å−3 |
195 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Flack parameter does not have any meaning here. Obviously anomalous contribution from Cl was not good enough to resolve the chirality. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.79748 (5) | 0.74205 (2) | 0.55999 (16) | 0.0433 (2) | |
C10 | 1.05237 (17) | 0.70460 (10) | 0.0576 (6) | 0.0407 (5) | |
C8 | 0.87671 (18) | 0.71478 (10) | 0.3028 (5) | 0.0351 (5) | |
O1 | 0.73453 (13) | 0.64787 (8) | 0.1976 (5) | 0.0514 (5) | |
C9 | 0.97837 (19) | 0.73816 (10) | 0.2467 (5) | 0.0358 (5) | |
N | 1.02703 (18) | 0.78611 (10) | 0.3494 (5) | 0.0453 (6) | |
O2 | 1.14579 (14) | 0.72164 (10) | 0.0280 (5) | 0.0623 (6) | |
C6 | 0.89985 (18) | 0.63439 (10) | −0.0415 (5) | 0.0378 (5) | |
C11 | 0.97909 (19) | 0.83701 (11) | 0.4684 (5) | 0.0393 (5) | |
C7 | 0.82917 (18) | 0.66522 (9) | 0.1601 (5) | 0.0376 (5) | |
C5 | 1.00808 (18) | 0.65242 (10) | −0.0834 (5) | 0.0395 (5) | |
C1 | 0.8574 (2) | 0.58704 (11) | −0.1871 (6) | 0.0497 (7) | |
H1A | 0.7848 | 0.5752 | −0.1626 | 0.060* | |
C12 | 1.0318 (2) | 0.86289 (12) | 0.6821 (6) | 0.0480 (6) | |
H12A | 1.0960 | 0.8463 | 0.7492 | 0.058* | |
C16 | 0.8851 (2) | 0.86286 (12) | 0.3654 (6) | 0.0475 (6) | |
H16A | 0.8502 | 0.8463 | 0.2191 | 0.057* | |
C3 | 1.0317 (2) | 0.57524 (13) | −0.4066 (7) | 0.0586 (7) | |
H3A | 1.0758 | 0.5551 | −0.5276 | 0.070* | |
C4 | 1.0739 (2) | 0.62259 (13) | −0.2648 (6) | 0.0522 (7) | |
H4A | 1.1464 | 0.6345 | −0.2908 | 0.063* | |
C15 | 0.8440 (2) | 0.91351 (12) | 0.4826 (7) | 0.0522 (7) | |
H15A | 0.7807 | 0.9306 | 0.4127 | 0.063* | |
C13 | 0.9881 (2) | 0.91369 (14) | 0.7954 (7) | 0.0579 (8) | |
H13A | 1.0236 | 0.9307 | 0.9400 | 0.069* | |
C14 | 0.8930 (3) | 0.93989 (12) | 0.6993 (7) | 0.0572 (7) | |
C2 | 0.9233 (3) | 0.55771 (12) | −0.3683 (7) | 0.0582 (8) | |
H2A | 0.8949 | 0.5260 | −0.4651 | 0.070* | |
C17 | 0.8458 (3) | 0.99422 (15) | 0.8318 (9) | 0.0829 (12) | |
H17A | 0.7804 | 1.0064 | 0.7402 | 0.124* | |
H17B | 0.8988 | 1.0258 | 0.8269 | 0.124* | |
H17C | 0.8281 | 0.9851 | 1.0128 | 0.124* | |
H | 1.082 (2) | 0.7883 (12) | 0.317 (6) | 0.033 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0329 (3) | 0.0546 (3) | 0.0424 (3) | 0.00269 (19) | 0.0127 (3) | 0.0028 (3) |
C10 | 0.0276 (11) | 0.0539 (11) | 0.0407 (12) | −0.0004 (8) | 0.0058 (10) | −0.0035 (12) |
C8 | 0.0240 (10) | 0.0460 (12) | 0.0351 (11) | 0.0060 (8) | 0.0057 (9) | 0.0038 (9) |
O1 | 0.0278 (8) | 0.0552 (10) | 0.0712 (13) | −0.0061 (7) | 0.0072 (9) | −0.0009 (9) |
C9 | 0.0259 (11) | 0.0456 (11) | 0.0357 (12) | 0.0016 (8) | 0.0017 (10) | −0.0012 (9) |
N | 0.0226 (10) | 0.0570 (13) | 0.0564 (14) | −0.0033 (9) | 0.0085 (10) | −0.0117 (10) |
O2 | 0.0310 (9) | 0.0820 (13) | 0.0739 (15) | −0.0127 (8) | 0.0194 (10) | −0.0292 (12) |
C6 | 0.0329 (12) | 0.0402 (10) | 0.0402 (12) | 0.0013 (9) | −0.0011 (9) | 0.0046 (9) |
C11 | 0.0294 (10) | 0.0460 (11) | 0.0425 (13) | −0.0028 (9) | 0.0077 (10) | −0.0030 (10) |
C7 | 0.0285 (10) | 0.0397 (11) | 0.0446 (13) | 0.0014 (9) | 0.0001 (9) | 0.0085 (9) |
C5 | 0.0321 (11) | 0.0449 (11) | 0.0414 (13) | 0.0044 (9) | −0.0002 (10) | 0.0000 (10) |
C1 | 0.0414 (13) | 0.0452 (13) | 0.0626 (17) | −0.0036 (11) | −0.0045 (12) | 0.0005 (12) |
C12 | 0.0369 (13) | 0.0566 (14) | 0.0504 (15) | 0.0004 (10) | 0.0004 (12) | −0.0033 (12) |
C16 | 0.0359 (12) | 0.0593 (15) | 0.0471 (14) | −0.0015 (11) | 0.0023 (11) | 0.0026 (12) |
C3 | 0.0538 (15) | 0.0609 (15) | 0.0612 (18) | 0.0056 (11) | 0.0077 (15) | −0.0217 (15) |
C4 | 0.0399 (13) | 0.0591 (14) | 0.0575 (17) | 0.0010 (11) | 0.0054 (13) | −0.0110 (13) |
C15 | 0.0394 (13) | 0.0534 (14) | 0.0638 (19) | 0.0082 (11) | 0.0123 (13) | 0.0158 (12) |
C13 | 0.0569 (17) | 0.0587 (16) | 0.0581 (18) | −0.0068 (13) | 0.0048 (15) | −0.0135 (13) |
C14 | 0.0584 (17) | 0.0481 (13) | 0.0650 (19) | 0.0006 (12) | 0.0234 (15) | −0.0004 (13) |
C2 | 0.0606 (17) | 0.0498 (13) | 0.0640 (19) | 0.0001 (12) | −0.0094 (14) | −0.0143 (12) |
C17 | 0.101 (3) | 0.0615 (18) | 0.086 (3) | 0.0188 (19) | 0.032 (2) | −0.0042 (18) |
Cl1—C8 | 1.728 (2) | C12—C13 | 1.383 (4) |
C10—O2 | 1.208 (3) | C12—H12A | 0.9300 |
C10—C5 | 1.474 (3) | C16—C15 | 1.377 (4) |
C10—C9 | 1.513 (3) | C16—H16A | 0.9300 |
C8—C9 | 1.373 (3) | C3—C4 | 1.382 (4) |
C8—C7 | 1.447 (3) | C3—C2 | 1.389 (4) |
O1—C7 | 1.230 (3) | C3—H3A | 0.9300 |
C9—N | 1.335 (3) | C4—H4A | 0.9300 |
N—C11 | 1.418 (3) | C15—C14 | 1.379 (5) |
N—H | 0.69 (3) | C15—H15A | 0.9300 |
C6—C1 | 1.393 (4) | C13—C14 | 1.386 (5) |
C6—C5 | 1.393 (3) | C13—H13A | 0.9300 |
C6—C7 | 1.501 (3) | C14—C17 | 1.506 (4) |
C11—C12 | 1.382 (4) | C2—H2A | 0.9300 |
C11—C16 | 1.383 (4) | C17—H17A | 0.9600 |
C5—C4 | 1.389 (4) | C17—H17B | 0.9600 |
C1—C2 | 1.383 (4) | C17—H17C | 0.9600 |
C1—H1A | 0.9300 | ||
O2—C10—C5 | 122.5 (2) | C13—C12—H12A | 120.3 |
O2—C10—C9 | 118.6 (2) | C15—C16—C11 | 119.1 (3) |
C5—C10—C9 | 118.94 (18) | C15—C16—H16A | 120.4 |
C9—C8—C7 | 123.5 (2) | C11—C16—H16A | 120.4 |
C9—C8—Cl1 | 121.39 (19) | C4—C3—C2 | 119.9 (3) |
C7—C8—Cl1 | 115.08 (16) | C4—C3—H3A | 120.0 |
N—C9—C8 | 129.0 (2) | C2—C3—H3A | 120.0 |
N—C9—C10 | 112.6 (2) | C3—C4—C5 | 119.9 (3) |
C8—C9—C10 | 118.3 (2) | C3—C4—H4A | 120.0 |
C9—N—C11 | 129.4 (2) | C5—C4—H4A | 120.0 |
C9—N—H | 113 (2) | C16—C15—C14 | 122.6 (3) |
C11—N—H | 116 (2) | C16—C15—H15A | 118.7 |
C1—C6—C5 | 119.5 (2) | C14—C15—H15A | 118.7 |
C1—C6—C7 | 119.9 (2) | C12—C13—C14 | 121.8 (3) |
C5—C6—C7 | 120.6 (2) | C12—C13—H13A | 119.1 |
C12—C11—C16 | 119.9 (2) | C14—C13—H13A | 119.1 |
C12—C11—N | 118.6 (2) | C15—C14—C13 | 117.1 (3) |
C16—C11—N | 121.3 (2) | C15—C14—C17 | 122.4 (3) |
O1—C7—C8 | 122.8 (2) | C13—C14—C17 | 120.5 (3) |
O1—C7—C6 | 119.6 (2) | C1—C2—C3 | 120.4 (3) |
C8—C7—C6 | 117.64 (19) | C1—C2—H2A | 119.8 |
C4—C5—C6 | 120.3 (2) | C3—C2—H2A | 119.8 |
C4—C5—C10 | 119.5 (2) | C14—C17—H17A | 109.5 |
C6—C5—C10 | 120.2 (2) | C14—C17—H17B | 109.5 |
C2—C1—C6 | 119.9 (2) | H17A—C17—H17B | 109.5 |
C2—C1—H1A | 120.1 | C14—C17—H17C | 109.5 |
C6—C1—H1A | 120.1 | H17A—C17—H17C | 109.5 |
C11—C12—C13 | 119.5 (3) | H17B—C17—H17C | 109.5 |
C11—C12—H12A | 120.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H···O2 | 0.70 (2) | 2.23 (3) | 2.611 (3) | 116 (2) |
Experimental details
Crystal data | |
Chemical formula | C17H12ClNO2 |
Mr | 297.73 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 12.1614 (10), 22.4915 (18), 5.0444 (4) |
V (Å3) | 1379.79 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.2 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (XCAD4; Harms & Wocadlo, 1995) |
Tmin, Tmax | 0.946, 0.972 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15471, 2479, 2420 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.119, 1.27 |
No. of reflections | 2479 |
No. of parameters | 195 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.42 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N—H···O2 | 0.70 (2) | 2.23 (3) | 2.611 (3) | 116 (2) |
Acknowledgements
The authors acknowledge the financial support of Xuzhou City (XZZD1213).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Batton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G. & Monks, T. J. (2000). Chem. Res. Toxicol. 13, 135–160. Web of Science PubMed Google Scholar
Enraf–Nonius. (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Monks, T. J., Hanzlik, R. P., Cohen, G. M., Ross, D. & Graham, D. G. (1992). Toxicol. Appl. Pharmacol. 112, 2–16. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stępień, A., Grabowski, M. J., Cygler, M. & Wajsman, E. (1976). Acta Cryst. B32, 2048–2050. CSD CrossRef IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The substituted naphthoquinone have a diversity of biological activity and are playing an increasingly important role in developing new pharmaceuticals [Batton et al., 2000; Monks et al., 1992]. In our ongoing research work on the syntheses of amino-substituted naphthoquinones, we have prepared the title compound, (I), as one of the products. As part of this study, we have undertaken an X-ray crystallographic analysis of (I) in order to confirm its structure.
In the title compound, the bond lengths and angles of the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987). The naphthoquinone ring[C1—C10] is essentially planar. The naphthoquinone ring makes the dihedral angle 52.38 (0.07) with the benzene ring [C11—C16]. Although atoms C9 and C11 attached to atom N are all of sp^2^ hybridization, their different environments cause slight differences in the N—C9, N—C11 bond lengths, and in the C9—N—H, C11—N—H angles (Table 1). The molecular packing is stabilized by intermolecular N—H···O hydrogen bonds (Table 2).