organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3298-o3299

1,2-Bis{4-[1-(anthracen-9-ylmeth­yl)-1H-1,2,3-triazol-4-yl]phen­yl}-1,2-bis­­[4,5-bis­­(methyl­sulfan­yl)-1,3-di­thiol-2-yl­­idene]ethane

aDepartment of Chemistry, Memorial University of Newfoundland, St Johns, NL, Canada A1B 3X7, and bDepartment of Chemistry and C-CART X-Ray Diffraction Lab, Memorial University of Newfoundland, St Johns, NL, Canada A1B 3X7
*Correspondence e-mail: louise.dawe@mun.ca

(Received 23 September 2012; accepted 1 November 2012; online 7 November 2012)

The title mol­ecule, C58H44N6S8, has point symmetry 2 (in the Schönfliess notation C2). The related crystallographic twofold axis bis­ects the central ethane bond while it is parallel to the monoclinic unique axis of the unit cell. The dithiole=C—C=dithiole torsion angle is 103.7 (4)° and the triazole–anthracene moieties adopt a pincer-like conformation. The crystal structure features C—H⋯S and C—H⋯N contacts. The distance between the stacked anthracene fragments [centroid—centroid separations of 3.6871 (19) Å, off-set by 1.516 (3) Å and mean anthracene plane-plane separations of 3.361 (2) Å], which are parallel to (101) and (-101), indicates inter­molecular anthracene–anthracene ππ contacts. One of the terminal methyl­sulfanyl groups was modelled as being disordered with two refined orientations that converged to occupancies of 0.809 (5) and 0.191 (5).

Related literature

The simpler analogues, 4,4′,5,5′-tetra­methyl­thiol­ato-2,2′-ethane­diyl­idene(1,3-dithiole) and bis­(4,5-bis­(methyl­thio)-1,3-dithiol-2-yl­idene)succinonitrile, were previously reported by Bryce et al. (1996[Bryce, M. R., Moore, A. J., Tanner, B. K., Whitehead, R., Clegg, W., Gerson, F., Lamprecht, A. & Pfenninger, S. (1996). Chem. Mater. 8, 1182-1188.]) and Jia et al. (2005[Jia, C., Liu, S.-X., Neels, A., Stoeckli-Evans, H. & Decurtins, S. (2005). Synthesis, 13, 2157-2160.]), respectively. For information on the photophysical properties of tetra­thia­fulvalene vinyl­ogues, see: Mulla et al. (2012[Mulla, K., Dongare, P., Thompson, D. W. & Zhao, Y. (2012). Org. Biomol. Chem. 10, 2542-2544.]). For synthesis via Cu-catalysed alkyne–azide coupling reactions employed for the title compound, see: Meldal & Tornøe (2008[Meldal, M. & Tornøe, C. W. (2008). Chem. Rev. 108, 2952-3015.]); Hein et al. (2010[Hein, J. E. & Fokin, V. V. (2010). Chem. Soc. Rev. 39, 1302-1315.]); Zhao et al. (2012[Zhao, Y., Chen, G., Mulla, K., Mahmud, I., Liang, S., Dongare, P., Thompson, D. W., Dawe, L. N. & Bouzan, S. (2012). Pure Appl. Chem. 84, 1005-1025.]). For a discussion of hydrogen bonding, including non-traditional inter­actions, see: Desiraju (2011[Desiraju, G. R. (2011). Angew. Chem. Int. Ed. 50, 52-59.]); Arunan et al. (2011[Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1619-1636.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for a description of the Cambridge Structural Database, see Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C58H44N6S8

  • Mr = 1081.47

  • Monoclinic, C 2/c

  • a = 15.906 (4) Å

  • b = 14.737 (3) Å

  • c = 21.570 (5) Å

  • β = 98.846 (7)°

  • V = 4996 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 168 K

  • 0.27 × 0.23 × 0.12 mm

Data collection
  • Rigaku AFC8 diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.765, Tmax = 0.952

  • 24431 measured reflections

  • 5169 independent reflections

  • 4127 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.160

  • S = 1.06

  • 5169 reflections

  • 347 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28C⋯N2i 0.98 2.55 3.495 (5) 161
C25—H25⋯S2ii 0.95 3.00 3.784 (4) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of the title molecule contains a half of the molecule. The whole molecule has the point symmetry 2 (or C2 in the Schönfliess notation). The twofold axis is parallel to the monoclinic axis and passes through the centre of the C4—C4i bond (i = -x, y, 1/2 - z; Fig. 1). This point symmetry has been previously reported for the related molecule, bis(4,5-bis(methylthio)-1,3-dithiol-2-ylidene)succinonitrile (Jia et al. 2005). The dithioleC—Cdithiole torsion angle is 103.7 (4)° for the title molecule, while for the related analogue Jia et al. (2005) reported 91.7° (no reported s.u.). In the Cambridge Crystallographic Database (Allen, 2002), the article by Jia et al. (2005) is deposited as CCDC 285669, refcode JAVWEJ, and the pertinent torsion angle has been given as 85.9 (7)°. The larger value of this torsion angle in the title molecule may result from the adoption of a pincer-like conformation of the triazole and anthracene fragments. Both the title molecule and that reported by Jia et al. (2005) exhibit a twisted cis conformation about the C4—C4i bond (i = -x, y, 1/2 -z), which contrasts sharply with the planar 2,2'-ethanediylidene(1,3-dithiole) framework reported for 4,4',5,5'-tetramethylthiolato-2,2'-ethanediylidene(1,3-dithiole) (Bryce et al., 1996), which adopts a trans conformation.

One of the terminal S—CH3 groups was disordered with two refined orientations that converged to occupancy 0.809 (5) for S4, C29 and the attached methyl H atoms H29A, H29B, H29C, and 0.191 (5) for S4A, C29A and the attached methyl H atoms H29D, H29E, H29F. (These hydrogens were difficult to discern in the difference map.)

Non-traditional D–H···A interactions (Arunan et al., 2011, and Desiraju, 2011) are present betweent C25anthracene—H25···S2ii ((ii) = 1/2 - x, 3/2 - y, 1 - z) and C28methyl–H28C···N2iii ((iii) = x + 1/2, -y + 3/2, z + 1/2, see Fig. 2 and Table 1). Further intermolecular interactions in the form of π-electron anthraceneπ-electron anthracene contacts with centroid—centroid separations of 3.6871 (19) Å, off-set by 1.516 (3) Å and mean anthracene plane-plane separations of 3.361 (2) Å are present (Fig. 3; as measured from the anthracene fragment in x, y, z to (iv) = 1/2 - x, 5/2 - y, 1 - z). The molecules that exhibit H-bonding and π-electron—π-electron interactions are parallel to the (1, 0, 1) and (-1, 0, 1) planes (determined using OLEX2 by Dolomanov et al., 2009.)

Related literature top

The simpler analogues, 4,4',5,5'-tetramethylthiolato-2,2'-ethanediylidene(1,3-dithiole) and bis(4,5-bis(methylthio)-1,3-dithiol-2-ylidene)succinonitrile, were previously reported by Bryce et al. (1996) and Jia et al. (2005), respectively. For information on the photophysical properties of tetrathiafulvalene vinylogues, see: Mulla et al. (2012). For synthesis via Cu-catalysed alkyne–azide coupling reactions employed for the title compound, see: Meldal & Tornøe (2008); Hein et al. (2010); Zhao et al. (2012). For a discussion of hydrogen bonding, including non-traditional interactions, see: Desiraju (2011); Arunan et al. (2011). For standard bond lengths, see: Allen et al. (1987) and for a description of the Cambridge Structural Database, see Allen (2002).

Experimental top

The title compound was synthesized by the procedures reported by Mulla et al. (2012). 3 mg of the title compound were added to 0.8 ml of chloroform in a vial and heated to 323 K to give a clear solution. This solution was first cooled to room temperature and then methanol (0.5 ml) was added slowly to the chloroform solution by diffusion at 277 K over 3 days. After this time, yellow prismatic crystals with dimensions similar to those of the measured sample (0.27 × 0.23 × 0.12 mm), formed.

Refinement top

While all hydrogen atoms appeared in the difference electron density map, except those pertinent to the disordered groups, they were introduced into idealized positions and refined using the riding atom formalism. The applied constraints were: Caryl—Haryl = 0.95 Å, Cmethyl—Hmethyl = 0.98 Å, Cmethylene—Hmethylene = 0.99 Å; Uiso(Haryl) = 1.2Ueq(Caryl), Uiso(Hmethylene) = 1.2Ueq(Cmethylene), Uiso(Hmethyl) = 1.5Ueq(Cmethyl). One terminal S—CH3 group was disordered with two orientations for S4—C29 (and the pertinent H-atoms) and S4A—C29A (and the pertinent H-atoms) the occupancies of which were constrained to equal to 1. (The respective occupancies resulted in 0.809 (5) and 0.191 (5).) A distance restraint (the command SADI from SHELXL97 by Sheldrick, 2008) was applied to the S3—C28, S4—C29 and S4A—C29A bonds. The converged S—C bond lengths were consistent with those reported by Allen et al. (1987).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule. The displacement ellipsoids are shown at the 50% probability level. Symmetry code: (i) = -x, y, 1/2 - z.
[Figure 2] Fig. 2. Short C—H···S and C—H···N contacts between the molecules of the title compound. Symmetry codes: (i) -x, y, 1/2 - z; (ii) 1/2 - x, 3/2 - y, 1 - z; (iii) 1/2 + x, 3/2 - y, 1/2 + z.
[Figure 3] Fig. 3. π-electron—π-electron interactions between the anthracene units, propagating parallel to (1, 0, 1), with the centroid-centroid separations of 3.6871 (19) Å (as measured between x, y, z and (iv) = 1/2 - x, 5/2 - y, 1 - z). Symmetry codes: (i) -x, y, 1/2 - z; (iv) 1/2 - x, 5/2 - y, 1 - z; (v) 1/2 + x, 5/2 - y, 1/2 + z; (vi) 1 - x, y, 3/2 - z; (vii) 1 + x, y, 1 + z; (viii) -1/2 + x, 5/2 - y, -1/2 + z; (ix) -1/2 - x, 5/2 - y, -z; (x) -1 + x, y, -1 + z; (xi) -1 - x, y, -1/2 - z.
1,2-Bis{4-[1-(anthracen-9-ylmethyl)-1H-1,2,3-triazol-4-yl]phenyl}- 1,2-bis[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene]ethane top
Crystal data top
C58H44N6S8F(000) = 2248
Mr = 1081.47Dx = 1.438 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 12368 reflections
a = 15.906 (4) Åθ = 3.3–27.6°
b = 14.737 (3) ŵ = 0.41 mm1
c = 21.570 (5) ÅT = 168 K
β = 98.846 (7)°Prism, yellow
V = 4996 (2) Å30.27 × 0.23 × 0.12 mm
Z = 4
Data collection top
Rigaku AFC8
diffractometer
5169 independent reflections
Radiation source: fine-focus sealed tube4127 reflections with I > 2σ(I)
Graphite - Rigaku SHINE monochromatorRint = 0.059
Detector resolution: 14.63 pixels mm-1θmax = 26.5°, θmin = 3.3°
ω scansh = 1919
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1818
Tmin = 0.765, Tmax = 0.952l = 2724
24431 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: difference Fourier map
wR(F2) = 0.160H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0767P)2 + 8.5759P]
where P = (Fo2 + 2Fc2)/3
5169 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.70 e Å3
3 restraintsΔρmin = 0.62 e Å3
97 constraints
Crystal data top
C58H44N6S8V = 4996 (2) Å3
Mr = 1081.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.906 (4) ŵ = 0.41 mm1
b = 14.737 (3) ÅT = 168 K
c = 21.570 (5) Å0.27 × 0.23 × 0.12 mm
β = 98.846 (7)°
Data collection top
Rigaku AFC8
diffractometer
5169 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4127 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.952Rint = 0.059
24431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0583 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.06Δρmax = 0.70 e Å3
5169 reflectionsΔρmin = 0.62 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.21077 (4)0.55797 (5)0.29159 (4)0.0438 (2)
S20.08541 (4)0.49862 (5)0.18534 (4)0.0415 (2)
S30.35601 (5)0.46517 (8)0.24249 (6)0.0746 (3)
S40.21209 (7)0.41217 (8)0.11540 (6)0.0497 (5)0.809 (5)
C290.2002 (4)0.2963 (3)0.1414 (3)0.0846 (19)0.809 (5)
H29A0.25040.27910.17140.127*0.809 (5)
H29B0.19430.25540.10520.127*0.809 (5)
H29C0.14930.29190.16180.127*0.809 (5)
S4A0.2162 (5)0.3602 (6)0.1509 (3)0.086 (3)0.191 (5)
C29A0.1999 (15)0.4153 (16)0.0740 (10)0.073 (6)0.191 (5)
H29D0.15100.45640.07110.109*0.191 (5)
H29E0.18910.36910.04110.109*0.191 (5)
H29F0.25080.45000.06870.109*0.191 (5)
N10.11476 (15)1.01534 (15)0.50733 (10)0.0358 (5)
N20.1323 (2)0.95560 (17)0.55383 (12)0.0527 (7)
N30.1189 (2)0.87389 (17)0.52924 (12)0.0538 (7)
C10.10424 (15)0.56405 (17)0.25385 (12)0.0318 (5)
C20.24892 (19)0.4963 (2)0.23200 (16)0.0487 (8)
C30.1915 (2)0.4702 (2)0.18276 (17)0.0513 (8)
C40.04180 (15)0.61453 (16)0.27167 (12)0.0289 (5)
C50.05131 (15)0.67558 (16)0.32632 (12)0.0297 (5)
C60.11164 (16)0.66476 (17)0.38029 (12)0.0343 (6)
H60.14580.61150.38460.041*
C70.12316 (17)0.72875 (18)0.42735 (13)0.0366 (6)
H70.16420.71880.46360.044*
C80.07492 (17)0.80792 (17)0.42201 (12)0.0339 (6)
C90.01149 (17)0.81784 (17)0.37050 (13)0.0346 (6)
H90.02350.87040.36710.041*
C100.00144 (16)0.75248 (17)0.32412 (12)0.0319 (5)
H100.04670.75960.29020.038*
C110.09216 (17)0.88302 (18)0.46645 (12)0.0360 (6)
C120.08963 (17)0.97300 (18)0.45269 (13)0.0371 (6)
H120.07341.00020.41270.045*
C130.13241 (18)1.11193 (18)0.51750 (14)0.0390 (6)
H13A0.15831.12240.56170.047*
H13B0.07871.14680.50920.047*
C140.19234 (17)1.14373 (17)0.47421 (12)0.0336 (6)
C150.16101 (18)1.18757 (18)0.41722 (13)0.0383 (6)
C160.0730 (2)1.2060 (2)0.39650 (16)0.0506 (8)
H160.03161.18580.42070.061*
C170.0483 (3)1.2525 (3)0.34189 (19)0.0704 (11)
H170.01051.26390.32890.085*
C180.1066 (3)1.2840 (3)0.30463 (17)0.0723 (11)
H180.08781.31850.26790.087*
C190.1897 (3)1.2648 (3)0.32130 (15)0.0641 (10)
H190.22911.28450.29520.077*
C200.2200 (2)1.2156 (2)0.37696 (13)0.0434 (7)
C210.3054 (2)1.1964 (2)0.39396 (14)0.0457 (7)
H210.34401.21360.36650.055*
C220.33685 (18)1.15312 (18)0.44937 (14)0.0408 (7)
C230.4252 (2)1.1359 (2)0.46688 (17)0.0510 (8)
H230.46361.15310.43930.061*
C240.4557 (2)1.0955 (2)0.5221 (2)0.0609 (10)
H240.51521.08640.53370.073*
C250.3994 (2)1.0672 (2)0.56234 (18)0.0578 (9)
H250.42111.03810.60080.069*
C260.3150 (2)1.08074 (19)0.54724 (15)0.0459 (7)
H260.27831.05990.57500.055*
C270.27920 (17)1.12572 (17)0.49037 (13)0.0359 (6)
C280.40626 (19)0.5551 (3)0.29117 (17)0.0573 (9)
H28A0.39650.61310.26890.086*
H28B0.46750.54350.30080.086*
H28C0.38210.55780.33030.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0279 (3)0.0485 (4)0.0533 (5)0.0072 (3)0.0005 (3)0.0139 (3)
S20.0340 (4)0.0417 (4)0.0479 (4)0.0033 (3)0.0030 (3)0.0147 (3)
S30.0349 (4)0.0816 (7)0.1068 (8)0.0138 (4)0.0091 (5)0.0313 (6)
S40.0565 (7)0.0525 (8)0.0425 (9)0.0104 (5)0.0157 (5)0.0084 (7)
C290.121 (5)0.041 (3)0.106 (4)0.009 (3)0.061 (4)0.033 (3)
S4A0.108 (5)0.083 (6)0.070 (5)0.044 (4)0.023 (3)0.014 (4)
C29A0.085 (16)0.069 (14)0.067 (16)0.022 (11)0.020 (13)0.023 (13)
N10.0426 (12)0.0321 (11)0.0351 (12)0.0097 (10)0.0138 (10)0.0043 (9)
N20.082 (2)0.0406 (14)0.0353 (14)0.0204 (13)0.0083 (13)0.0019 (11)
N30.084 (2)0.0374 (13)0.0388 (14)0.0203 (13)0.0053 (13)0.0008 (11)
C10.0282 (12)0.0273 (12)0.0395 (14)0.0009 (10)0.0040 (11)0.0022 (10)
C20.0343 (14)0.0473 (17)0.066 (2)0.0055 (13)0.0109 (14)0.0130 (15)
C30.0421 (16)0.0500 (18)0.063 (2)0.0038 (14)0.0131 (15)0.0183 (15)
C40.0271 (12)0.0248 (11)0.0347 (13)0.0013 (9)0.0046 (10)0.0015 (10)
C50.0296 (12)0.0255 (12)0.0349 (13)0.0025 (10)0.0080 (10)0.0010 (10)
C60.0341 (13)0.0277 (12)0.0413 (15)0.0017 (10)0.0068 (11)0.0019 (11)
C70.0363 (14)0.0360 (14)0.0371 (14)0.0040 (11)0.0036 (11)0.0009 (11)
C80.0383 (14)0.0285 (12)0.0371 (14)0.0082 (11)0.0127 (11)0.0016 (11)
C90.0363 (13)0.0282 (12)0.0413 (15)0.0027 (10)0.0127 (11)0.0002 (11)
C100.0301 (12)0.0320 (13)0.0348 (13)0.0002 (10)0.0085 (10)0.0002 (11)
C110.0380 (14)0.0347 (13)0.0371 (15)0.0084 (11)0.0115 (11)0.0029 (11)
C120.0422 (15)0.0350 (14)0.0353 (14)0.0058 (12)0.0095 (12)0.0019 (11)
C130.0443 (15)0.0311 (13)0.0447 (16)0.0080 (12)0.0166 (13)0.0090 (12)
C140.0378 (13)0.0269 (12)0.0377 (14)0.0062 (10)0.0104 (11)0.0053 (11)
C150.0425 (15)0.0304 (13)0.0417 (15)0.0071 (11)0.0057 (12)0.0076 (11)
C160.0450 (17)0.0441 (17)0.060 (2)0.0063 (13)0.0006 (15)0.0017 (15)
C170.061 (2)0.067 (2)0.073 (3)0.0036 (19)0.023 (2)0.003 (2)
C180.086 (3)0.078 (3)0.046 (2)0.015 (2)0.014 (2)0.0145 (19)
C190.086 (3)0.065 (2)0.0386 (18)0.023 (2)0.0020 (17)0.0035 (16)
C200.0565 (18)0.0392 (15)0.0349 (15)0.0153 (13)0.0080 (13)0.0058 (12)
C210.0510 (17)0.0458 (16)0.0440 (16)0.0165 (14)0.0194 (14)0.0092 (13)
C220.0410 (15)0.0325 (13)0.0512 (17)0.0075 (12)0.0143 (13)0.0109 (13)
C230.0403 (16)0.0421 (16)0.074 (2)0.0066 (13)0.0198 (16)0.0111 (16)
C240.0382 (16)0.0437 (18)0.099 (3)0.0002 (14)0.0030 (18)0.0094 (19)
C250.0546 (19)0.0392 (16)0.074 (2)0.0006 (15)0.0084 (17)0.0083 (16)
C260.0473 (16)0.0346 (14)0.0541 (18)0.0089 (13)0.0024 (14)0.0052 (13)
C270.0383 (14)0.0261 (12)0.0444 (15)0.0062 (11)0.0096 (12)0.0051 (11)
C280.0326 (15)0.079 (2)0.060 (2)0.0004 (15)0.0090 (14)0.0008 (18)
Geometric parameters (Å, º) top
S1—C21.757 (3)C10—H100.9500
S1—C11.766 (3)C11—C121.358 (4)
S2—C31.747 (3)C12—H120.9500
S2—C11.751 (3)C13—C141.508 (4)
S3—C21.745 (3)C13—H13A0.9900
S3—C281.800 (4)C13—H13B0.9900
S4—C31.760 (3)C14—C271.397 (4)
S4—C291.817 (5)C14—C151.410 (4)
C29—H29A0.9800C15—C161.428 (4)
C29—H29B0.9800C15—C201.434 (4)
C29—H29C0.9800C16—C171.367 (5)
S4A—C31.827 (7)C16—H160.9500
S4A—C29A1.829 (16)C17—C181.396 (6)
C29A—H29D0.9800C17—H170.9500
C29A—H29E0.9800C18—C191.345 (6)
C29A—H29F0.9800C18—H180.9500
N1—N21.332 (3)C19—C201.421 (5)
N1—C121.339 (3)C19—H190.9500
N1—C131.461 (3)C20—C211.382 (4)
N2—N31.320 (3)C21—C221.379 (4)
N3—C111.362 (4)C21—H210.9500
C1—C41.343 (3)C22—C231.421 (4)
C2—C31.347 (5)C22—C271.427 (4)
C4—C51.472 (3)C23—C241.353 (5)
C4—C4i1.503 (5)C23—H230.9500
C5—C61.399 (4)C24—C251.403 (5)
C5—C101.406 (3)C24—H240.9500
C6—C71.377 (4)C25—C261.346 (4)
C6—H60.9500C25—H250.9500
C7—C81.391 (4)C26—C271.433 (4)
C7—H70.9500C26—H260.9500
C8—C91.389 (4)C28—H28A0.9800
C8—C111.462 (4)C28—H28B0.9800
C9—C101.381 (4)C28—H28C0.9800
C9—H90.9500
C2—S1—C195.96 (14)N1—C13—C14109.6 (2)
C3—S2—C196.79 (14)N1—C13—H13A109.8
C2—S3—C28102.65 (15)C14—C13—H13A109.8
C3—S4—C2999.2 (2)N1—C13—H13B109.8
C3—S4A—C29A86.5 (9)C14—C13—H13B109.8
S4A—C29A—H29D109.5H13A—C13—H13B108.2
S4A—C29A—H29E109.5C27—C14—C15120.5 (2)
H29D—C29A—H29E109.5C27—C14—C13118.8 (3)
S4A—C29A—H29F109.5C15—C14—C13120.6 (3)
H29D—C29A—H29F109.5C14—C15—C16123.9 (3)
H29E—C29A—H29F109.5C14—C15—C20118.9 (3)
N2—N1—C12110.8 (2)C16—C15—C20117.2 (3)
N2—N1—C13121.2 (2)C17—C16—C15120.2 (3)
C12—N1—C13127.6 (2)C17—C16—H16119.9
N3—N2—N1107.3 (2)C15—C16—H16119.9
N2—N3—C11108.4 (2)C16—C17—C18122.3 (4)
C4—C1—S2120.55 (19)C16—C17—H17118.9
C4—C1—S1126.5 (2)C18—C17—H17118.9
S2—C1—S1112.87 (14)C19—C18—C17119.3 (3)
C3—C2—S3123.9 (2)C19—C18—H18120.4
C3—C2—S1117.1 (2)C17—C18—H18120.4
S3—C2—S1118.77 (19)C18—C19—C20121.6 (4)
C2—C3—S2116.6 (2)C18—C19—H19119.2
C2—C3—S4126.9 (2)C20—C19—H19119.2
S2—C3—S4116.51 (19)C21—C20—C19121.4 (3)
C2—C3—S4A113.0 (3)C21—C20—C15119.2 (3)
S2—C3—S4A119.3 (3)C19—C20—C15119.4 (3)
C1—C4—C5125.3 (2)C22—C21—C20122.4 (3)
C1—C4—C4i116.4 (2)C22—C21—H21118.8
C5—C4—C4i118.0 (2)C20—C21—H21118.8
C6—C5—C10116.7 (2)C21—C22—C23121.6 (3)
C6—C5—C4124.7 (2)C21—C22—C27119.1 (3)
C10—C5—C4118.6 (2)C23—C22—C27119.2 (3)
C7—C6—C5122.1 (2)C24—C23—C22121.2 (3)
C7—C6—H6118.9C24—C23—H23119.4
C5—C6—H6118.9C22—C23—H23119.4
C6—C7—C8120.3 (3)C23—C24—C25119.9 (3)
C6—C7—H7119.9C23—C24—H24120.0
C8—C7—H7119.9C25—C24—H24120.0
C9—C8—C7118.5 (2)C26—C25—C24120.9 (3)
C9—C8—C11119.0 (2)C26—C25—H25119.5
C7—C8—C11122.3 (3)C24—C25—H25119.5
C10—C9—C8121.0 (2)C25—C26—C27121.7 (3)
C10—C9—H9119.5C25—C26—H26119.1
C8—C9—H9119.5C27—C26—H26119.1
C9—C10—C5121.1 (2)C14—C27—C22119.8 (3)
C9—C10—H10119.5C14—C27—C26123.3 (3)
C5—C10—H10119.5C22—C27—C26116.9 (3)
C12—C11—N3107.9 (2)S3—C28—H28A109.5
C12—C11—C8126.8 (3)S3—C28—H28B109.5
N3—C11—C8125.1 (2)H28A—C28—H28B109.5
N1—C12—C11105.5 (2)S3—C28—H28C109.5
N1—C12—H12127.2H28A—C28—H28C109.5
C11—C12—H12127.2H28B—C28—H28C109.5
C12—N1—N2—N30.3 (3)C9—C8—C11—C1236.6 (4)
C13—N1—N2—N3172.9 (3)C7—C8—C11—C12139.4 (3)
N1—N2—N3—C110.3 (4)C9—C8—C11—N3147.6 (3)
C3—S2—C1—C4169.8 (2)C7—C8—C11—N336.3 (4)
C3—S2—C1—S17.97 (19)N2—N1—C12—C110.2 (3)
C2—S1—C1—C4170.3 (3)C13—N1—C12—C11172.5 (3)
C2—S1—C1—S27.28 (18)N3—C11—C12—N10.0 (3)
C28—S3—C2—C3155.2 (3)C8—C11—C12—N1176.4 (3)
C28—S3—C2—S130.0 (3)N2—N1—C13—C14121.3 (3)
C1—S1—C2—C33.6 (3)C12—N1—C13—C1450.6 (4)
C1—S1—C2—S3178.7 (2)N1—C13—C14—C2779.6 (3)
S3—C2—C3—S2173.3 (2)N1—C13—C14—C1597.9 (3)
S1—C2—C3—S21.5 (4)C27—C14—C15—C16178.1 (3)
S3—C2—C3—S47.9 (5)C13—C14—C15—C160.7 (4)
S1—C2—C3—S4177.2 (2)C27—C14—C15—C201.7 (4)
S3—C2—C3—S4A29.4 (5)C13—C14—C15—C20179.1 (2)
S1—C2—C3—S4A145.4 (4)C14—C15—C16—C17177.0 (3)
C1—S2—C3—C25.9 (3)C20—C15—C16—C173.2 (4)
C1—S2—C3—S4173.1 (2)C15—C16—C17—C180.2 (6)
C1—S2—C3—S4A147.4 (4)C16—C17—C18—C192.9 (6)
C29—S4—C3—C291.4 (4)C17—C18—C19—C202.0 (6)
C29—S4—C3—S289.8 (3)C18—C19—C20—C21179.8 (3)
C29—S4—C3—S4A14.2 (5)C18—C19—C20—C151.5 (5)
C29A—S4A—C3—C2130.5 (9)C14—C15—C20—C212.1 (4)
C29A—S4A—C3—S286.7 (9)C16—C15—C20—C21177.7 (3)
C29A—S4A—C3—S48.5 (8)C14—C15—C20—C19176.2 (3)
S2—C1—C4—C5176.68 (19)C16—C15—C20—C194.0 (4)
S1—C1—C4—C50.7 (4)C19—C20—C21—C22176.5 (3)
S2—C1—C4—C4i2.8 (3)C15—C20—C21—C221.8 (4)
S1—C1—C4—C4i174.61 (18)C20—C21—C22—C23178.4 (3)
C1—C4—C5—C627.2 (4)C20—C21—C22—C271.0 (4)
C4i—C4—C5—C6159.0 (2)C21—C22—C23—C24178.2 (3)
C1—C4—C5—C10150.5 (3)C27—C22—C23—C241.2 (4)
C4i—C4—C5—C1023.3 (3)C22—C23—C24—C252.1 (5)
C10—C5—C6—C74.2 (4)C23—C24—C25—C260.9 (5)
C4—C5—C6—C7173.5 (2)C24—C25—C26—C271.1 (5)
C5—C6—C7—C80.8 (4)C15—C14—C27—C221.0 (4)
C6—C7—C8—C94.3 (4)C13—C14—C27—C22178.4 (2)
C6—C7—C8—C11171.8 (2)C15—C14—C27—C26179.4 (2)
C7—C8—C9—C102.6 (4)C13—C14—C27—C262.0 (4)
C11—C8—C9—C10173.6 (2)C21—C22—C27—C140.6 (4)
C8—C9—C10—C52.5 (4)C23—C22—C27—C14178.8 (2)
C6—C5—C10—C95.8 (4)C21—C22—C27—C26179.8 (3)
C4—C5—C10—C9172.0 (2)C23—C22—C27—C260.8 (4)
N2—N3—C11—C120.2 (4)C25—C26—C27—C14177.7 (3)
N2—N3—C11—C8176.6 (3)C25—C26—C27—C221.9 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28C···N2ii0.982.553.495 (5)161
C25—H25···S2iii0.953.003.784 (4)141
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC58H44N6S8
Mr1081.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)168
a, b, c (Å)15.906 (4), 14.737 (3), 21.570 (5)
β (°) 98.846 (7)
V3)4996 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.27 × 0.23 × 0.12
Data collection
DiffractometerRigaku AFC8
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.765, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
24431, 5169, 4127
Rint0.059
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.160, 1.06
No. of reflections5169
No. of parameters347
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.62

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28C···N2i0.98002.553.495 (5)161
C25—H25···S2ii0.95003.003.784 (4)141
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We acknowledge NSERC and the Memorial University of Newfoundland for funding support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1619–1636.  Web of Science CrossRef CAS Google Scholar
First citationBryce, M. R., Moore, A. J., Tanner, B. K., Whitehead, R., Clegg, W., Gerson, F., Lamprecht, A. & Pfenninger, S. (1996). Chem. Mater. 8, 1182–1188.  CAS Google Scholar
First citationDesiraju, G. R. (2011). Angew. Chem. Int. Ed. 50, 52–59.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHein, J. E. & Fokin, V. V. (2010). Chem. Soc. Rev. 39, 1302–1315.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJia, C., Liu, S.-X., Neels, A., Stoeckli-Evans, H. & Decurtins, S. (2005). Synthesis, 13, 2157–2160.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeldal, M. & Tornøe, C. W. (2008). Chem. Rev. 108, 2952–3015.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMulla, K., Dongare, P., Thompson, D. W. & Zhao, Y. (2012). Org. Biomol. Chem. 10, 2542–2544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y., Chen, G., Mulla, K., Mahmud, I., Liang, S., Dongare, P., Thompson, D. W., Dawe, L. N. & Bouzan, S. (2012). Pure Appl. Chem. 84, 1005–1025.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3298-o3299
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds