organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3392-o3393

(2aR*,5S*,6aS*,8aS*,E)-Ethyl 5-hy­dr­oxy-7,7,8a-tri­methyl-8-oxo-2,2a,6,6a,7,8,8a,8b-octa­hydro-1H-penta­leno[1,6-bc]oxepine-4-carboxyl­ate

aDepartment of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: gmsc@uohyd.ernet.in, gm@orgchem.iisc.ernet.in

(Received 2 October 2012; accepted 13 November 2012; online 24 November 2012)

The title compound, C17H24O5, featuring a 2-carbeth­oxy-3-oxepanone unit in its intra­molecularly O—H⋯O hydrogen-bonded enol form, was obtained via [(CF3CO2)2Rh]2-catal­ysed intra­molecular O—H bond insertion in the α-diazo-ω-hy­droxy-β-ketoester, ethyl 4-[(1S,3aS,6R,6aS)-6-hy­droxy-2,2,3a-trimethyl-3-oxo-octa­hydro­penta­len-1-yl]-2-diazo-3-oxobutano­ate. The seven-membered oxacyclic ring, thus constructed on a cis-fused diquinane platform, was found to adopt a distorted boat–sofa conformation.

Related literature

For rhodium carbenoid-mediated inter­molecular O—H inser­tion reactions and their application to natural product synthesis, see: Paulissen et al. (1973[Paulissen, R., Reimlinger, H., Hayez, E., Hubert, A. J. & Teyssié, P. (1973). Tetrahedron Lett. pp. 2233-2236.]); Cox et al. (1994[Cox, G. G., Haigh, D., Hindley, R. M., Miller, D. J. & Moody, C. J. (1994). Tetrahedron Lett. 35, 3139-3142.]); Haigh (1994[Haigh, D. (1994). Tetrahedron, 50, 3177-3194.]); Aller et al. (1995[Aller, E., Brown, D. S., Cox, G. G., Miller, D. J. & Moody, C. J. (1995). J. Org. Chem. 60, 4449-4460.]); Shi et al. (1995[Shi, G.-Q., Cao, Z.-Y. & Cai, W.-L. (1995). Tetrahedron, 51, 5011-5018.]); Bulugahapitiya et al. (1997[Bulugahapitiya, P., Landais, Y., Parra-Rapado, L., Planchenault, D. & Weber, V. (1997). J. Org. Chem. 62, 1630-1641.]); Moody & Miller (1998[Moody, C. J. & Miller, D. J. (1998). Tetrahedron, 54, 2257-2268.]); Nelson et al. (2000[Nelson, T. D., Song, Z. J., Thompson, A. S., Zhao, M., DeMarco, A., Reamer, R. A., Huntington, M. F., Grabowski, E. J. J. & Reider, P. J. (2000). Tetrahedron Lett. 41, 1877-1881.]); Medeiros & Wood (2010[Medeiros, M. R. & Wood, J. L. (2010). Tetrahedron, 66, 4701-4709.]); Freeman et al. (2010[Freeman, D. B., Holubec, A. A., Weiss, M. W., Dixon, J. A., Kakefuda, A., Ohtsuka, M., Inoue, M., Vaswani, R. G., Ohki, H., Doan, B. D., Reisman, S. E., Stoltz, B. M., Day, J. J., Tao, R. N., Dieterich, N. A. & Wood, J. L. (2010). Tetrahedron, 66, 6647-6655.]); Morton et al. (2012[Morton, D., Dick, A. R., Ghosh, D. & Davies, H. M. L. (2012). Chem. Commun. 48, 5838-5840.]). For rhodium-catalysed intra­molecular O—H insertion reactions, see: Paulissen et al. (1974[Paulissen, R., Hayez, E., Hubert, A. J. & Teyssié, P. (1974). Tetrahedron Lett. pp. 607-608.]); Moyer et al. (1985[Moyer, M. P., Feldman, P. L. & Rapoport, H. (1985). J. Org. Chem. 50, 5223-5230.]); Moody & Taylor (1987[Moody, C. J. & Taylor, R. J. (1987). Tetrahedron Lett. 28, 5351-5352.]); Heslin & Moody (1988[Heslin, J. C. & Moody, C. J. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 1417-1423.]); Davies et al. (1990[Davies, M. J. & Moody, C. J. (1990). Synlett, pp. 95-96.]); Moody et al. (1992[Moody, C. J., Sie, E.-R. H. B. & Kulagowski, J. J. (1992). Tetrahedron, 48, 3991-4004.]); Sarabia-Garciá et al. (1994)[Sarabia-Garciá, F., López-Herrera, F. J. & Pino-González, M. S. (1994). Tetrahedron Lett. 35, 6709-6712.]; Pad­wa & Sá (1999[Padwa, A. & Sá, M. M. (1999). J. Braz. Chem. Soc. 10, 231-236.]); Im et al. (2005[Im, C. Y., Okuyama, T. & Sugimura, T. (2005). Chem. Lett. 34, 1328-1329.]). For reviews on rhodium-mediated C—H insertion reactions, see: Doyle et al. (2010[Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. (2010). Chem. Rev. 110, 704-724.]); Davies & Morton (2011[Davies, H. M. L. & Morton, D. (2011). Chem. Soc. Rev. 40, 1857-1869.]). For the con­struction of an angularly fused triquinane skeleton via RhII-catalysed intra­molecular C—H insertion, see: Srikrishna et al. (2012[Srikrishna, A., Nagaraju, G. & Sheth, V. M. (2012). Tetrahedron, 68, 2650-2656.]). For the isolation and synthesis of penifulvin A, see: Shim et al. (2006[Shim, S. H., Swenson, D. C., Gloer, J. B., Dowd, P. F. & Wicklow, D. T. (2006). Org. Lett. 8, 1225-1228.]); Gaich & Mulzer (2009[Gaich, T. & Mulzer, J. (2009). J. Am. Chem. Soc. 131, 452-453.]); Mehta & Khan (2012[Mehta, G. & Khan, T. B. (2012). Tetrahedron Lett. 53, 4558-4561.]). For the application of p-acetamido­benzene­sulfonyl azide as a diazo trans­fer reagent, see: Baum et al. (1987[Baum, J. S., Shook, D. A., Davies, H. M. L. & Smith, H. D. (1987). Synth. Commun. 17, 1709-1716.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Boessenkool & Boeyens (1980[Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24O5

  • Mr = 308.36

  • Orthorhombic, P b c a

  • a = 8.447 (5) Å

  • b = 18.454 (14) Å

  • c = 21.735 (15) Å

  • V = 3388 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.993

  • 14606 measured reflections

  • 3153 independent reflections

  • 1408 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.149

  • S = 0.89

  • 3153 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O4 0.93 (3) 1.69 (3) 2.565 (4) 155 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Rhodium carbenoid mediated O—H insertion provides a facile means of transforming diazo-compounds into diverse range of functionalized ethers (Paulissen, et al., 1973; Cox, et al. 1994; Haigh, 1994; Aller et al., 1995; Shi et al., 1995; Bulugahapitiya et al., 1997; Moody & Miller, 1998; Morton et al., 2012). Hence the methodology has proven to be a useful stratagem in the synthetic acquisition of several natural products (Nelson et al., 2000; Medeiros & Wood, 2010; Freeman, et al. 2010). While not as extensively utilized or studied as the intermolecular variants, intramolecular interception of rhodium carbenoids by hydroxy nucleophiles can, nevertheless, afford an effective route to cyclic ethers and lactones (Paulissen et al., 1974; Moyer et al., 1985; Moody & Taylor, 1987; Heslin & Moody, 1988; Moody et al. 1992; Sarabia-García et al., 1994; Padwa & Sá, 1999; Im et al., 2005). Indeed, studies by Moody and co-workers have shown that rhodium(II) acetate catalysed cyclization in diazoalcohols may even be employed as a practical method for accessing medium-ring oxacycles - oxepanes, in particular, wherein interference from competing C—H insertion reactions do not appear to be significant (Heslin & Moody, 1988; Davies et al., 1990).

Against this background, we report herein the crystal structure of the title compound 1, a 2-carbethoxy-3-oxepanone embedded in a tricyclic framework, that was obtained as the sole isolable product in the rhodium(II) trifluroacetate mediated decomposition of the α-diazo-ω-hydroxy-β-ketoester 2 (Figure 1). Originally envisaged as an entry point to an angularly fused triquinane skeleton via Rh(II) catalyzed intramolecular C—H insertion (Doyle et al., 2010; Davies & Morton, 2011; Srikrishna et al., 2012) en route to the natural product penifulvin A (Shim et al., 2006; Gaich & Mulzer, 2009; Mehta & Khan, 2012), the diazoester 2 was prepared from the β-ketoester 3 via a diazo transfer reaction to the activated methylene group in 3 (Baum et al., 1987).

The crystal structure of 1 was solved and refined in the centrosymmetric orthorhombic space group Pbcn (Z = 8). The 2-carbethoxy-3-oxepanone moiety in 1 was found to exist in the intramolecularly O—H···O hydrogen bonded enol form (Figure 2). As indicated by its puckering parameters (q2 = 0.915 (3) Å, q3 = 0.310 (3) Å, ϕ2 = 193.59 (17)°, ϕ3 = 118.9 (5)°, QT = 0.967 (2) Å), the seven-membered oxacyclic ring adopted a distorted boat-sofa conformation (Cremer & Pople, 1975; Boessenkool & Boeyens, 1980). Crystal packing in 1 was effected primarily via the agency of weak van der Waals interactions, though short C—H···O contacts (C8—H8···O2) could be discerned among the molecules.

Related literature top

For rhodium carbenoid-mediated intermolecular O—H insertion reactions and their application to natural product synthesis, see: Paulissen et al. (1973); Cox et al. (1994); Haigh (1994); Aller et al. (1995); Shi et al. (1995); Bulugahapitiya et al. (1997); Moody & Miller (1998); Nelson et al. (2000); Medeiros & Wood (2010); Freeman et al. (2010); Morton et al. (2012). For rhodium-catalysed intramolecular O—H insertion reactions, see: Paulissen et al. (1974); Moyer et al. (1985); Moody & Taylor (1987); Heslin & Moody (1988); Davies et al. (1990); Moody et al. (1992); Sarabia-Garcá et al. (1994)9 Padwa & Sá (1999); Im et al. (2005). For recent reviews on rhodium-mediated C—H insertion reactions, see: Doyle et al. (2010); Davies & Morton (2011). For a recent report on the construction of an angularly fused triquinane skeleton via RhII-catalysed intramolecular C—H insertion, see: Srikrishna et al. (2012). For the isolation and synthesis of penifulvin A, see: Shim et al. (2006); Gaich & Mulzer (2009); Mehta & Khan (2012). For the application of p-acetamidobenzenesulfonyl azide as a diazo transfer reagent, see: Baum et al. (1987). For ring conformations, see: Cremer & Pople (1975); Boessenkool & Boeyens (1980).

Experimental top

As shown in Figure 1, the title compound 1 was prepared from the the β-ketoester 3 via the intermediate diazoester 2. Thus, 3, upon treatment with p-acetamidobenzenesulfonyl azide and triethylamine, afforded 2. The α-diazo-ω-hydroxy-β-ketoester 2 underwent smooth cyclization in presence of catalytic rhodium(II) trifluoroacetate dimer to deliver the oxepanone 1, which crystallized as thin colorless plates from 1:1 dichloromethane-hexanes.

Refinement top

The methine (CH) and methylene (CH2) H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H distances 0.93 and 0.97 Å respectively, and Uiso(H) = 1.2Ueq(C). The methyl (CH3) hydrogen atoms were constrained to an ideal geometry with C—H distances as 0.96 Å and Uiso(H) = 1.5Ueq(C). During refinement, each methyl group was however allowed to rotate freely about its C—C bond. The position of the hydroxyl hydrogen atom was refined freely, along with an isotropic displacement parameter.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Preparation of the title compound 1 from the β-ketoester 3.
[Figure 2] Fig. 2. View of the title compound 1, with the atom numbering scheme of the asymmetric unit. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
(2aR*,5S*,6aS*,8aS*,E)-Ethyl 5-hydroxy-7,7,8a-trimethyl-8-oxo-2,2a,6,6a,7,8,8a,8b-octahydro-1H- pentaleno[1,6-bc]oxepine-4-carboxylate top
Crystal data top
C17H24O5F(000) = 1328
Mr = 308.36Dx = 1.209 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 939 reflections
a = 8.447 (5) Åθ = 2.8–19.5°
b = 18.454 (14) ŵ = 0.09 mm1
c = 21.735 (15) ÅT = 291 K
V = 3388 (4) Å3Plate, colorless
Z = 80.20 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3153 independent reflections
Radiation source: fine-focus sealed tube1408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 107
Tmin = 0.983, Tmax = 0.993k = 2218
14606 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0717P)2]
where P = (Fo2 + 2Fc2)/3
3153 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H24O5V = 3388 (4) Å3
Mr = 308.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.447 (5) ŵ = 0.09 mm1
b = 18.454 (14) ÅT = 291 K
c = 21.735 (15) Å0.20 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3153 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1408 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.993Rint = 0.087
14606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.17 e Å3
3153 reflectionsΔρmin = 0.17 e Å3
207 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1027 (3)0.15812 (15)1.02261 (10)0.0990 (9)
O20.0947 (2)0.13477 (12)0.69261 (9)0.0655 (6)
H2O0.125 (4)0.0976 (18)0.6660 (15)0.090 (12)*
O30.1391 (2)0.00529 (10)0.80956 (7)0.0545 (5)
O40.1993 (2)0.01550 (12)0.64764 (8)0.0717 (6)
O50.2612 (2)0.07327 (12)0.71407 (8)0.0678 (6)
C10.0661 (3)0.12205 (14)0.86389 (11)0.0471 (7)
H10.00580.08100.86990.057*
C20.0332 (3)0.17697 (15)0.91600 (12)0.0544 (8)
C30.1256 (3)0.14428 (17)0.96932 (13)0.0623 (8)
C40.2513 (3)0.09177 (16)0.94596 (12)0.0568 (8)
C50.2035 (5)0.01234 (18)0.95976 (14)0.0888 (11)
H5A0.25180.00390.99780.107*
H5B0.08950.00830.96370.107*
C60.2602 (5)0.03189 (19)0.90749 (14)0.0906 (12)
H6A0.18980.07260.90060.109*
H6B0.36550.05040.91580.109*
C70.2627 (3)0.01697 (15)0.85202 (12)0.0575 (8)
H70.36610.01390.83170.069*
C80.2347 (3)0.09461 (14)0.87520 (11)0.0474 (7)
H80.31250.12800.85740.057*
C90.4153 (4)0.1103 (2)0.97087 (15)0.0970 (12)
H9A0.44490.15800.95730.145*
H9B0.49080.07570.95590.145*
H9C0.41330.10901.01500.145*
C100.1415 (4)0.1859 (2)0.93120 (14)0.0795 (11)
H10A0.18680.13940.94000.119*
H10B0.19520.20720.89670.119*
H10C0.15270.21680.96640.119*
C110.1093 (4)0.25222 (16)0.90386 (15)0.0781 (10)
H11A0.10310.28110.94050.117*
H11B0.05370.27610.87110.117*
H11C0.21830.24600.89250.117*
C120.0415 (3)0.14979 (16)0.79823 (11)0.0569 (8)
H12A0.07040.15950.79250.068*
H12B0.09710.19550.79400.068*
C130.0951 (3)0.10042 (16)0.74780 (12)0.0510 (7)
C140.1445 (3)0.03157 (16)0.75362 (11)0.0512 (7)
C150.2038 (3)0.00865 (17)0.70042 (13)0.0572 (8)
C160.3258 (4)0.11534 (19)0.66252 (15)0.0833 (11)
H16A0.24060.13290.63660.100*
H16B0.39500.08520.63780.100*
C170.4146 (6)0.1765 (2)0.68814 (18)0.1264 (17)
H17A0.49350.15870.71610.190*
H17B0.46500.20270.65540.190*
H17C0.34350.20810.70970.190*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.113 (2)0.137 (2)0.0465 (13)0.0369 (16)0.0008 (12)0.0152 (14)
O20.0791 (15)0.0722 (16)0.0452 (12)0.0013 (12)0.0053 (10)0.0083 (12)
O30.0605 (13)0.0555 (13)0.0474 (11)0.0043 (9)0.0016 (9)0.0012 (9)
O40.0820 (16)0.0883 (16)0.0448 (12)0.0032 (12)0.0027 (10)0.0031 (11)
O50.0850 (16)0.0645 (14)0.0540 (12)0.0051 (12)0.0061 (10)0.0092 (11)
C10.0407 (18)0.0550 (17)0.0456 (16)0.0004 (13)0.0013 (12)0.0012 (13)
C20.0495 (19)0.060 (2)0.0541 (17)0.0038 (15)0.0001 (13)0.0068 (15)
C30.063 (2)0.078 (2)0.0463 (18)0.0012 (17)0.0008 (15)0.0052 (16)
C40.054 (2)0.073 (2)0.0438 (15)0.0052 (16)0.0048 (13)0.0029 (15)
C50.117 (3)0.085 (3)0.064 (2)0.019 (2)0.0199 (19)0.023 (2)
C60.128 (3)0.076 (2)0.067 (2)0.010 (2)0.022 (2)0.013 (2)
C70.058 (2)0.0618 (19)0.0524 (16)0.0087 (15)0.0061 (14)0.0047 (15)
C80.0385 (17)0.0557 (18)0.0481 (15)0.0009 (14)0.0004 (12)0.0002 (13)
C90.060 (2)0.151 (4)0.080 (2)0.010 (2)0.0213 (18)0.031 (2)
C100.059 (2)0.103 (3)0.076 (2)0.0165 (19)0.0071 (17)0.0200 (19)
C110.091 (2)0.063 (2)0.081 (2)0.0007 (19)0.0015 (18)0.0131 (18)
C120.059 (2)0.0625 (19)0.0496 (16)0.0101 (15)0.0062 (13)0.0010 (14)
C130.0500 (18)0.063 (2)0.0404 (15)0.0043 (15)0.0073 (12)0.0002 (15)
C140.0520 (19)0.063 (2)0.0388 (15)0.0052 (15)0.0005 (12)0.0016 (14)
C150.054 (2)0.064 (2)0.0535 (19)0.0055 (17)0.0008 (14)0.0021 (16)
C160.100 (3)0.077 (2)0.073 (2)0.005 (2)0.0090 (19)0.026 (2)
C170.194 (5)0.076 (3)0.109 (3)0.047 (3)0.008 (3)0.010 (2)
Geometric parameters (Å, º) top
O1—C31.202 (3)C6—H6B0.9700
O2—C131.357 (3)C7—C81.537 (4)
O2—H2O0.93 (3)C7—H70.9800
O3—C141.394 (3)C8—H80.9800
O3—C71.452 (3)C9—H9A0.9600
O4—C151.231 (3)C9—H9B0.9600
O5—C151.321 (3)C9—H9C0.9600
O5—C161.468 (3)C10—H10A0.9600
C1—C121.530 (3)C10—H10B0.9600
C1—C81.531 (3)C10—H10C0.9600
C1—C21.545 (3)C11—H11A0.9600
C1—H10.9800C11—H11B0.9600
C2—C101.521 (4)C11—H11C0.9600
C2—C31.522 (4)C12—C131.496 (4)
C2—C111.553 (4)C12—H12A0.9700
C3—C41.525 (4)C12—H12B0.9700
C4—C91.526 (4)C13—C141.343 (4)
C4—C81.545 (4)C14—C151.462 (4)
C4—C51.550 (4)C16—C171.465 (5)
C5—C61.479 (4)C16—H16A0.9700
C5—H5A0.9700C16—H16B0.9700
C5—H5B0.9700C17—H17A0.9600
C6—C71.505 (4)C17—H17B0.9600
C6—H6A0.9700C17—H17C0.9600
C13—O2—H2O102 (2)C4—C8—H8110.7
C14—O3—C7113.1 (2)C4—C9—H9A109.5
C15—O5—C16116.3 (2)C4—C9—H9B109.5
C12—C1—C8112.7 (2)H9A—C9—H9B109.5
C12—C1—C2116.1 (2)C4—C9—H9C109.5
C8—C1—C2105.5 (2)H9A—C9—H9C109.5
C12—C1—H1107.4H9B—C9—H9C109.5
C8—C1—H1107.4C2—C10—H10A109.5
C2—C1—H1107.4C2—C10—H10B109.5
C10—C2—C3112.0 (2)H10A—C10—H10B109.5
C10—C2—C1113.9 (2)C2—C10—H10C109.5
C3—C2—C1101.9 (2)H10A—C10—H10C109.5
C10—C2—C11110.0 (3)H10B—C10—H10C109.5
C3—C2—C11105.7 (2)C2—C11—H11A109.5
C1—C2—C11112.8 (2)C2—C11—H11B109.5
O1—C3—C2124.6 (3)H11A—C11—H11B109.5
O1—C3—C4124.6 (3)C2—C11—H11C109.5
C2—C3—C4110.8 (2)H11A—C11—H11C109.5
C3—C4—C9111.8 (2)H11B—C11—H11C109.5
C3—C4—C8104.3 (2)C13—C12—C1116.0 (2)
C9—C4—C8115.3 (2)C13—C12—H12A108.3
C3—C4—C5110.8 (2)C1—C12—H12A108.3
C9—C4—C5112.3 (3)C13—C12—H12B108.3
C8—C4—C5101.6 (2)C1—C12—H12B108.3
C6—C5—C4106.8 (3)H12A—C12—H12B107.4
C6—C5—H5A110.4C14—C13—O2121.7 (3)
C4—C5—H5A110.4C14—C13—C12127.0 (3)
C6—C5—H5B110.4O2—C13—C12111.3 (3)
C4—C5—H5B110.4C13—C14—O3122.2 (2)
H5A—C5—H5B108.6C13—C14—C15120.8 (3)
C5—C6—C7106.8 (3)O3—C14—C15117.0 (3)
C5—C6—H6A110.4O4—C15—O5123.2 (3)
C7—C6—H6A110.4O4—C15—C14122.9 (3)
C5—C6—H6B110.4O5—C15—C14114.0 (3)
C7—C6—H6B110.4C17—C16—O5107.9 (3)
H6A—C6—H6B108.6C17—C16—H16A110.1
O3—C7—C6109.2 (3)O5—C16—H16A110.1
O3—C7—C8111.2 (2)C17—C16—H16B110.1
C6—C7—C8107.1 (2)O5—C16—H16B110.1
O3—C7—H7109.8H16A—C16—H16B108.4
C6—C7—H7109.8C16—C17—H17A109.5
C8—C7—H7109.8C16—C17—H17B109.5
C1—C8—C7113.5 (2)H17A—C17—H17B109.5
C1—C8—C4104.8 (2)C16—C17—H17C109.5
C7—C8—C4106.3 (2)H17A—C17—H17C109.5
C1—C8—H8110.7H17B—C17—H17C109.5
C7—C8—H8110.7
C12—C1—C2—C1079.9 (3)C2—C1—C8—C435.4 (3)
C8—C1—C2—C10154.5 (2)O3—C7—C8—C116.3 (3)
C12—C1—C2—C3159.2 (2)C6—C7—C8—C1103.0 (3)
C8—C1—C2—C333.6 (3)O3—C7—C8—C4131.0 (2)
C12—C1—C2—C1146.3 (3)C6—C7—C8—C411.7 (3)
C8—C1—C2—C1179.3 (3)C3—C4—C8—C122.2 (3)
C10—C2—C3—O138.1 (4)C9—C4—C8—C1145.2 (3)
C1—C2—C3—O1160.2 (3)C5—C4—C8—C193.0 (3)
C11—C2—C3—O181.8 (4)C3—C4—C8—C7142.7 (2)
C10—C2—C3—C4142.1 (3)C9—C4—C8—C794.4 (3)
C1—C2—C3—C420.0 (3)C5—C4—C8—C727.4 (3)
C11—C2—C3—C498.1 (3)C8—C1—C12—C1349.8 (3)
O1—C3—C4—C953.5 (4)C2—C1—C12—C13171.6 (2)
C2—C3—C4—C9126.4 (3)C1—C12—C13—C148.5 (4)
O1—C3—C4—C8178.7 (3)C1—C12—C13—O2169.0 (2)
C2—C3—C4—C81.1 (3)O2—C13—C14—O3177.2 (2)
O1—C3—C4—C572.7 (4)C12—C13—C14—O35.5 (4)
C2—C3—C4—C5107.5 (3)O2—C13—C14—C151.5 (4)
C3—C4—C5—C6144.6 (3)C12—C13—C14—C15175.8 (3)
C9—C4—C5—C689.5 (3)C7—O3—C14—C1375.6 (3)
C8—C4—C5—C634.3 (3)C7—O3—C14—C15105.7 (3)
C4—C5—C6—C728.1 (4)C16—O5—C15—O41.9 (4)
C14—O3—C7—C6172.9 (2)C16—O5—C15—C14178.6 (2)
C14—O3—C7—C869.1 (3)C13—C14—C15—O46.2 (4)
C5—C6—C7—O3110.5 (3)O3—C14—C15—O4172.5 (2)
C5—C6—C7—C810.0 (4)C13—C14—C15—O5174.3 (3)
C12—C1—C8—C781.4 (3)O3—C14—C15—O57.0 (4)
C2—C1—C8—C7151.0 (2)C15—O5—C16—C17167.3 (3)
C12—C1—C8—C4163.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O40.93 (3)1.69 (3)2.565 (4)155 (3)

Experimental details

Crystal data
Chemical formulaC17H24O5
Mr308.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)8.447 (5), 18.454 (14), 21.735 (15)
V3)3388 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.983, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
14606, 3153, 1408
Rint0.087
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.149, 0.89
No. of reflections3153
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O40.93 (3)1.69 (3)2.565 (4)155 (3)
 

Footnotes

Present address: School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.

Acknowledgements

We thank the Department of Science and Technology (DST), India, for the CCD facility at the Indian Institute of Science (IISc), Bangalore. CSAK thanks the University Grants Commission for the award of a Dr D. S. Kothari post-doctoral fellowship. GM thanks the Government of India for the award of a National Research Professorship and acknowledges the current research support from the Eli Lilly and Jubilant–Bhartia Foundations.

References

First citationAller, E., Brown, D. S., Cox, G. G., Miller, D. J. & Moody, C. J. (1995). J. Org. Chem. 60, 4449–4460.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaum, J. S., Shook, D. A., Davies, H. M. L. & Smith, H. D. (1987). Synth. Commun. 17, 1709–1716.  CrossRef CAS Web of Science Google Scholar
First citationBoessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulugahapitiya, P., Landais, Y., Parra-Rapado, L., Planchenault, D. & Weber, V. (1997). J. Org. Chem. 62, 1630–1641.  CrossRef CAS Web of Science Google Scholar
First citationCox, G. G., Haigh, D., Hindley, R. M., Miller, D. J. & Moody, C. J. (1994). Tetrahedron Lett. 35, 3139–3142.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDavies, M. J. & Moody, C. J. (1990). Synlett, pp. 95–96.  CrossRef Google Scholar
First citationDavies, H. M. L. & Morton, D. (2011). Chem. Soc. Rev. 40, 1857–1869.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDoyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. (2010). Chem. Rev. 110, 704–724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreeman, D. B., Holubec, A. A., Weiss, M. W., Dixon, J. A., Kakefuda, A., Ohtsuka, M., Inoue, M., Vaswani, R. G., Ohki, H., Doan, B. D., Reisman, S. E., Stoltz, B. M., Day, J. J., Tao, R. N., Dieterich, N. A. & Wood, J. L. (2010). Tetrahedron, 66, 6647–6655.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGaich, T. & Mulzer, J. (2009). J. Am. Chem. Soc. 131, 452–453.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHaigh, D. (1994). Tetrahedron, 50, 3177–3194.  CrossRef CAS Web of Science Google Scholar
First citationHeslin, J. C. & Moody, C. J. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 1417–1423.  CrossRef Web of Science Google Scholar
First citationIm, C. Y., Okuyama, T. & Sugimura, T. (2005). Chem. Lett. 34, 1328–1329.  Web of Science CSD CrossRef CAS Google Scholar
First citationMedeiros, M. R. & Wood, J. L. (2010). Tetrahedron, 66, 4701–4709.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMehta, G. & Khan, T. B. (2012). Tetrahedron Lett. 53, 4558–4561.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoody, C. J. & Miller, D. J. (1998). Tetrahedron, 54, 2257–2268.  Web of Science CrossRef CAS Google Scholar
First citationMoody, C. J., Sie, E.-R. H. B. & Kulagowski, J. J. (1992). Tetrahedron, 48, 3991–4004.  CrossRef CAS Web of Science Google Scholar
First citationMoody, C. J. & Taylor, R. J. (1987). Tetrahedron Lett. 28, 5351–5352.  CrossRef CAS Web of Science Google Scholar
First citationMorton, D., Dick, A. R., Ghosh, D. & Davies, H. M. L. (2012). Chem. Commun. 48, 5838–5840.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoyer, M. P., Feldman, P. L. & Rapoport, H. (1985). J. Org. Chem. 50, 5223–5230.  CrossRef CAS Web of Science Google Scholar
First citationNelson, T. D., Song, Z. J., Thompson, A. S., Zhao, M., DeMarco, A., Reamer, R. A., Huntington, M. F., Grabowski, E. J. J. & Reider, P. J. (2000). Tetrahedron Lett. 41, 1877–1881.  Web of Science CrossRef CAS Google Scholar
First citationPadwa, A. & Sá, M. M. (1999). J. Braz. Chem. Soc. 10, 231–236.  Web of Science CrossRef CAS Google Scholar
First citationPaulissen, R., Hayez, E., Hubert, A. J. & Teyssié, P. (1974). Tetrahedron Lett. pp. 607–608.  CrossRef Google Scholar
First citationPaulissen, R., Reimlinger, H., Hayez, E., Hubert, A. J. & Teyssié, P. (1973). Tetrahedron Lett. pp. 2233–2236.  CrossRef Google Scholar
First citationSarabia-Garciá, F., López-Herrera, F. J. & Pino-González, M. S. (1994). Tetrahedron Lett. 35, 6709–6712.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, G.-Q., Cao, Z.-Y. & Cai, W.-L. (1995). Tetrahedron, 51, 5011–5018.  CrossRef CAS Web of Science Google Scholar
First citationShim, S. H., Swenson, D. C., Gloer, J. B., Dowd, P. F. & Wicklow, D. T. (2006). Org. Lett. 8, 1225–1228.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrikrishna, A., Nagaraju, G. & Sheth, V. M. (2012). Tetrahedron, 68, 2650–2656.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3392-o3393
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds