organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3389-o3390

Ethyl 3-(2-eth­­oxy-2-oxoeth­­oxy)-6-(tri­fluoro­meth­yl)furo[3,2-c]quinoline-2-carboxyl­ate

aNational Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bGITAM University, Department of Engineering Chemistry, GIT, Rushikonda, Visakhapatnam, A.P. 530 045, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 31 October 2012; accepted 14 November 2012; online 24 November 2012)

In the title compound, C19H16F3NO6, a quinoline derivative featuring an annealated furan substituent, the mean planes of the carb­oxy substituents are at an angle of 74.3 (2)°. In the crystal, C—H⋯O contacts result in undulating chains along [110]. C—H⋯F contacts also occur. The shortest centroid–centroid distance between rings is 3.3376 (7) Å, involving two furan rings of neighbouring mol­ecules.

Related literature

For background to the pharmacological activity of heterocyclic compounds, see: Isloor et al. (2000[Isloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265-270.], 2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Caprio et al. (2000[Caprio, V., Guyen, B., Opoku-Boahen, Y., Mann, J., Gowan, S. M., Kelland, L. M., Read, M. A. & Neidle, S. (2000). Bioorg. Med. Chem. Lett. 10, 2063-2066.]); Kaur et al. (2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]); Chou et al. (2010[Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047-8058.]); Chen et al. (2004[Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539-6546.]); Garudachari et al. (2012[Garudachari, B., Satyanarayana, M. N., Thippeswamy, B., Shivakumar, C. K., Shivananda, K. N. & Isloor, A. M. (2012). Eur. J. Med. Chem. 54, 900-906.]); Shingalapur et al. (2009[Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244-4248.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16F3NO6

  • Mr = 411.33

  • Triclinic, [P \overline 1]

  • a = 8.9167 (3) Å

  • b = 8.9223 (3) Å

  • c = 13.4125 (5) Å

  • α = 102.895 (1)°

  • β = 97.098 (2)°

  • γ = 116.035 (1)°

  • V = 904.22 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 200 K

  • 0.56 × 0.38 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.980

  • 19743 measured reflections

  • 4499 independent reflections

  • 4019 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.04

  • 4499 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.95 2.44 3.2556 (13) 144
C13—H13B⋯F1ii 0.99 2.46 3.2829 (12) 141
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic compounds play an important role in our ongoing interest in developing new antimicrobial agents (Isloor et al., 2000; Isloor et al., 2009). The quinoline nucleus is one of the most important and widely exploited heterocyclic ring systems for the development of bioactive molecules (Caprio et al., 2000). Members of this family have a wide range of applications in pharmacology as antimalarial (Kaur et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004), antimicrobial (Garudachari et al., 2012) and antiviral (Shingalapur et al., 2009) agents. In view of the promising biological and pharmaceutical activity, the title compound was synthesized to study its crystal structure.

The aromatic scaffold is essentially flat. The least-squares plane defined by all the non-hydrogen atoms (r.m.s. of all fitted atoms = 0.0175 Å) features the carbon atom bearing the trifluoromethyl group as the atom deviating most from this common plane by 0.029 (1) Å. The least-squares planes defined by the respective atoms of the phenyl moiety and the furane moiety intersect at an angle of 2.26 (6) ° while they enclose angles of 0.76 (5) ° and 1.51 (6) ° with the least-squares plane defined by the atoms of the central heterocycle. The fluorine atoms of the trifluoromethyl group adopt a staggered conformation with respect to the nitrogen atom. The two carboxy substituents bonded to the furane system are orientated nearly perpendicular to each other with the least-squares planes defined by their respective atoms enclosing an angle of 74.3 (2) °. (Fig. 1).

In the crystal, C–H···O and C–H···F contacts are apparent whose range invariably falls by more than 0.2 Å below the sum of van-der-Waals radii of the atoms participating. While the former contacts are supported by the hydrogen atom in ortho position to the trifluoromethyl group as the donor and one of the double bonded oxygen atoms as the acceptor, the C–H···F contacts stem from one of the hydrogen atoms of a methylene group. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, the molecules are connected to undulated chains along [1 1 0]. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is R22(22)R22(24) on the unary level. The shortest intercentroid distance between two aromatic systems was measured at 3.3376 (7) Å and is apparent between two furane moieties in neighbouring molecules (Fig. 2).

Related literature top

For background to the pharmacological activity of heterocyclic compounds, see: Isloor et al. (2000, 2009); Caprio et al. (2000); Kaur et al. (2010); Chou et al. (2010); Chen et al. (2004); Garudachari et al. (2012); Shingalapur et al. (2009). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a suspension of ethyl 4-hydroxy-8-(trifluoromethyl)quinoline-3-carboxylate (1.0 g, 0.0035 mol) and potassium carbonate (1.06 g, 0.0077 mol) in dimethylformamide (10 ml) ethyl 4-chloroacetoacetate (0.943 g, 0.0077 mol) was added. The mixture was allowed to stir at 80 °C for 2 h and was then quenched by the slow addition of water (25 ml). The precipitated solids were collected by filtration and recrystallized from ethanol, yield: 1.20 g (83.33%).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms and C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 1 0]. For clarity, only the C–H···F contacts are depicted. Symmetry operator: i -x + 1, -y + 1, -z.
Ethyl 3-(2-ethoxy-2-oxoethoxy)-6-(trifluoromethyl)furo[3,2-c]quinoline- 2-carboxylate top
Crystal data top
C19H16F3NO6Z = 2
Mr = 411.33F(000) = 424
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Melting point = 400–398 K
a = 8.9167 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9223 (3) ÅCell parameters from 9936 reflections
c = 13.4125 (5) Åθ = 2.7–28.5°
α = 102.895 (1)°µ = 0.13 mm1
β = 97.098 (2)°T = 200 K
γ = 116.035 (1)°Block, colourless
V = 904.22 (5) Å30.56 × 0.38 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
4499 independent reflections
Radiation source: fine-focus sealed tube4019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 28.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.918, Tmax = 0.980k = 1011
19743 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.2384P]
where P = (Fo2 + 2Fc2)/3
4499 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H16F3NO6γ = 116.035 (1)°
Mr = 411.33V = 904.22 (5) Å3
Triclinic, P1Z = 2
a = 8.9167 (3) ÅMo Kα radiation
b = 8.9223 (3) ŵ = 0.13 mm1
c = 13.4125 (5) ÅT = 200 K
α = 102.895 (1)°0.56 × 0.38 × 0.15 mm
β = 97.098 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4499 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4019 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.980Rint = 0.014
19743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
4499 reflectionsΔρmin = 0.21 e Å3
264 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11127 (9)0.15513 (9)0.26381 (6)0.04187 (17)
F20.02108 (11)0.07488 (11)0.36753 (6)0.04779 (19)
F30.14712 (10)0.33572 (10)0.35590 (6)0.0530 (2)
O10.01551 (9)0.36022 (10)0.09774 (6)0.02896 (16)
O20.39515 (10)0.69558 (10)0.08994 (6)0.03272 (17)
O30.52925 (10)0.64136 (10)0.26519 (6)0.03546 (18)
O40.61251 (10)0.91813 (10)0.36366 (6)0.03402 (17)
O50.21017 (12)0.77916 (13)0.29209 (8)0.0532 (3)
O60.03854 (11)0.53320 (11)0.26364 (6)0.03750 (19)
N10.14170 (11)0.17822 (11)0.15495 (7)0.02913 (18)
C10.01414 (12)0.06686 (13)0.14013 (8)0.0267 (2)
C20.08456 (13)0.11463 (13)0.05685 (8)0.0274 (2)
C30.24555 (14)0.00514 (15)0.04615 (9)0.0329 (2)
H30.29100.02900.00980.040*
C40.33531 (14)0.17029 (15)0.11687 (10)0.0375 (2)
H40.44390.25110.11020.045*
C50.26790 (14)0.22145 (14)0.19950 (9)0.0352 (2)
H50.33140.33690.24800.042*
C60.11170 (13)0.10699 (13)0.21111 (8)0.0300 (2)
C70.04134 (15)0.16644 (14)0.29876 (9)0.0355 (2)
C80.23213 (13)0.33840 (13)0.08870 (8)0.0278 (2)
H80.33880.41560.09940.033*
C90.17610 (12)0.39984 (13)0.00194 (7)0.02619 (19)
C100.02059 (12)0.28672 (13)0.01161 (7)0.02626 (19)
C110.12332 (13)0.53029 (13)0.14338 (8)0.0285 (2)
C120.24320 (13)0.55879 (13)0.08426 (8)0.0270 (2)
C130.48632 (14)0.84001 (13)0.18518 (8)0.0311 (2)
H13A0.41090.89010.20520.037*
H13B0.58870.93260.17280.037*
C140.54340 (13)0.78448 (13)0.27476 (8)0.0285 (2)
C150.67733 (15)0.88722 (16)0.45808 (9)0.0390 (3)
H15A0.75901.00130.51200.047*
H15B0.74090.82200.44000.047*
C160.53376 (19)0.7847 (2)0.50341 (11)0.0505 (3)
H16A0.46000.66650.45340.076*
H16B0.46500.84440.51620.076*
H16C0.58260.77620.57020.076*
C170.10712 (14)0.63031 (14)0.24067 (9)0.0321 (2)
C180.06969 (18)0.61382 (17)0.35973 (10)0.0453 (3)
H18A0.08460.71520.35330.054*
H18B0.02870.65560.42090.054*
C190.23018 (19)0.47652 (19)0.37435 (11)0.0494 (3)
H19A0.32560.43390.31230.074*
H19B0.25790.52680.43760.074*
H19C0.21250.37870.38270.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0383 (4)0.0366 (4)0.0466 (4)0.0170 (3)0.0099 (3)0.0082 (3)
F20.0582 (5)0.0521 (4)0.0312 (3)0.0230 (4)0.0127 (3)0.0165 (3)
F30.0485 (4)0.0340 (4)0.0471 (4)0.0056 (3)0.0067 (3)0.0071 (3)
O10.0267 (3)0.0310 (4)0.0284 (3)0.0128 (3)0.0085 (3)0.0095 (3)
O20.0293 (4)0.0297 (4)0.0281 (4)0.0060 (3)0.0072 (3)0.0066 (3)
O30.0373 (4)0.0289 (4)0.0383 (4)0.0147 (3)0.0084 (3)0.0102 (3)
O40.0367 (4)0.0296 (4)0.0287 (4)0.0124 (3)0.0053 (3)0.0054 (3)
O50.0430 (5)0.0424 (5)0.0519 (5)0.0087 (4)0.0200 (4)0.0047 (4)
O60.0389 (4)0.0354 (4)0.0370 (4)0.0163 (3)0.0186 (3)0.0079 (3)
N10.0281 (4)0.0280 (4)0.0265 (4)0.0092 (3)0.0070 (3)0.0089 (3)
C10.0255 (4)0.0264 (4)0.0255 (4)0.0095 (4)0.0036 (4)0.0110 (4)
C20.0252 (4)0.0287 (5)0.0271 (5)0.0108 (4)0.0044 (4)0.0121 (4)
C30.0274 (5)0.0362 (5)0.0352 (5)0.0123 (4)0.0092 (4)0.0168 (4)
C40.0270 (5)0.0346 (5)0.0442 (6)0.0066 (4)0.0076 (4)0.0186 (5)
C50.0309 (5)0.0275 (5)0.0371 (5)0.0071 (4)0.0014 (4)0.0109 (4)
C60.0295 (5)0.0276 (5)0.0278 (5)0.0103 (4)0.0021 (4)0.0095 (4)
C70.0357 (5)0.0278 (5)0.0312 (5)0.0084 (4)0.0040 (4)0.0050 (4)
C80.0253 (4)0.0282 (5)0.0263 (4)0.0092 (4)0.0072 (4)0.0095 (4)
C90.0253 (4)0.0273 (4)0.0243 (4)0.0112 (4)0.0041 (3)0.0093 (4)
C100.0255 (4)0.0304 (5)0.0242 (4)0.0135 (4)0.0062 (3)0.0110 (4)
C110.0269 (5)0.0289 (5)0.0285 (5)0.0128 (4)0.0059 (4)0.0088 (4)
C120.0261 (4)0.0279 (5)0.0258 (4)0.0121 (4)0.0049 (4)0.0092 (4)
C130.0303 (5)0.0251 (5)0.0305 (5)0.0086 (4)0.0052 (4)0.0068 (4)
C140.0237 (4)0.0270 (5)0.0302 (5)0.0087 (4)0.0082 (4)0.0075 (4)
C150.0365 (6)0.0431 (6)0.0296 (5)0.0149 (5)0.0037 (4)0.0088 (4)
C160.0531 (8)0.0612 (8)0.0414 (7)0.0262 (7)0.0187 (6)0.0230 (6)
C170.0314 (5)0.0347 (5)0.0329 (5)0.0178 (4)0.0100 (4)0.0100 (4)
C180.0492 (7)0.0425 (6)0.0410 (6)0.0199 (6)0.0236 (5)0.0055 (5)
C190.0513 (7)0.0509 (7)0.0476 (7)0.0230 (6)0.0267 (6)0.0139 (6)
Geometric parameters (Å, º) top
F1—C71.3350 (14)C5—H50.9500
F2—C71.3412 (13)C6—C71.5011 (16)
F3—C71.3462 (12)C8—C91.4155 (14)
O1—C101.3444 (12)C8—H80.9500
O1—C111.3996 (12)C9—C101.3748 (13)
O2—C121.3463 (12)C9—C121.4347 (14)
O2—C131.4291 (12)C11—C121.3772 (14)
O3—C141.2019 (13)C11—C171.4698 (14)
O4—C141.3275 (12)C13—C141.5113 (15)
O4—C151.4591 (14)C13—H13A0.9900
O5—C171.2029 (14)C13—H13B0.9900
O6—C171.3277 (13)C15—C161.5028 (18)
O6—C181.4511 (13)C15—H15A0.9900
N1—C81.3140 (13)C15—H15B0.9900
N1—C11.3791 (13)C16—H16A0.9800
C1—C21.4211 (14)C16—H16B0.9800
C1—C61.4215 (14)C16—H16C0.9800
C2—C101.4050 (14)C18—C191.4915 (18)
C2—C31.4128 (14)C18—H18A0.9900
C3—C41.3655 (16)C18—H18B0.9900
C3—H30.9500C19—H19A0.9800
C4—C51.4063 (17)C19—H19B0.9800
C4—H40.9500C19—H19C0.9800
C5—C61.3722 (15)
C10—O1—C11106.31 (8)O1—C11—C17113.88 (9)
C12—O2—C13120.56 (8)O2—C12—C11134.90 (10)
C14—O4—C15116.50 (9)O2—C12—C9118.69 (9)
C17—O6—C18116.38 (9)C11—C12—C9106.39 (9)
C8—N1—C1118.85 (9)O2—C13—C14111.56 (8)
N1—C1—C2123.90 (9)O2—C13—H13A109.3
N1—C1—C6119.02 (9)C14—C13—H13A109.3
C2—C1—C6117.07 (9)O2—C13—H13B109.3
C10—C2—C3124.76 (10)C14—C13—H13B109.3
C10—C2—C1113.96 (9)H13A—C13—H13B108.0
C3—C2—C1121.27 (9)O3—C14—O4126.09 (10)
C4—C3—C2119.53 (10)O3—C14—C13124.44 (9)
C4—C3—H3120.2O4—C14—C13109.47 (9)
C2—C3—H3120.2O4—C15—C16111.75 (10)
C3—C4—C5120.36 (10)O4—C15—H15A109.3
C3—C4—H4119.8C16—C15—H15A109.3
C5—C4—H4119.8O4—C15—H15B109.3
C6—C5—C4120.94 (10)C16—C15—H15B109.3
C6—C5—H5119.5H15A—C15—H15B107.9
C4—C5—H5119.5C15—C16—H16A109.5
C5—C6—C1120.81 (10)C15—C16—H16B109.5
C5—C6—C7119.75 (10)H16A—C16—H16B109.5
C1—C6—C7119.43 (9)C15—C16—H16C109.5
F1—C7—F2106.89 (9)H16A—C16—H16C109.5
F1—C7—F3105.90 (9)H16B—C16—H16C109.5
F2—C7—F3106.11 (9)O5—C17—O6124.62 (10)
F1—C7—C6112.95 (9)O5—C17—C11125.11 (10)
F2—C7—C6112.93 (10)O6—C17—C11110.27 (9)
F3—C7—C6111.55 (9)O6—C18—C19106.84 (10)
N1—C8—C9122.26 (9)O6—C18—H18A110.4
N1—C8—H8118.9C19—C18—H18A110.4
C9—C8—H8118.9O6—C18—H18B110.4
C10—C9—C8118.01 (9)C19—C18—H18B110.4
C10—C9—C12105.74 (9)H18A—C18—H18B108.6
C8—C9—C12136.23 (9)C18—C19—H19A109.5
O1—C10—C9111.91 (9)C18—C19—H19B109.5
O1—C10—C2125.07 (9)H19A—C19—H19B109.5
C9—C10—C2123.01 (9)C18—C19—H19C109.5
C12—C11—O1109.64 (9)H19A—C19—H19C109.5
C12—C11—C17136.46 (10)H19B—C19—H19C109.5
C8—N1—C1—C20.10 (15)C12—C9—C10—C2179.09 (9)
C8—N1—C1—C6179.49 (9)C3—C2—C10—O11.34 (16)
N1—C1—C2—C101.04 (14)C1—C2—C10—O1177.96 (9)
C6—C1—C2—C10178.55 (8)C3—C2—C10—C9179.52 (9)
N1—C1—C2—C3179.63 (9)C1—C2—C10—C91.18 (14)
C6—C1—C2—C30.77 (14)C10—O1—C11—C120.00 (11)
C10—C2—C3—C4179.03 (10)C10—O1—C11—C17179.01 (8)
C1—C2—C3—C40.21 (15)C13—O2—C12—C1116.43 (17)
C2—C3—C4—C50.33 (16)C13—O2—C12—C9165.38 (9)
C3—C4—C5—C60.28 (17)O1—C11—C12—O2178.43 (10)
C4—C5—C6—C10.32 (16)C17—C11—C12—O22.9 (2)
C4—C5—C6—C7178.76 (10)O1—C11—C12—C90.08 (11)
N1—C1—C6—C5179.56 (9)C17—C11—C12—C9178.78 (12)
C2—C1—C6—C50.82 (15)C10—C9—C12—O2178.80 (8)
N1—C1—C6—C71.35 (14)C8—C9—C12—O22.89 (17)
C2—C1—C6—C7178.26 (9)C10—C9—C12—C110.14 (11)
C5—C6—C7—F1120.41 (11)C8—C9—C12—C11178.44 (11)
C1—C6—C7—F158.69 (13)C12—O2—C13—C1464.30 (12)
C5—C6—C7—F2118.14 (11)C15—O4—C14—O30.15 (15)
C1—C6—C7—F262.76 (13)C15—O4—C14—C13178.99 (9)
C5—C6—C7—F31.26 (15)O2—C13—C14—O36.79 (14)
C1—C6—C7—F3177.84 (9)O2—C13—C14—O4174.05 (8)
C1—N1—C8—C90.79 (15)C14—O4—C15—C1678.05 (13)
N1—C8—C9—C100.65 (15)C18—O6—C17—O51.97 (18)
N1—C8—C9—C12177.51 (10)C18—O6—C17—C11178.42 (10)
C11—O1—C10—C90.10 (11)C12—C11—C17—O52.2 (2)
C11—O1—C10—C2179.13 (9)O1—C11—C17—O5179.15 (11)
C8—C9—C10—O1178.82 (8)C12—C11—C17—O6178.20 (11)
C12—C9—C10—O10.15 (11)O1—C11—C17—O60.45 (13)
C8—C9—C10—C20.42 (14)C17—O6—C18—C19174.85 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.952.443.2556 (13)144
C13—H13B···F1ii0.992.463.2829 (12)141
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H16F3NO6
Mr411.33
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.9167 (3), 8.9223 (3), 13.4125 (5)
α, β, γ (°)102.895 (1), 97.098 (2), 116.035 (1)
V3)904.22 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.56 × 0.38 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.918, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
19743, 4499, 4019
Rint0.014
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.04
No. of reflections4499
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.952.443.2556 (13)144
C13—H13B···F1ii0.992.463.2829 (12)141
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for a Young Scientist award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaprio, V., Guyen, B., Opoku-Boahen, Y., Mann, J., Gowan, S. M., Kelland, L. M., Read, M. A. & Neidle, S. (2000). Bioorg. Med. Chem. Lett. 10, 2063–2066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarudachari, B., Satyanarayana, M. N., Thippeswamy, B., Shivakumar, C. K., Shivananda, K. N. & Isloor, A. M. (2012). Eur. J. Med. Chem. 54, 900–906.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265–270.  CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3389-o3390
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds