organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3272-o3273

[3-Benzoyl-2,4-bis­­(3-nitro­phen­yl)cyclo­but­yl](phen­yl)methanone

aMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 15 October 2012; accepted 29 October 2012; online 3 November 2012)

The asymmetric unit of the title compound, C30H22N2O6, comprises a half-mol­ecule of the cyclo­butane derivative. The least-squares planes defined by the respective C atoms of the aromatic substituents inter­sect at angles of 76.81 (7) and 89.22 (8)° with the least-squares plane defined by the C atoms of the cyclo­butane ring. In the crystal, C—H⋯O contacts connect the mol­ecules into a three-dimensional network. The shortest centroid–centroid distance between the two different aromatic rings is 3.9601 (8) Å.

Related literature

For the biological activity of chalcones and cyclo­butane-derived compounds, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Marais et al. (2005[Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145-2176.]); Katerere et al. (2004[Katerere, D. R., Gray, A. I., Kennedy, A. R., Nash, R. J. & Waigh, R. D. (2004). Phytochemistry, 65, 433-438.]); Seidel et al. (2000[Seidel, V., Bailleul, F. & Waterman, P. G. (2000). Phytochemistry, 55, 439-446.]). For the crystal structures of similar compounds, see: Zheng et al. (2001[Zheng, Y., Zhuang, J.-P., Zhang, W.-Q., Leng, X.-B. & Weng, L.-H. (2001). Acta Cryst. E57, o1029-o1031.]); Zhuang & Zheng (2002[Zhuang, J.-P. & Zheng, Y. (2002). Acta Cryst. E58, o1195-o1197.]). For general information about the dimerization of chalcones, see: Stobbe & Bremer (1929[Stobbe, H. & Bremer, K. J. (1929). J. Prakt. Chem. 123, 1-60.]); Mustafa (1952[Mustafa, A. (1952). Chem. Rev. 51, 1-23.]). For puckering analysis of cyclic motifs, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C30H22N2O6

  • Mr = 506.50

  • Monoclinic, P 21 /c

  • a = 5.7850 (1) Å

  • b = 14.7824 (3) Å

  • c = 14.3589 (3) Å

  • β = 104.858 (1)°

  • V = 1186.86 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.33 × 0.14 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.989

  • 11005 measured reflections

  • 2945 independent reflections

  • 2387 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.03

  • 2945 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 1.00 2.56 3.3957 (15) 141
C14—H14⋯O2ii 0.95 2.56 3.3666 (19) 142
C2—H2⋯O3iii 1.00 2.61 3.5009 (17) 148
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y, z-1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones comprise one of the most commonly occurring classes of medicinally important natural compounds, since they show various biological activities (Dimmock et al., 1999; Marais et al.,. 2005). Cyclobutane-containing natural products have, e.g., been reported for Combretum albopunctatum (Katerere et al., 2004) and Goniothalamus thwaitesii (Seidel et al. 2000). Because of the various biological activities of these natural compounds, the synthesis of cyclobutane-derived compounds is one of the most intensively studied photochemical reactions of chalcone derivatives. These reactions can be carried out in solution, solid state and molten state by sunlight or UV-vis irradiation, with variable results in terms of yield and product composition (Stobbe & Bremer, 1929; Mustafa, 1952). The crystal structures of some dimerized chalcones such as r-1,c-2,t-3,t-4- 1,3-bis(4-methoxyphenyl)-2,4-bis(5-phenyl-1,3,4-oxadiazol-2-yl) cyclobutane 1,4-dioxane solvate (Zheng et al., 2001) and r-1,c-2,t- 3,t-4–1,2-bis(4-methoxyphenyl)-3,4-bis(5-phenyl-1,3,4-oxadiazol-2-yl) cyclobutane (Zhuang & Zheng, 2002) have been reported. In view of the pharmacological importance of chalcone derivatives, the synthesis of such a compound was attempted. Upon the determination of the reaction product's crystal structure, the unintentional formation of the corresponding dimer in the wake of the reaction sequence was revealed.

The title compound, [3-benzoyl-2,4-bis(3-nitrophenyl)cyclobutyl](phenyl)methanone, features a central cyclobutane moiety that bears one aromatic substituent on each carbon atom. Due to the centrosymmetry of the molecule, the relative orientation of these substituents corresponds to cis-trans-cis-trans. The small puckering amplitude precludes a puckering analysis of this ring (Cremer & Pople, 1975). The least-squares planes defined by the respective carbon atoms of the aromatic substituents intersect with the least-squares plane defined the carbon atoms of the cyclobutane ring at angles of 76.81 (7) ° and 89.22 (8) °. The aforementioned planes of the two different aromatic moieties in the asymmetric unit enclose an angle of 24.09 (6) ° (Fig. 1).

In the crystal, intermolecular C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the respective atoms can be observed. These are supported by the hydrogen atom in para position of the non-substituted phenyl group as well as all methine-type hydrogen atoms while the hydrogen atoms of the nitrophenyl moiety do not take part in such contacts. All oxygen atoms present in the molecule act as acceptors. Furthermore, one intramolecular C–H···O contact between a carbonyl group and a methine-type hydrogen atom is apparent. In total, the molecules are connected to a three-dimensional network. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is S(5)C11(8)C11(13)R22(10) on the unary level. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 3.9601 (8) Å and is apparent between the two different aromatic substituents (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For the biological activity of chalcones and cyclobutane-derived compounds, see: Dimmock et al. (1999); Marais et al. (2005); Katerere et al. (2004); Seidel et al. (2000). For the crystal structures of similar compounds, see: Zheng et al. (2001); Zhuang & Zheng (2002). For general information about the dimerization of chalcones, see: Stobbe & Bremer (1929); Mustafa (1952). For puckering analysis of cyclic motifs, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a mixture of 3-nitrobenzaldehyde (1.51 g, 0.01 mol) and acetophenone (1.16 ml, 0.01 mol) in ethanol (50 ml), a sodium hydroxide solution (10%, 10 ml) was added. The mixture was stirred at 278–283 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals suitable for the X-ray diffraction study were grown from methanol by slow evaporation at room temperature. The synthesized chalcone was dimerized during crystallization.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 1.00 Å for methine groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level). Symmetry operator: i -x + 1, -y, -z + 1.
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. For clarity, only a selection of contacts is depicted. Symmetry operators: i x, y, z - 1; ii x, y, z + 1.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
[3-Benzoyl-2,4-bis(3-nitrophenyl)cyclobutyl](phenyl)methanone top
Crystal data top
C30H22N2O6F(000) = 528
Mr = 506.50Dx = 1.417 Mg m3
Monoclinic, P21/cMelting point > 523 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.7850 (1) ÅCell parameters from 4849 reflections
b = 14.7824 (3) Åθ = 2.8–28.3°
c = 14.3589 (3) ŵ = 0.10 mm1
β = 104.858 (1)°T = 200 K
V = 1186.86 (4) Å3Block, colourless
Z = 20.33 × 0.14 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2945 independent reflections
Radiation source: fine-focus sealed tube2387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.968, Tmax = 0.989k = 1719
11005 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.055P)2 + 0.3935P]
where P = (Fo2 + 2Fc2)/3
2945 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C30H22N2O6V = 1186.86 (4) Å3
Mr = 506.50Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.7850 (1) ŵ = 0.10 mm1
b = 14.7824 (3) ÅT = 200 K
c = 14.3589 (3) Å0.33 × 0.14 × 0.11 mm
β = 104.858 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2945 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2387 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.989Rint = 0.020
11005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
2945 reflectionsΔρmin = 0.22 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02716 (16)0.08341 (7)0.41101 (7)0.0343 (2)
O20.4112 (3)0.11125 (12)0.89447 (9)0.0693 (4)
O30.6594 (3)0.21980 (8)0.94461 (8)0.0584 (4)
N10.5674 (2)0.16321 (9)0.88471 (8)0.0386 (3)
C10.2098 (2)0.07918 (8)0.38436 (8)0.0223 (2)
C20.4494 (2)0.05901 (8)0.45303 (8)0.0206 (2)
H20.56840.10740.45060.025*
C30.44539 (19)0.03813 (8)0.55776 (8)0.0203 (2)
H30.27670.03310.56290.024*
C110.2032 (2)0.09061 (8)0.28021 (8)0.0224 (2)
C120.3971 (2)0.12395 (9)0.24994 (9)0.0266 (3)
H120.54140.13910.29600.032*
C130.3792 (2)0.13495 (10)0.15237 (9)0.0333 (3)
H130.50960.15960.13180.040*
C140.1718 (3)0.11009 (11)0.08487 (10)0.0371 (3)
H140.16070.11730.01810.045*
C150.0192 (2)0.07487 (10)0.11440 (9)0.0358 (3)
H150.15990.05650.06800.043*
C160.0049 (2)0.06645 (9)0.21178 (9)0.0287 (3)
H160.13810.04400.23200.034*
C210.5883 (2)0.09762 (8)0.63665 (8)0.0209 (2)
C220.5151 (2)0.10549 (8)0.72138 (8)0.0245 (2)
H220.37360.07620.72750.029*
C230.6502 (2)0.15632 (8)0.79654 (9)0.0276 (3)
C240.8559 (2)0.20118 (9)0.79156 (9)0.0319 (3)
H240.94470.23620.84410.038*
C250.9279 (2)0.19330 (9)0.70728 (10)0.0307 (3)
H251.06840.22350.70150.037*
C260.7973 (2)0.14165 (8)0.63095 (9)0.0254 (2)
H260.85120.13630.57400.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (4)0.0478 (6)0.0298 (5)0.0065 (4)0.0101 (4)0.0091 (4)
O20.0738 (9)0.1032 (12)0.0425 (7)0.0292 (8)0.0360 (6)0.0212 (7)
O30.1001 (10)0.0466 (7)0.0285 (5)0.0007 (7)0.0169 (6)0.0144 (5)
N10.0505 (7)0.0419 (7)0.0239 (5)0.0073 (6)0.0106 (5)0.0050 (5)
C10.0250 (5)0.0196 (5)0.0222 (5)0.0009 (4)0.0059 (4)0.0023 (4)
C20.0227 (5)0.0199 (5)0.0194 (5)0.0018 (4)0.0059 (4)0.0002 (4)
C30.0206 (5)0.0219 (5)0.0185 (5)0.0005 (4)0.0056 (4)0.0006 (4)
C110.0246 (5)0.0210 (5)0.0214 (5)0.0035 (4)0.0055 (4)0.0027 (4)
C120.0244 (6)0.0290 (6)0.0265 (6)0.0013 (5)0.0064 (4)0.0031 (5)
C130.0318 (6)0.0419 (7)0.0296 (6)0.0041 (6)0.0144 (5)0.0068 (6)
C140.0405 (7)0.0497 (8)0.0218 (6)0.0089 (6)0.0091 (5)0.0023 (6)
C150.0335 (7)0.0455 (8)0.0248 (6)0.0003 (6)0.0007 (5)0.0029 (6)
C160.0258 (6)0.0320 (6)0.0276 (6)0.0006 (5)0.0052 (5)0.0021 (5)
C210.0237 (5)0.0190 (5)0.0197 (5)0.0025 (4)0.0050 (4)0.0000 (4)
C220.0267 (6)0.0241 (6)0.0237 (5)0.0019 (4)0.0085 (4)0.0000 (4)
C230.0355 (6)0.0259 (6)0.0213 (6)0.0055 (5)0.0073 (5)0.0017 (5)
C240.0373 (7)0.0256 (6)0.0280 (6)0.0008 (5)0.0004 (5)0.0050 (5)
C250.0284 (6)0.0266 (6)0.0354 (7)0.0052 (5)0.0050 (5)0.0005 (5)
C260.0263 (6)0.0244 (6)0.0260 (6)0.0003 (4)0.0076 (4)0.0009 (5)
Geometric parameters (Å, º) top
O1—C11.2141 (15)C13—H130.9500
O2—N11.2210 (19)C14—C151.383 (2)
O3—N11.2199 (16)C14—H140.9500
N1—C231.4676 (17)C15—C161.3850 (18)
C1—C111.4957 (16)C15—H150.9500
C1—C21.5104 (15)C16—H160.9500
C2—C31.5412 (15)C21—C221.3917 (16)
C2—C3i1.5827 (16)C21—C261.3938 (17)
C2—H21.0000C22—C231.3810 (17)
C3—C211.5032 (15)C22—H220.9500
C3—C2i1.5827 (16)C23—C241.380 (2)
C3—H31.0000C24—C251.382 (2)
C11—C161.3910 (16)C24—H240.9500
C11—C121.3931 (17)C25—C261.3895 (17)
C12—C131.3877 (17)C25—H250.9500
C12—H120.9500C26—H260.9500
C13—C141.385 (2)
O3—N1—O2123.53 (13)C15—C14—C13120.16 (12)
O3—N1—C23118.42 (13)C15—C14—H14119.9
O2—N1—C23118.05 (12)C13—C14—H14119.9
O1—C1—C11120.53 (10)C14—C15—C16119.85 (12)
O1—C1—C2122.11 (10)C14—C15—H15120.1
C11—C1—C2117.32 (10)C16—C15—H15120.1
C1—C2—C3115.82 (9)C15—C16—C11120.46 (12)
C1—C2—C3i115.26 (9)C15—C16—H16119.8
C3—C2—C3i90.93 (8)C11—C16—H16119.8
C1—C2—H2111.1C22—C21—C26118.37 (10)
C3—C2—H2111.1C22—C21—C3118.42 (10)
C3i—C2—H2111.1C26—C21—C3123.13 (10)
C21—C3—C2118.37 (9)C23—C22—C21119.39 (12)
C21—C3—C2i116.97 (9)C23—C22—H22120.3
C2—C3—C2i89.07 (8)C21—C22—H22120.3
C21—C3—H3110.3C24—C23—C22122.92 (12)
C2—C3—H3110.3C24—C23—N1119.20 (11)
C2i—C3—H3110.3C22—C23—N1117.87 (12)
C16—C11—C12119.38 (11)C23—C24—C25117.54 (11)
C16—C11—C1118.23 (11)C23—C24—H24121.2
C12—C11—C1122.39 (10)C25—C24—H24121.2
C13—C12—C11119.94 (11)C24—C25—C26120.79 (12)
C13—C12—H12120.0C24—C25—H25119.6
C11—C12—H12120.0C26—C25—H25119.6
C14—C13—C12120.16 (12)C25—C26—C21120.99 (11)
C14—C13—H13119.9C25—C26—H26119.5
C12—C13—H13119.9C21—C26—H26119.5
O1—C1—C2—C33.75 (16)C1—C11—C16—C15179.34 (12)
C11—C1—C2—C3174.02 (9)C2—C3—C21—C22153.77 (10)
O1—C1—C2—C3i108.12 (13)C2i—C3—C21—C22101.51 (12)
C11—C1—C2—C3i69.65 (13)C2—C3—C21—C2629.57 (16)
C1—C2—C3—C21120.73 (11)C2i—C3—C21—C2675.16 (14)
C3i—C2—C3—C21120.45 (11)C26—C21—C22—C230.10 (17)
C1—C2—C3—C2i118.82 (11)C3—C21—C22—C23176.93 (11)
C3i—C2—C3—C2i0.0C21—C22—C23—C240.70 (19)
O1—C1—C11—C1628.05 (17)C21—C22—C23—N1179.91 (11)
C2—C1—C11—C16149.76 (11)O3—N1—C23—C2411.86 (19)
O1—C1—C11—C12152.23 (12)O2—N1—C23—C24167.48 (14)
C2—C1—C11—C1229.96 (16)O3—N1—C23—C22167.39 (13)
C16—C11—C12—C131.65 (18)O2—N1—C23—C2213.3 (2)
C1—C11—C12—C13178.63 (12)C22—C23—C24—C250.62 (19)
C11—C12—C13—C142.1 (2)N1—C23—C24—C25179.82 (12)
C12—C13—C14—C150.5 (2)C23—C24—C25—C260.24 (19)
C13—C14—C15—C161.5 (2)C24—C25—C26—C211.03 (19)
C14—C15—C16—C112.0 (2)C22—C21—C26—C250.94 (18)
C12—C11—C16—C150.39 (19)C3—C21—C26—C25177.61 (11)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O11.002.402.8509 (14)106
C3—H3···O1ii1.002.563.3957 (15)141
C14—H14···O2iii0.952.563.3666 (19)142
C2—H2···O3iv1.002.613.5009 (17)148
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC30H22N2O6
Mr506.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.7850 (1), 14.7824 (3), 14.3589 (3)
β (°) 104.858 (1)
V3)1186.86 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.33 × 0.14 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.968, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11005, 2945, 2387
Rint0.020
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.03
No. of reflections2945
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.22

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i1.002.563.3957 (15)141
C14—H14···O2ii0.952.563.3666 (19)142
C2—H2···O3iii1.002.613.5009 (17)148
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and the DST–PURSE for financial assistance.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaterere, D. R., Gray, A. I., Kennedy, A. R., Nash, R. J. & Waigh, R. D. (2004). Phytochemistry, 65, 433–438.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMustafa, A. (1952). Chem. Rev. 51, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationSeidel, V., Bailleul, F. & Waterman, P. G. (2000). Phytochemistry, 55, 439–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStobbe, H. & Bremer, K. J. (1929). J. Prakt. Chem. 123, 1–60.  CrossRef CAS Google Scholar
First citationZheng, Y., Zhuang, J.-P., Zhang, W.-Q., Leng, X.-B. & Weng, L.-H. (2001). Acta Cryst. E57, o1029–o1031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhuang, J.-P. & Zheng, Y. (2002). Acta Cryst. E58, o1195–o1197.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3272-o3273
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds