organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3264-o3265

Ethyl 2-(3-methyl-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazol-4-yl)acetate

aDepartment of Chemistry, Siedlce University, ul. 3 Maja 54, 08-110 Siedlce, Poland, bDepartment of Organic Chemistry, Faculty of Pharmacy with Division of Medical Analytics, Medical University, ul. Chodźki 4A, 20-093 Lublin, Poland, and cDepartment of General and Ecological Chemistry, Technical University, ul. Żeromskiego 115, 90-924 Łódź, Poland
*Correspondence e-mail: kar@uph.edu.pl

(Received 9 October 2012; accepted 29 October 2012; online 3 November 2012)

The title compound, C7H11N3O2S, exists in the 5-thioxo tautomeric form. The 1,2,4-triazoline ring is essentially planar, with a maximum deviation of 0.010 (2) Å for the substituted N atom. The ethyl acetate substituent is almost planar, with a maximum deviation of 0.061 (4) Å for the methyl­ene C atom of the eth­oxy group. The angle between the mean plane of this substituent and the mean plane of the 1,2,4-triazoline ring is 89.74 (8)°. In the crystal, mol­ecules are linked by a combination of N—H⋯S, C—H⋯N and C—H⋯O hydrogen bonds into chains parallel to [100].

Related literature

For background information on the title compound, see: Saadeh et al. (2010[Saadeh, H. A., Mosleh, I. M., Al-Bakri, A. G. & Mubarak, M. I. (2010). Monatsh. Chem. 141, 471-478.]); Akhtar et al. (2008[Akhtar, T., Hameed, S., Khan, K. M. & Choudhary, M. I. (2008). Med. Chem. 4, 539-543.]); Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]). For the biological activity of 1,2,4-triazoline-thio­nes, see: Pitucha et al. (2010[Pitucha, M., Polak, B., Swatko-Ossor, M., Popiołek, Ł. & Ginalska, G. (2010). Croat. Chem. Acta, 83, 299-306.]). For their synthesis, see: Bany & Dobosz (1972[Bany, T. & Dobosz, M. (1972). Ann. Univ. Mariae Curie-Sklodowska Sect AA, 26/27, 23-32.]). For related structures, see: Kruszynski et al. (2007[Kruszynski, R., Trzesowska, A., Przybycin, M., Gil, K. & Dobosz, M. (2007). Acta Cryst. E63, o4378.]); Siwek et al. (2008[Siwek, A., Wujec, M., Wawrzycka-Gorczyca, I., Dobosz, M. & Paneth, P. (2008). Heteroat. Chem. 19, 337-344.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11N3O2S

  • Mr = 201.25

  • Monoclinic, P 21 /c

  • a = 6.4438 (19) Å

  • b = 15.2328 (15) Å

  • c = 9.9672 (8) Å

  • β = 98.416 (19)°

  • V = 967.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.60 × 0.30 × 0.30 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.754, Tmax = 0.869

  • 2979 measured reflections

  • 2837 independent reflections

  • 1571 reflections with I > 2σ(I)

  • Rint = 0.069

  • 2 standard reflections every 100 reflections intensity decay: 8.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.198

  • S = 0.93

  • 2837 reflections

  • 123 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S6i 0.79 (4) 2.56 (4) 3.339 (3) 170 (4)
C8—H8B⋯N2ii 0.97 2.50 3.407 (3) 155
C13—H13A⋯O10ii 0.96 2.57 3.482 (5) 159
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z.

Data collection: KM4B8 (Gałdecki et al., 1996[Gałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, L. (1996). KM4B8. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM4B8; data reduction: DATAPROC (Gałdecki et al., 1995[Gałdecki, Z., Kowalski, A. & Uszyński, L. (1995). DATAPROC. Kuma Diffraction, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The 1,2,4-triazoline-thiones were found to have significant antimicrobial action (Saadeh et al., 2010; Akhtar et al., 2008; Al-Omar et al., 2010). The title compound, (I), belongs to 3- and 4-substituted derivatives of 1,2,4-triazoline-thiones with potential antituberculosis activity against mycobacterium strains of Mycobacterium smegmatis, Mycobacterium phlei and Mycobacterium H37Ra (Pitucha et al., 2010).

The X-ray analysis of the title compound undertook in order to its structural characterization and to identification of the proper thiol-thione tautomeric form revealed that this compound exists as 5-thioxo tautomer in the crystalline state. The molecular geometry of (I) is very similar to that observed in related structures of 2-(3-methyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-4-yl)acetic acid (Kruszynski et al., 2007) and 4-[3-(2-methyl-furan-3-yl)-5-thioxo-1,2,4-triazol-4-yl]acetic acid (Siwek et al., 2008). The 1,2,4-triazoline ring is planar to within 0.010 (2) Å. The ethyl acetate chain is almost planar with the most deviating C12 atom from the best C8/C9/O10/O11/C12/C13 plane by 0.061 (4) Å and it adopts a gauche conformation in respect to 1,2,4-triazoline ring with the torsion angle C3—N4—C8—C9 of 92.7 (3)°. This conformation is stabilized by the C8—H8B···S6 intramolecular hydrogen bond specified as S(5) in graph set notation (Bernstein et al., 1995).

In the crystal structure, (Fig. 2), the molecules of (I) are linked by a combination of N1—H1···S6, C8—H8B···N2 and C13—H13A···O10 intermolecular hydrogen bond into chains of R22(8), R22(13) and R44(16) edge-fused rings parallel to the [100] direction.

Related literature top

For background information on the title compound, see: Saadeh et al. (2010); Akhtar et al. (2008); Al-Omar et al. (2010). For the biological activity of 1,2,4-triazoline-thiones, see: Pitucha et al. (2010). For their synthesis, see: Bany & Dobosz (1972). For related structures, see: Kruszynski et al. ( 2007); Siwek et al. (2008). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

The title compound, (I), was prepared from acetamidrazone hydrochloride and carboethoxymethyl isothiocyanate, according to the method of Bany & Dobosz (1972).

Refinement top

The N-bound H atom was located by difference Fourier synthesis and refined freely. The remaining H atoms were positioned geometrically and treated as riding on their C atoms with C—H distances of 0.93 Å (aromatic), 0.96 Å (CH2) and 0.97 Å (CH3). All H atoms were assigned Uiso(H) values of 1.5Ueq(N,C)]..

Computing details top

Data collection: KM4B8 (Gałdecki et al., 1996); cell refinement: KM4B8 (Gałdecki et al., 1996); data reduction: DATAPROC (Gałdecki et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the molecular packing in (I).
Ethyl 2-(3-methyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-4-yl)acetate top
Crystal data top
C7H11N3O2SF(000) = 424
Mr = 201.25Dx = 1.381 Mg m3
Monoclinic, P21/cMelting point = 446–447 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.4438 (19) ÅCell parameters from 70 reflections
b = 15.2328 (15) Åθ = 2.7–11.9°
c = 9.9672 (8) ŵ = 0.31 mm1
β = 98.416 (19)°T = 293 K
V = 967.8 (3) Å3Prism, colourless
Z = 40.60 × 0.30 × 0.30 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
1571 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 30.1°, θmin = 2.5°
ω–2θ scansh = 98
Absorption correction: ψ scan
(North et al., 1968)
k = 021
Tmin = 0.754, Tmax = 0.869l = 014
2979 measured reflections2 standard reflections every 100 reflections
2837 independent reflections intensity decay: 8.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: difference Fourier map
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.1344P)2]
where P = (Fo2 + 2Fc2)/3
2837 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C7H11N3O2SV = 967.8 (3) Å3
Mr = 201.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4438 (19) ŵ = 0.31 mm1
b = 15.2328 (15) ÅT = 293 K
c = 9.9672 (8) Å0.60 × 0.30 × 0.30 mm
β = 98.416 (19)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1571 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.069
Tmin = 0.754, Tmax = 0.8692 standard reflections every 100 reflections
2979 measured reflections intensity decay: 8.9%
2837 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.64 e Å3
2837 reflectionsΔρmin = 0.48 e Å3
123 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S60.29109 (11)0.08274 (5)0.48884 (8)0.0493 (3)
O100.2086 (3)0.33096 (15)0.4137 (2)0.0553 (6)
O110.5003 (3)0.34124 (13)0.31670 (19)0.0423 (5)
N10.1100 (3)0.08964 (16)0.3569 (2)0.0384 (5)
H10.152 (6)0.053 (3)0.402 (4)0.058*
N20.2330 (3)0.13342 (15)0.2554 (2)0.0400 (5)
N40.0940 (3)0.17783 (14)0.2764 (2)0.0324 (4)
C30.1054 (4)0.18780 (18)0.2086 (2)0.0348 (5)
C50.0896 (4)0.11528 (17)0.3742 (2)0.0338 (5)
C70.1642 (4)0.2523 (2)0.0993 (3)0.0449 (6)
H7A0.10730.23450.01980.067*
H7B0.10930.30890.12820.067*
H7C0.31430.25550.07880.067*
C80.2820 (4)0.22340 (18)0.2511 (2)0.0348 (5)
H8A0.26770.23990.15620.052*
H8B0.40140.18420.27000.052*
C90.3210 (4)0.30402 (17)0.3374 (2)0.0347 (5)
C120.5476 (5)0.4245 (2)0.3862 (4)0.0553 (8)
H12A0.55430.41660.48330.083*
H12B0.43860.46700.35610.083*
C130.7523 (7)0.4562 (3)0.3544 (5)0.0743 (11)
H13A0.86070.41580.39020.111*
H13B0.78180.51300.39440.111*
H13C0.74690.46040.25780.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S60.0354 (4)0.0521 (4)0.0567 (5)0.0037 (3)0.0051 (3)0.0156 (3)
O100.0513 (12)0.0536 (13)0.0663 (13)0.0048 (10)0.0263 (10)0.0162 (10)
O110.0342 (9)0.0406 (10)0.0530 (11)0.0086 (8)0.0094 (7)0.0052 (8)
N10.0306 (10)0.0387 (12)0.0460 (12)0.0034 (9)0.0064 (8)0.0086 (10)
N20.0278 (10)0.0463 (12)0.0457 (12)0.0014 (9)0.0046 (8)0.0046 (10)
N40.0247 (9)0.0336 (10)0.0392 (10)0.0001 (8)0.0061 (7)0.0002 (8)
C30.0280 (11)0.0398 (13)0.0367 (12)0.0024 (10)0.0052 (9)0.0003 (10)
C50.0300 (11)0.0302 (11)0.0411 (13)0.0001 (9)0.0051 (9)0.0001 (10)
C70.0352 (14)0.0523 (16)0.0467 (15)0.0049 (12)0.0045 (11)0.0091 (12)
C80.0268 (11)0.0411 (13)0.0384 (12)0.0036 (10)0.0115 (9)0.0008 (10)
C90.0329 (12)0.0355 (12)0.0360 (12)0.0001 (10)0.0062 (9)0.0038 (10)
C120.0517 (17)0.0402 (15)0.072 (2)0.0077 (13)0.0029 (15)0.0088 (15)
C130.063 (2)0.057 (2)0.105 (3)0.0248 (18)0.019 (2)0.007 (2)
Geometric parameters (Å, º) top
S6—C51.674 (3)C7—H7A0.9600
O10—C91.197 (3)C7—H7B0.9600
O11—C91.330 (3)C7—H7C0.9600
O11—C121.455 (4)C8—C91.499 (4)
N1—C51.331 (3)C8—H8A0.9700
N1—N21.364 (3)C8—H8B0.9700
N1—H10.79 (4)C12—C131.482 (5)
N2—C31.301 (3)C12—H12A0.9700
N4—C51.367 (3)C12—H12B0.9700
N4—C31.369 (3)C13—H13A0.9600
N4—C81.450 (3)C13—H13B0.9600
C3—C71.475 (4)C13—H13C0.9600
C9—O11—C12115.0 (2)N4—C8—H8A109.3
C5—N1—N2113.5 (2)C9—C8—H8A109.3
C5—N1—H1123 (3)N4—C8—H8B109.3
N2—N1—H1124 (3)C9—C8—H8B109.3
C3—N2—N1104.3 (2)H8A—C8—H8B108.0
C5—N4—C3108.3 (2)O10—C9—O11124.9 (3)
C5—N4—C8124.3 (2)O10—C9—C8125.4 (2)
C3—N4—C8127.5 (2)O11—C9—C8109.7 (2)
N2—C3—N4110.5 (2)O11—C12—C13108.2 (3)
N2—C3—C7125.5 (2)O11—C12—H12A110.1
N4—C3—C7124.0 (2)C13—C12—H12A110.1
N1—C5—N4103.4 (2)O11—C12—H12B110.1
N1—C5—S6129.8 (2)C13—C12—H12B110.1
N4—C5—S6126.74 (19)H12A—C12—H12B108.4
C3—C7—H7A109.5C12—C13—H13A109.5
C3—C7—H7B109.5C12—C13—H13B109.5
H7A—C7—H7B109.5H13A—C13—H13B109.5
C3—C7—H7C109.5C12—C13—H13C109.5
H7A—C7—H7C109.5H13A—C13—H13C109.5
H7B—C7—H7C109.5H13B—C13—H13C109.5
N4—C8—C9111.52 (19)
C5—N1—N2—C30.0 (3)C8—N4—C5—N1177.5 (2)
N1—N2—C3—N41.2 (3)C3—N4—C5—S6176.9 (2)
N1—N2—C3—C7178.1 (3)C8—N4—C5—S63.8 (4)
C5—N4—C3—N21.9 (3)C5—N4—C8—C988.1 (3)
C8—N4—C3—N2177.3 (2)C3—N4—C8—C992.7 (3)
C5—N4—C3—C7177.4 (2)C12—O11—C9—O105.1 (4)
C8—N4—C3—C73.3 (4)C12—O11—C9—C8175.1 (2)
N2—N1—C5—N41.1 (3)N4—C8—C9—O103.2 (4)
N2—N1—C5—S6177.5 (2)N4—C8—C9—O11176.7 (2)
C3—N4—C5—N11.8 (3)C9—O11—C12—C13179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S6i0.79 (4)2.56 (4)3.339 (3)170 (4)
C8—H8B···N2ii0.972.503.407 (3)155
C13—H13A···O10ii0.962.573.482 (5)159
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H11N3O2S
Mr201.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.4438 (19), 15.2328 (15), 9.9672 (8)
β (°) 98.416 (19)
V3)967.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.60 × 0.30 × 0.30
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.754, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
2979, 2837, 1571
Rint0.069
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.198, 0.93
No. of reflections2837
No. of parameters123
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.48

Computer programs: KM4B8 (Gałdecki et al., 1996), DATAPROC (Gałdecki et al., 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S6i0.79 (4)2.56 (4)3.339 (3)170 (4)
C8—H8B···N2ii0.972.503.407 (3)155
C13—H13A···O10ii0.962.573.482 (5)159
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

References

First citationAkhtar, T., Hameed, S., Khan, K. M. & Choudhary, M. I. (2008). Med. Chem. 4, 539–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationBany, T. & Dobosz, M. (1972). Ann. Univ. Mariae Curie-Sklodowska Sect AA, 26/27, 23–32.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, L. (1996). KM4B8. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationGałdecki, Z., Kowalski, A. & Uszyński, L. (1995). DATAPROC. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationKruszynski, R., Trzesowska, A., Przybycin, M., Gil, K. & Dobosz, M. (2007). Acta Cryst. E63, o4378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPitucha, M., Polak, B., Swatko-Ossor, M., Popiołek, Ł. & Ginalska, G. (2010). Croat. Chem. Acta, 83, 299–306.  CAS Google Scholar
First citationSaadeh, H. A., Mosleh, I. M., Al-Bakri, A. G. & Mubarak, M. I. (2010). Monatsh. Chem. 141, 471–478.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiwek, A., Wujec, M., Wawrzycka-Gorczyca, I., Dobosz, M. & Paneth, P. (2008). Heteroat. Chem. 19, 337–344.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3264-o3265
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds