organic compounds
[3-Benzoyl-2,4-bis(3-nitrophenyl)cyclobutyl](phenyl)methanone
aMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za
The 30H22N2O6, comprises a half-molecule of the cyclobutane derivative. The least-squares planes defined by the respective C atoms of the aromatic substituents intersect at angles of 76.81 (7) and 89.22 (8)° with the least-squares plane defined by the C atoms of the cyclobutane ring. In the crystal, C—H⋯O contacts connect the molecules into a three-dimensional network. The shortest centroid–centroid distance between the two different aromatic rings is 3.9601 (8) Å.
of the title compound, CRelated literature
For the biological activity of et al. (1999); Marais et al. (2005); Katerere et al. (2004); Seidel et al. (2000). For the crystal structures of similar compounds, see: Zheng et al. (2001); Zhuang & Zheng (2002). For general information about the dimerization of see: Stobbe & Bremer (1929); Mustafa (1952). For puckering analysis of cyclic motifs, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).
and cyclobutane-derived compounds, see: DimmockExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812044650/fj2603sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S1600536812044650/fj2603Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536812044650/fj2603Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536812044650/fj2603Isup4.cml
To a mixture of 3-nitrobenzaldehyde (1.51 g, 0.01 mol) and acetophenone (1.16 ml, 0.01 mol) in ethanol (50 ml), a sodium hydroxide solution (10%, 10 ml) was added. The mixture was stirred at 278–283 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals suitable for the X-ray diffraction study were grown from methanol by slow evaporation at room temperature. The synthesized chalcone was dimerized during crystallization.
Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 1.00 Å for methine groups) and were included in the
in the riding model approximation, with U(H) set to 1.2Ueq(C).Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C30H22N2O6 | F(000) = 528 |
Mr = 506.50 | Dx = 1.417 Mg m−3 |
Monoclinic, P21/c | Melting point > 523 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7850 (1) Å | Cell parameters from 4849 reflections |
b = 14.7824 (3) Å | θ = 2.8–28.3° |
c = 14.3589 (3) Å | µ = 0.10 mm−1 |
β = 104.858 (1)° | T = 200 K |
V = 1186.86 (4) Å3 | Block, colourless |
Z = 2 | 0.33 × 0.14 × 0.11 mm |
Bruker APEXII CCD diffractometer | 2945 independent reflections |
Radiation source: fine-focus sealed tube | 2387 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 28.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −7→7 |
Tmin = 0.968, Tmax = 0.989 | k = −17→19 |
11005 measured reflections | l = −17→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.055P)2 + 0.3935P] where P = (Fo2 + 2Fc2)/3 |
2945 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C30H22N2O6 | V = 1186.86 (4) Å3 |
Mr = 506.50 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.7850 (1) Å | µ = 0.10 mm−1 |
b = 14.7824 (3) Å | T = 200 K |
c = 14.3589 (3) Å | 0.33 × 0.14 × 0.11 mm |
β = 104.858 (1)° |
Bruker APEXII CCD diffractometer | 2945 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2387 reflections with I > 2σ(I) |
Tmin = 0.968, Tmax = 0.989 | Rint = 0.020 |
11005 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.32 e Å−3 |
2945 reflections | Δρmin = −0.22 e Å−3 |
172 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.02716 (16) | 0.08341 (7) | 0.41101 (7) | 0.0343 (2) | |
O2 | 0.4112 (3) | 0.11125 (12) | 0.89447 (9) | 0.0693 (4) | |
O3 | 0.6594 (3) | 0.21980 (8) | 0.94461 (8) | 0.0584 (4) | |
N1 | 0.5674 (2) | 0.16321 (9) | 0.88471 (8) | 0.0386 (3) | |
C1 | 0.2098 (2) | 0.07918 (8) | 0.38436 (8) | 0.0223 (2) | |
C2 | 0.4494 (2) | 0.05901 (8) | 0.45303 (8) | 0.0206 (2) | |
H2 | 0.5684 | 0.1074 | 0.4506 | 0.025* | |
C3 | 0.44539 (19) | 0.03813 (8) | 0.55776 (8) | 0.0203 (2) | |
H3 | 0.2767 | 0.0331 | 0.5629 | 0.024* | |
C11 | 0.2032 (2) | 0.09061 (8) | 0.28021 (8) | 0.0224 (2) | |
C12 | 0.3971 (2) | 0.12395 (9) | 0.24994 (9) | 0.0266 (3) | |
H12 | 0.5414 | 0.1391 | 0.2960 | 0.032* | |
C13 | 0.3792 (2) | 0.13495 (10) | 0.15237 (9) | 0.0333 (3) | |
H13 | 0.5096 | 0.1596 | 0.1318 | 0.040* | |
C14 | 0.1718 (3) | 0.11009 (11) | 0.08487 (10) | 0.0371 (3) | |
H14 | 0.1607 | 0.1173 | 0.0181 | 0.045* | |
C15 | −0.0192 (2) | 0.07487 (10) | 0.11440 (9) | 0.0358 (3) | |
H15 | −0.1599 | 0.0565 | 0.0680 | 0.043* | |
C16 | −0.0049 (2) | 0.06645 (9) | 0.21178 (9) | 0.0287 (3) | |
H16 | −0.1381 | 0.0440 | 0.2320 | 0.034* | |
C21 | 0.5883 (2) | 0.09762 (8) | 0.63665 (8) | 0.0209 (2) | |
C22 | 0.5151 (2) | 0.10549 (8) | 0.72138 (8) | 0.0245 (2) | |
H22 | 0.3736 | 0.0762 | 0.7275 | 0.029* | |
C23 | 0.6502 (2) | 0.15632 (8) | 0.79654 (9) | 0.0276 (3) | |
C24 | 0.8559 (2) | 0.20118 (9) | 0.79156 (9) | 0.0319 (3) | |
H24 | 0.9447 | 0.2362 | 0.8441 | 0.038* | |
C25 | 0.9279 (2) | 0.19330 (9) | 0.70728 (10) | 0.0307 (3) | |
H25 | 1.0684 | 0.2235 | 0.7015 | 0.037* | |
C26 | 0.7973 (2) | 0.14165 (8) | 0.63095 (9) | 0.0254 (2) | |
H26 | 0.8512 | 0.1363 | 0.5740 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0268 (4) | 0.0478 (6) | 0.0298 (5) | 0.0065 (4) | 0.0101 (4) | 0.0091 (4) |
O2 | 0.0738 (9) | 0.1032 (12) | 0.0425 (7) | −0.0292 (8) | 0.0360 (6) | −0.0212 (7) |
O3 | 0.1001 (10) | 0.0466 (7) | 0.0285 (5) | −0.0007 (7) | 0.0169 (6) | −0.0144 (5) |
N1 | 0.0505 (7) | 0.0419 (7) | 0.0239 (5) | 0.0073 (6) | 0.0106 (5) | −0.0050 (5) |
C1 | 0.0250 (5) | 0.0196 (5) | 0.0222 (5) | 0.0009 (4) | 0.0059 (4) | 0.0023 (4) |
C2 | 0.0227 (5) | 0.0199 (5) | 0.0194 (5) | −0.0018 (4) | 0.0059 (4) | 0.0002 (4) |
C3 | 0.0206 (5) | 0.0219 (5) | 0.0185 (5) | −0.0005 (4) | 0.0056 (4) | 0.0006 (4) |
C11 | 0.0246 (5) | 0.0210 (5) | 0.0214 (5) | 0.0035 (4) | 0.0055 (4) | 0.0027 (4) |
C12 | 0.0244 (6) | 0.0290 (6) | 0.0265 (6) | 0.0013 (5) | 0.0064 (4) | 0.0031 (5) |
C13 | 0.0318 (6) | 0.0419 (7) | 0.0296 (6) | 0.0041 (6) | 0.0144 (5) | 0.0068 (6) |
C14 | 0.0405 (7) | 0.0497 (8) | 0.0218 (6) | 0.0089 (6) | 0.0091 (5) | 0.0023 (6) |
C15 | 0.0335 (7) | 0.0455 (8) | 0.0248 (6) | 0.0003 (6) | 0.0007 (5) | −0.0029 (6) |
C16 | 0.0258 (6) | 0.0320 (6) | 0.0276 (6) | −0.0006 (5) | 0.0052 (5) | 0.0021 (5) |
C21 | 0.0237 (5) | 0.0190 (5) | 0.0197 (5) | 0.0025 (4) | 0.0050 (4) | 0.0000 (4) |
C22 | 0.0267 (6) | 0.0241 (6) | 0.0237 (5) | 0.0019 (4) | 0.0085 (4) | 0.0000 (4) |
C23 | 0.0355 (6) | 0.0259 (6) | 0.0213 (6) | 0.0055 (5) | 0.0073 (5) | −0.0017 (5) |
C24 | 0.0373 (7) | 0.0256 (6) | 0.0280 (6) | −0.0008 (5) | −0.0004 (5) | −0.0050 (5) |
C25 | 0.0284 (6) | 0.0266 (6) | 0.0354 (7) | −0.0052 (5) | 0.0050 (5) | −0.0005 (5) |
C26 | 0.0263 (6) | 0.0244 (6) | 0.0260 (6) | −0.0003 (4) | 0.0076 (4) | 0.0009 (5) |
O1—C1 | 1.2141 (15) | C13—H13 | 0.9500 |
O2—N1 | 1.2210 (19) | C14—C15 | 1.383 (2) |
O3—N1 | 1.2199 (16) | C14—H14 | 0.9500 |
N1—C23 | 1.4676 (17) | C15—C16 | 1.3850 (18) |
C1—C11 | 1.4957 (16) | C15—H15 | 0.9500 |
C1—C2 | 1.5104 (15) | C16—H16 | 0.9500 |
C2—C3 | 1.5412 (15) | C21—C22 | 1.3917 (16) |
C2—C3i | 1.5827 (16) | C21—C26 | 1.3938 (17) |
C2—H2 | 1.0000 | C22—C23 | 1.3810 (17) |
C3—C21 | 1.5032 (15) | C22—H22 | 0.9500 |
C3—C2i | 1.5827 (16) | C23—C24 | 1.380 (2) |
C3—H3 | 1.0000 | C24—C25 | 1.382 (2) |
C11—C16 | 1.3910 (16) | C24—H24 | 0.9500 |
C11—C12 | 1.3931 (17) | C25—C26 | 1.3895 (17) |
C12—C13 | 1.3877 (17) | C25—H25 | 0.9500 |
C12—H12 | 0.9500 | C26—H26 | 0.9500 |
C13—C14 | 1.385 (2) | ||
O3—N1—O2 | 123.53 (13) | C15—C14—C13 | 120.16 (12) |
O3—N1—C23 | 118.42 (13) | C15—C14—H14 | 119.9 |
O2—N1—C23 | 118.05 (12) | C13—C14—H14 | 119.9 |
O1—C1—C11 | 120.53 (10) | C14—C15—C16 | 119.85 (12) |
O1—C1—C2 | 122.11 (10) | C14—C15—H15 | 120.1 |
C11—C1—C2 | 117.32 (10) | C16—C15—H15 | 120.1 |
C1—C2—C3 | 115.82 (9) | C15—C16—C11 | 120.46 (12) |
C1—C2—C3i | 115.26 (9) | C15—C16—H16 | 119.8 |
C3—C2—C3i | 90.93 (8) | C11—C16—H16 | 119.8 |
C1—C2—H2 | 111.1 | C22—C21—C26 | 118.37 (10) |
C3—C2—H2 | 111.1 | C22—C21—C3 | 118.42 (10) |
C3i—C2—H2 | 111.1 | C26—C21—C3 | 123.13 (10) |
C21—C3—C2 | 118.37 (9) | C23—C22—C21 | 119.39 (12) |
C21—C3—C2i | 116.97 (9) | C23—C22—H22 | 120.3 |
C2—C3—C2i | 89.07 (8) | C21—C22—H22 | 120.3 |
C21—C3—H3 | 110.3 | C24—C23—C22 | 122.92 (12) |
C2—C3—H3 | 110.3 | C24—C23—N1 | 119.20 (11) |
C2i—C3—H3 | 110.3 | C22—C23—N1 | 117.87 (12) |
C16—C11—C12 | 119.38 (11) | C23—C24—C25 | 117.54 (11) |
C16—C11—C1 | 118.23 (11) | C23—C24—H24 | 121.2 |
C12—C11—C1 | 122.39 (10) | C25—C24—H24 | 121.2 |
C13—C12—C11 | 119.94 (11) | C24—C25—C26 | 120.79 (12) |
C13—C12—H12 | 120.0 | C24—C25—H25 | 119.6 |
C11—C12—H12 | 120.0 | C26—C25—H25 | 119.6 |
C14—C13—C12 | 120.16 (12) | C25—C26—C21 | 120.99 (11) |
C14—C13—H13 | 119.9 | C25—C26—H26 | 119.5 |
C12—C13—H13 | 119.9 | C21—C26—H26 | 119.5 |
O1—C1—C2—C3 | 3.75 (16) | C1—C11—C16—C15 | −179.34 (12) |
C11—C1—C2—C3 | −174.02 (9) | C2—C3—C21—C22 | 153.77 (10) |
O1—C1—C2—C3i | 108.12 (13) | C2i—C3—C21—C22 | −101.51 (12) |
C11—C1—C2—C3i | −69.65 (13) | C2—C3—C21—C26 | −29.57 (16) |
C1—C2—C3—C21 | −120.73 (11) | C2i—C3—C21—C26 | 75.16 (14) |
C3i—C2—C3—C21 | 120.45 (11) | C26—C21—C22—C23 | 0.10 (17) |
C1—C2—C3—C2i | 118.82 (11) | C3—C21—C22—C23 | 176.93 (11) |
C3i—C2—C3—C2i | 0.0 | C21—C22—C23—C24 | 0.70 (19) |
O1—C1—C11—C16 | −28.05 (17) | C21—C22—C23—N1 | 179.91 (11) |
C2—C1—C11—C16 | 149.76 (11) | O3—N1—C23—C24 | 11.86 (19) |
O1—C1—C11—C12 | 152.23 (12) | O2—N1—C23—C24 | −167.48 (14) |
C2—C1—C11—C12 | −29.96 (16) | O3—N1—C23—C22 | −167.39 (13) |
C16—C11—C12—C13 | 1.65 (18) | O2—N1—C23—C22 | 13.3 (2) |
C1—C11—C12—C13 | −178.63 (12) | C22—C23—C24—C25 | −0.62 (19) |
C11—C12—C13—C14 | −2.1 (2) | N1—C23—C24—C25 | −179.82 (12) |
C12—C13—C14—C15 | 0.5 (2) | C23—C24—C25—C26 | −0.24 (19) |
C13—C14—C15—C16 | 1.5 (2) | C24—C25—C26—C21 | 1.03 (19) |
C14—C15—C16—C11 | −2.0 (2) | C22—C21—C26—C25 | −0.94 (18) |
C12—C11—C16—C15 | 0.39 (19) | C3—C21—C26—C25 | −177.61 (11) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 1.00 | 2.40 | 2.8509 (14) | 106 |
C3—H3···O1ii | 1.00 | 2.56 | 3.3957 (15) | 141 |
C14—H14···O2iii | 0.95 | 2.56 | 3.3666 (19) | 142 |
C2—H2···O3iv | 1.00 | 2.61 | 3.5009 (17) | 148 |
Symmetry codes: (ii) −x, −y, −z+1; (iii) x, y, z−1; (iv) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C30H22N2O6 |
Mr | 506.50 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 5.7850 (1), 14.7824 (3), 14.3589 (3) |
β (°) | 104.858 (1) |
V (Å3) | 1186.86 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.33 × 0.14 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.968, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11005, 2945, 2387 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.111, 1.03 |
No. of reflections | 2945 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.22 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 1.00 | 2.56 | 3.3957 (15) | 141 |
C14—H14···O2ii | 0.95 | 2.56 | 3.3666 (19) | 142 |
C2—H2···O3iii | 1.00 | 2.61 | 3.5009 (17) | 148 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y, z−1; (iii) x, −y+1/2, z−1/2. |
Acknowledgements
BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and the DST–PURSE for financial assistance.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. Web of Science PubMed CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Katerere, D. R., Gray, A. I., Kennedy, A. R., Nash, R. J. & Waigh, R. D. (2004). Phytochemistry, 65, 433–438. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176. Web of Science CrossRef PubMed CAS Google Scholar
Mustafa, A. (1952). Chem. Rev. 51, 1–23. CrossRef CAS Web of Science Google Scholar
Seidel, V., Bailleul, F. & Waterman, P. G. (2000). Phytochemistry, 55, 439–446. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stobbe, H. & Bremer, K. J. (1929). J. Prakt. Chem. 123, 1–60. CrossRef CAS Google Scholar
Zheng, Y., Zhuang, J.-P., Zhang, W.-Q., Leng, X.-B. & Weng, L.-H. (2001). Acta Cryst. E57, o1029–o1031. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhuang, J.-P. & Zheng, Y. (2002). Acta Cryst. E58, o1195–o1197. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones comprise one of the most commonly occurring classes of medicinally important natural compounds, since they show various biological activities (Dimmock et al., 1999; Marais et al.,. 2005). Cyclobutane-containing natural products have, e.g., been reported for Combretum albopunctatum (Katerere et al., 2004) and Goniothalamus thwaitesii (Seidel et al. 2000). Because of the various biological activities of these natural compounds, the synthesis of cyclobutane-derived compounds is one of the most intensively studied photochemical reactions of chalcone derivatives. These reactions can be carried out in solution, solid state and molten state by sunlight or UV-vis irradiation, with variable results in terms of yield and product composition (Stobbe & Bremer, 1929; Mustafa, 1952). The crystal structures of some dimerized chalcones such as r-1,c-2,t-3,t-4- 1,3-bis(4-methoxyphenyl)-2,4-bis(5-phenyl-1,3,4-oxadiazol-2-yl) cyclobutane 1,4-dioxane solvate (Zheng et al., 2001) and r-1,c-2,t- 3,t-4–1,2-bis(4-methoxyphenyl)-3,4-bis(5-phenyl-1,3,4-oxadiazol-2-yl) cyclobutane (Zhuang & Zheng, 2002) have been reported. In view of the pharmacological importance of chalcone derivatives, the synthesis of such a compound was attempted. Upon the determination of the reaction product's crystal structure, the unintentional formation of the corresponding dimer in the wake of the reaction sequence was revealed.
The title compound, [3-benzoyl-2,4-bis(3-nitrophenyl)cyclobutyl](phenyl)methanone, features a central cyclobutane moiety that bears one aromatic substituent on each carbon atom. Due to the centrosymmetry of the molecule, the relative orientation of these substituents corresponds to cis-trans-cis-trans. The small puckering amplitude precludes a puckering analysis of this ring (Cremer & Pople, 1975). The least-squares planes defined by the respective carbon atoms of the aromatic substituents intersect with the least-squares plane defined the carbon atoms of the cyclobutane ring at angles of 76.81 (7) ° and 89.22 (8) °. The aforementioned planes of the two different aromatic moieties in the asymmetric unit enclose an angle of 24.09 (6) ° (Fig. 1).
In the crystal, intermolecular C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the respective atoms can be observed. These are supported by the hydrogen atom in para position of the non-substituted phenyl group as well as all methine-type hydrogen atoms while the hydrogen atoms of the nitrophenyl moiety do not take part in such contacts. All oxygen atoms present in the molecule act as acceptors. Furthermore, one intramolecular C–H···O contact between a carbonyl group and a methine-type hydrogen atom is apparent. In total, the molecules are connected to a three-dimensional network. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is S(5)C11(8)C11(13)R22(10) on the unary level. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 3.9601 (8) Å and is apparent between the two different aromatic substituents (Fig. 2).
The packing of the title compound in the crystal structure is shown in Figure 3.