organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3417-o3418

4-({(Z)-5-[(Z)-3-Eth­­oxy-4-hy­dr­oxy­benzyl­­idene]-3-methyl-4-oxo-1,3-thia­zolidin-2-yl­­idene}amino)­benzoic acid di­methyl­formamide monosolvate

aDepartment of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria, bUniversity Clinic of Radiotherapy, Medical University Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria, and cInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 12 November 2012; accepted 17 November 2012; online 24 November 2012)

The mol­ecular structure of the title compound, C20H18N2O5S·C3H7NO, represents an essentially planar 5-benzyl­idene-thia­zolidine moiety (r.m.s. deviation from planarity without ring substituents = 0.095 Å) to which the 4-amino­benzoic acid fragment is inclined at 76.23 (1)°. In the crystal, the benzoic acid mol­ecules are arranged in layers parallel to [001] which are built up from inversion dimers held together by head-to-tail phenol–carb­oxy O—H⋯O hydrogen bonds and head-to-tail ππ stacking inter­actions between the 5-benzyl­idene-thia­zolidine moieties (ring centroid distance = 3.579 Å). These layers are separated by the dimethyl­formamide solvent mol­ecules which are firmly anchored via a short O—H⋯O hydrogen bond [O⋯O = 2.5529 (10) Å] donated by the –COOH group.

Related literature

For bioactive compounds based on the 4-thia­zolidinone scaffold of the title compound, see: Ottanà et al. (2005[Ottanà, R., Maccari, R., Barreca, M. L., Bruno, G., Rotondo, A., Rossi, A., Chiricosta, G., Di Paola, R., Sautebin, L., Cuzzocrea, S. & Vigorita, M. G. (2005). Bioorg. Med. Chem. 13, 4243-4252.]); Verma & Saraf (2008[Verma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897-905.]). For potential anti­cancer activity via αvβ3 integrin antagonistic properties of 4-thia­zolidinone derivatives, see: Dayam et al. (2006[Dayam, R., Aiello, F., Deng, J., Wu, Y., Garofalo, A., Chen, X. & Neamati, N. (2006). J. Med. Chem. 49, 4526-4534.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For crystal structures related to that of the title compound, see: Ottanà et al. (2005[Ottanà, R., Maccari, R., Barreca, M. L., Bruno, G., Rotondo, A., Rossi, A., Chiricosta, G., Di Paola, R., Sautebin, L., Cuzzocrea, S. & Vigorita, M. G. (2005). Bioorg. Med. Chem. 13, 4243-4252.]); Yavari et al. (2008[Yavari, I., Hosseini, N. & Moradi, L. (2008). Monatsh. Chem. 139, 133-136.]); Deepthi et al. (2001[Deepthi, S., Rajalakshmi, K., Gunasekaran, K., Velmurugan, D. & Nagarajan, K. (2001). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 369, 221-242.]); Tomaščiková et al. (2008[Tomaščiková, J., Danihel, I., Böhm, S., Imrich, J., Kristian, P., Potočňák, I., Čejka, J. & Klika, K. D. (2008). J. Mol. Struct. 875, 419-426.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O5S·C3H7NO

  • Mr = 471.52

  • Triclinic, [P \overline 1]

  • a = 7.7532 (3) Å

  • b = 9.3081 (3) Å

  • c = 15.6969 (3) Å

  • α = 86.390 (2)°

  • β = 89.813 (2)°

  • γ = 87.656 (2)°

  • V = 1129.61 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.53 × 0.35 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.89, Tmax = 0.96

  • 29040 measured reflections

  • 6537 independent reflections

  • 5993 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.094

  • S = 1.02

  • 6537 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5o⋯O6 0.84 1.73 2.5529 (10) 167
O3—H3o⋯O4i 0.84 2.05 2.7386 (11) 139
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Compounds based on the 4-thiazolidinone scaffold received attention in recent years as bioactive agents with a broad therapeutic potential (Ottanà et al., 2005; Verma & Saraf, 2008). The title compound 1.DMF, (I), is the dimethylformamide monosolvate of a 4-thiazolidinone derivative 1, which shows significant anticancer activity via αvβ3 integrin antagonistic properties (Dayam et al., 2006). The molecule of 1 consists of a planar thiazolidine ring that is substituted in 2,3,4, and 5-positions by a 4-aminobenzoic acid fragment, a methyl group, an oxo atom O1, and a 3-ethoxy-4-hydroxy-phenylmethylidene group (Fig. 1). Bond lengths and bond angles in the thiazolidine ring correspond well with related compounds, particularly with Cambridge Structural Database (Allen, 2002) refcode CAPGIK (Ottanà et al., 2005; for other structures, see: CSD BIVWUZ (Yavari et al., 2008), OGIBAH (Deepthi et al., 2001), and SIXFOV (Tomaščiková et al., 2008)), where the S1—C1 bond was typically found to be slightly longer than the S1—C4 bond (1.7793 (9) Å and 1.7564 (10) Å in 1). The ring bonds N1—C1 = 1.3873 (12) Å and N1—C3 = 1.3729 (12) Å in 1 are shorter than standard C—N single bonds and indicate some quasi-aromatic conjugation, while C3—C4 1.4824 (13) Å is longer than a typical aromatic C—C ring bond (Allen et al., 1987). The thiazolidine ring and its four substituent atoms N2, C2, O1, and C5 are nearly planar. Their r.m.s. deviation from planarity is 0.021 Å, while for the thiazolidine ring atoms this quantity is 0.007 Å. The phenylmethylidene unit is only moderately inclined to the thiazolidine ring (ring-ring inclination angle 10.85 (6)°) enabling conjugation between the two rings via the methylidene carbon C5. The bond angle C4—C5—C6 = 133.55 (9)° is large in response to the short intramolecular contact distance S1···H7 = 2.752 Å. The 4-aminobenzoic acid fragment is inclined to the thiazolidine ring by 75.01 (3)° and the bond angle at the linker atom N2 is C1—N2—C14 = 121.40 (8)°. CSD refcode CAPGIK (Ottanà et al., 2005) shows comparable trends in bond angles and conformation.

In the crystal lattice of (I) the molecules of 1 form inversion dimers with head-to-tail ππ-stacking interactions and centroid-centroid distances of 3.579 Å between the thiazolidine and the benzene rings C6 — C11 (Fig. 2). The shortest two intermolecular distances in these ππ-stacks are C3···C7(1 - x,1 - y,1 - z) = 3.2344 (13) Å and C4···C6(1 - x,1 - y,1 - z) = 3.4721 (13) Å. These ππ-stacked pairs are arranged in layers parallel to [001] held together by intermolecular hydrogen bonds O3phenol—H3o···O4carboxyl(-x,2 - y,1 - z) (Table 1, Fig. 2). To both sides of these layers and separating them at z 0, 1, 2, etc. are the DMF solvent molecules. They are firmly attached via the strong hydrogen bonds O5—H5o···O6, O···O = 2.5529 (10) Å, donated by the COOH group of 1 to the oxygen of DMF. Likely due to this feature the title compound is stable at room temperature against desolvation.

Related literature top

For bioactive compounds based on the 4-thiazolidinone scaffold of the title compound, see: Ottanà et al. (2005); Verma & Saraf (2008). For potential anticancer activity via αvβ3 integrin antagonistic properties of 4-thiazolidinone derivatives, see: Dayam et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002). For standard bond lengths, see: Allen et al. (1987). For crystal structures related to that of the title compound, see: Ottanà et al. (2005); Yavari et al. (2008); Deepthi et al. (2001); Tomaščiková et al., (2008).

Experimental top

Although the compound 1 (Fig. 3) and its bioactivity was already described (Dayam et al.; 2006), a synthesis was not reported. In the present work 1 was synthesized in good yield according to the reaction scheme shown in Fig. 3. A 40% aqueous solution of methylamine (13 g) was added dropwise at 5–7 °C to a solution of 2 (see Fig. 3; 5 g, 28 mmol) in water (110 ml) and stirred for ~2.5 h with gradual warming to room temperature. The aqueous solution was extracted three times with 80 ml portions of EtOAc and freed from residual EtOAc in a rotary evaporator under vacuum at 50 °C. The solution was cooled to 5 °C and acidified with 2 M HCl to pH 3. The resulting precipitate was filtered, thoroughly washed with cold water, and dissolved in EtOAc (250 ml). The organic layer was washed with brine, dried (Na2SO4) and concentrated to give 3.94 g (67%) of 3 (Fig. 3) as colorless solid; m.p. >170 °C (dec.). A solution of compound 3 (3.94 g, 19 mmol) in dry dioxane (60 ml) was refluxed with methyl bromoacetate (2.1 ml, 23 mmol) for 22 h. The solution was concentrated and the resulting yellow solid was dissolved in 0.1 M NaOH (100 ml). The solution was washed twice with Et2O (100 ml) and acidified with 2M HCl. The product was filtered off and dissolved in 1:1 EtOAc-MeOH (300 ml). The organic layer was dried (Na2SO4) and concentrated to afford compound 4 (Fig. 3) as colorless solid (3.24 g, 68%), m.p. 198–199°C (EtOH). 1H NMR (600 MHz, DMSO) δ 7.93 (d, 2H, J = 8.3 Hz, H-2, H-6, Ph), 7.03 (d, 2H, J = 8.3 Hz, H-3, H-5, Ph), 4.04 (s, 2H, CH2), 3.16 (s, 3H, N—CH3). 13C NMR (150 MHz, DMSO) δ 171.9 (C=O), 167.0 (COOH), 156.6 (SCN), 152.3 (C-1, Ph), 130.8 (C-2, C-6, Ph), 126.6 (C-4, Ph), 121.1 (C-3, C-5, Ph), 32.8 (CH2), 29.2 (CH3). HRMS (ESI) calcd for C11H10N2O3S [M—H]-: 249.0339; found 249.0334. A solution of compound 4 (15 g, 60 mmol), 3-ethoxy-4-hydroxybenzaldehyde (12 g, 72 mmol) and sodium acetate (9.8 g, 120 mmol) in glacial acetic acid (300 ml) was refluxed for 4 d. Acetic acid was removed at 140 °C and the suspension was kept at 140 °C over night. After cooling to room temperature, acetic acid was added (100 ml) and the suspension was poured into water (1 L) and the resulting precipitate was filtered, washed with water and dried. The residue was crystallized from acetic acid, washed with acetone and dried to give 13 g (54%) of the title compound 1 (Fig. 3) as yellow solid; m.p. >180 °C (dec.). 1H NMR (600 MHz, DMSO): δ 9.78 (s, 1H, OH), 7.98 (d, 2H, J = 8.5 Hz, H-2, H-6, Ph), 7.70 (s, 1H, C-2, Ar), 7.17 (d, 1H, J = 1.9 Hz, =CH), 7.14 (d, 2H, J = 8.5 Hz, H-3, H-5, Ph), 6.95 (dd, 1H, J = 1.9, J = 8.3 Hz, H-6, Ar), 6.89 (d, 1H, J = 8.3 Hz, H-5, Ar), 4.04 (q, 2H, CH2), 3.33 (s, 3H, N—CH3) and 1.31 (t, 3H, CH3). HRMS (ESI) calcd for C20H19N2O5S [M+H]+: 399.1009; found 399.1007. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation at room temperature of a solution of 1 in dimethylformamide (DMF). Solvents other than DMF, like ethanol, acetone or acetic acid gave only unsuitable material.

Refinement top

C-bonded H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C). O-bonded H atoms were refined with AFIX 147 of program SHELXL97 (Sheldrick, 2008), O—H = 0.84 Å, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compopund with displacement ellipsoids drawn at the 50% probability level. Dashed red line indicates the -COOH···DMF interaction.
[Figure 2] Fig. 2. Crystal packing viewed along [100] showing O—H···O hydrogen bonds as dashed red lines and π-π-stacking interactions as black lines. Symmetry codes: (i) -x, 2 - y, 1 - z; (ii) 1 - x,1 - y,1 - z.
[Figure 3] Fig. 3. Reaction scheme for the synthesis of 1.
4-({(Z)-5-[(Z)-3-Ethoxy-4-hydroxybenzylidene]-3-methyl-4-oxo- 1,3-thiazolidin-2-ylidene}amino)benzoic acid; dimethylformamide monosolvate top
Crystal data top
C20H18N2O5S·C3H7NOZ = 2
Mr = 471.52F(000) = 496
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7532 (3) ÅCell parameters from 9007 reflections
b = 9.3081 (3) Åθ = 2.2–30.0°
c = 15.6969 (3) ŵ = 0.19 mm1
α = 86.390 (2)°T = 100 K
β = 89.813 (2)°Prism, yellow
γ = 87.656 (2)°0.53 × 0.35 × 0.24 mm
V = 1129.61 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6537 independent reflections
Radiation source: fine-focus sealed tube5993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.89, Tmax = 0.96k = 1313
29040 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.4019P]
where P = (Fo2 + 2Fc2)/3
6537 reflections(Δ/σ)max = 0.002
304 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H18N2O5S·C3H7NOγ = 87.656 (2)°
Mr = 471.52V = 1129.61 (6) Å3
Triclinic, P1Z = 2
a = 7.7532 (3) ÅMo Kα radiation
b = 9.3081 (3) ŵ = 0.19 mm1
c = 15.6969 (3) ÅT = 100 K
α = 86.390 (2)°0.53 × 0.35 × 0.24 mm
β = 89.813 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6537 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5993 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.96Rint = 0.024
29040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
6537 reflectionsΔρmin = 0.22 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41930 (3)0.65538 (2)0.349946 (14)0.01698 (6)
O10.80606 (9)0.38102 (8)0.35244 (5)0.02040 (14)
O20.37560 (9)0.96319 (8)0.62843 (5)0.02005 (14)
O30.65049 (10)0.96754 (8)0.73138 (5)0.02233 (15)
H3o0.55261.00910.73420.033*
O40.39179 (10)0.90766 (9)0.17578 (5)0.02725 (17)
O50.23650 (9)1.02278 (8)0.07406 (5)0.02368 (16)
H5o0.33061.06890.06470.036*
N10.57050 (10)0.44691 (8)0.26982 (5)0.01658 (15)
N20.33188 (11)0.54753 (9)0.19732 (5)0.01936 (16)
C10.43011 (12)0.54409 (10)0.26183 (6)0.01595 (16)
C20.60871 (14)0.34431 (11)0.20524 (7)0.02270 (19)
H2A0.71530.28850.22050.034*
H2B0.62320.39650.14960.034*
H2C0.51330.27890.20220.034*
C30.67482 (12)0.45592 (10)0.33963 (6)0.01610 (16)
C40.60700 (12)0.56946 (10)0.39437 (6)0.01610 (16)
C50.69539 (12)0.59362 (10)0.46550 (6)0.01749 (17)
H50.79510.53160.47400.021*
C60.67052 (12)0.69420 (10)0.53172 (6)0.01676 (17)
C70.52167 (12)0.78354 (10)0.54232 (6)0.01713 (17)
H70.42770.78160.50370.021*
C80.51260 (12)0.87446 (10)0.60936 (6)0.01695 (17)
C90.65368 (12)0.87976 (10)0.66581 (6)0.01783 (17)
C100.79983 (13)0.79211 (11)0.65505 (6)0.01950 (18)
H100.89480.79540.69290.023*
C110.80769 (12)0.69964 (10)0.58921 (6)0.01877 (18)
H110.90780.63890.58290.023*
C120.22371 (12)0.96318 (10)0.57563 (6)0.01843 (17)
H12A0.17830.86520.57640.022*
H12B0.25140.99480.51590.022*
C130.09223 (13)1.06669 (11)0.61232 (7)0.02253 (19)
H13A0.06571.03380.67130.034*
H13B0.01341.07050.57800.034*
H13C0.13921.16290.61150.034*
C140.18954 (12)0.64677 (10)0.18805 (6)0.01736 (17)
C150.03664 (13)0.62483 (11)0.23377 (6)0.02102 (19)
H150.03080.54770.27620.025*
C160.10619 (13)0.71632 (11)0.21680 (6)0.02002 (18)
H160.21000.70170.24790.024*
C170.09940 (12)0.82963 (10)0.15451 (6)0.01648 (17)
C180.05412 (12)0.85138 (10)0.10947 (6)0.01830 (17)
H180.05990.92890.06730.022*
C190.19814 (12)0.76057 (11)0.12589 (6)0.01939 (18)
H190.30210.77570.09500.023*
C200.25683 (12)0.92308 (11)0.13672 (6)0.01868 (18)
O60.49662 (10)1.18732 (8)0.02984 (5)0.02426 (16)
N30.76655 (11)1.27974 (10)0.05269 (6)0.02176 (17)
C210.63956 (13)1.18080 (11)0.06532 (6)0.02044 (18)
H210.65931.10020.10380.025*
C220.74498 (16)1.40627 (12)0.00518 (7)0.0282 (2)
H22A0.73841.49180.02790.042*
H22B0.84361.41840.04420.042*
H22C0.63841.39380.03810.042*
C230.92669 (15)1.27171 (13)0.10088 (8)0.0296 (2)
H23A0.92391.18310.13810.044*
H23B1.02421.27130.06130.044*
H23C0.93991.35530.13570.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01676 (11)0.01661 (11)0.01742 (11)0.00188 (8)0.00169 (8)0.00148 (8)
O10.0160 (3)0.0205 (3)0.0241 (3)0.0017 (2)0.0018 (3)0.0007 (3)
O20.0156 (3)0.0244 (3)0.0204 (3)0.0021 (3)0.0045 (2)0.0046 (3)
O30.0187 (3)0.0284 (4)0.0204 (3)0.0015 (3)0.0037 (3)0.0071 (3)
O40.0177 (3)0.0369 (4)0.0265 (4)0.0031 (3)0.0047 (3)0.0001 (3)
O50.0171 (3)0.0238 (4)0.0289 (4)0.0042 (3)0.0005 (3)0.0049 (3)
N10.0170 (4)0.0158 (3)0.0168 (3)0.0017 (3)0.0013 (3)0.0016 (3)
N20.0195 (4)0.0195 (4)0.0187 (4)0.0026 (3)0.0031 (3)0.0005 (3)
C10.0158 (4)0.0148 (4)0.0170 (4)0.0002 (3)0.0000 (3)0.0007 (3)
C20.0264 (5)0.0214 (4)0.0203 (4)0.0046 (4)0.0009 (4)0.0053 (3)
C30.0157 (4)0.0153 (4)0.0172 (4)0.0025 (3)0.0001 (3)0.0013 (3)
C40.0151 (4)0.0154 (4)0.0176 (4)0.0013 (3)0.0001 (3)0.0006 (3)
C50.0160 (4)0.0176 (4)0.0187 (4)0.0014 (3)0.0006 (3)0.0007 (3)
C60.0158 (4)0.0176 (4)0.0168 (4)0.0021 (3)0.0013 (3)0.0009 (3)
C70.0150 (4)0.0191 (4)0.0172 (4)0.0024 (3)0.0030 (3)0.0011 (3)
C80.0147 (4)0.0184 (4)0.0175 (4)0.0018 (3)0.0012 (3)0.0011 (3)
C90.0168 (4)0.0206 (4)0.0162 (4)0.0030 (3)0.0015 (3)0.0001 (3)
C100.0159 (4)0.0241 (4)0.0184 (4)0.0011 (3)0.0040 (3)0.0005 (3)
C110.0156 (4)0.0211 (4)0.0194 (4)0.0000 (3)0.0025 (3)0.0003 (3)
C120.0155 (4)0.0204 (4)0.0194 (4)0.0010 (3)0.0038 (3)0.0007 (3)
C130.0184 (4)0.0230 (5)0.0262 (5)0.0011 (3)0.0025 (4)0.0029 (4)
C140.0176 (4)0.0187 (4)0.0158 (4)0.0010 (3)0.0037 (3)0.0021 (3)
C150.0227 (5)0.0222 (4)0.0175 (4)0.0000 (3)0.0003 (3)0.0032 (3)
C160.0185 (4)0.0234 (4)0.0180 (4)0.0016 (3)0.0024 (3)0.0006 (3)
C170.0148 (4)0.0189 (4)0.0158 (4)0.0003 (3)0.0004 (3)0.0023 (3)
C180.0163 (4)0.0189 (4)0.0193 (4)0.0002 (3)0.0006 (3)0.0019 (3)
C190.0157 (4)0.0210 (4)0.0210 (4)0.0001 (3)0.0012 (3)0.0017 (3)
C200.0163 (4)0.0214 (4)0.0186 (4)0.0002 (3)0.0007 (3)0.0040 (3)
O60.0219 (4)0.0275 (4)0.0226 (3)0.0059 (3)0.0010 (3)0.0004 (3)
N30.0206 (4)0.0220 (4)0.0226 (4)0.0031 (3)0.0031 (3)0.0029 (3)
C210.0223 (5)0.0210 (4)0.0180 (4)0.0021 (3)0.0045 (3)0.0018 (3)
C220.0351 (6)0.0217 (5)0.0268 (5)0.0067 (4)0.0057 (4)0.0010 (4)
C230.0212 (5)0.0342 (6)0.0344 (6)0.0010 (4)0.0011 (4)0.0103 (5)
Geometric parameters (Å, º) top
S1—C41.7564 (10)C11—H110.9500
S1—C11.7793 (9)C12—C131.5116 (14)
O1—C31.2197 (12)C12—H12A0.9900
O2—C81.3628 (11)C12—H12B0.9900
O2—C121.4423 (11)C13—H13A0.9800
O3—C91.3533 (12)C13—H13B0.9800
O3—H3o0.8400C13—H13C0.9800
O4—C201.2200 (12)C14—C191.3978 (13)
O5—C201.3227 (12)C14—C151.3993 (13)
O5—H5o0.8400C15—C161.3852 (14)
N1—C31.3729 (12)C15—H150.9500
N1—C11.3873 (12)C16—C171.3948 (13)
N1—C21.4575 (12)C16—H160.9500
N2—C11.2671 (12)C17—C181.3978 (13)
N2—C141.4118 (12)C17—C201.4863 (13)
C2—H2A0.9800C18—C191.3874 (13)
C2—H2B0.9800C18—H180.9500
C2—H2C0.9800C19—H190.9500
C3—C41.4824 (13)O6—C211.2406 (13)
C4—C51.3475 (13)N3—C211.3270 (13)
C5—C61.4494 (13)N3—C231.4539 (14)
C5—H50.9500N3—C221.4563 (14)
C6—C111.4015 (13)C21—H210.9500
C6—C71.4103 (13)C22—H22A0.9800
C7—C81.3912 (13)C22—H22B0.9800
C7—H70.9500C22—H22C0.9800
C8—C91.4143 (13)C23—H23A0.9800
C9—C101.3851 (14)C23—H23B0.9800
C10—C111.3857 (14)C23—H23C0.9800
C10—H100.9500
C4—S1—C191.11 (4)C13—C12—H12B110.4
C8—O2—C12117.96 (7)H12A—C12—H12B108.6
C9—O3—H3o109.5C12—C13—H13A109.5
C20—O5—H5o109.5C12—C13—H13B109.5
C3—N1—C1116.78 (8)H13A—C13—H13B109.5
C3—N1—C2121.81 (8)C12—C13—H13C109.5
C1—N1—C2121.36 (8)H13A—C13—H13C109.5
C1—N2—C14121.40 (8)H13B—C13—H13C109.5
N2—C1—N1120.85 (8)C19—C14—C15120.18 (9)
N2—C1—S1128.47 (7)C19—C14—N2118.40 (9)
N1—C1—S1110.67 (7)C15—C14—N2121.13 (9)
N1—C2—H2A109.5C16—C15—C14119.55 (9)
N1—C2—H2B109.5C16—C15—H15120.2
H2A—C2—H2B109.5C14—C15—H15120.2
N1—C2—H2C109.5C15—C16—C17120.75 (9)
H2A—C2—H2C109.5C15—C16—H16119.6
H2B—C2—H2C109.5C17—C16—H16119.6
O1—C3—N1123.42 (9)C16—C17—C18119.36 (9)
O1—C3—C4125.97 (9)C16—C17—C20119.06 (8)
N1—C3—C4110.60 (8)C18—C17—C20121.57 (8)
C5—C4—C3118.33 (8)C19—C18—C17120.46 (9)
C5—C4—S1130.83 (8)C19—C18—H18119.8
C3—C4—S1110.81 (7)C17—C18—H18119.8
C4—C5—C6133.55 (9)C18—C19—C14119.69 (9)
C4—C5—H5113.2C18—C19—H19120.2
C6—C5—H5113.2C14—C19—H19120.2
C11—C6—C7118.94 (9)O4—C20—O5123.61 (9)
C11—C6—C5115.68 (8)O4—C20—C17122.94 (9)
C7—C6—C5125.38 (8)O5—C20—C17113.45 (8)
C8—C7—C6119.89 (9)C21—N3—C23121.33 (9)
C8—C7—H7120.1C21—N3—C22120.97 (9)
C6—C7—H7120.1C23—N3—C22117.53 (9)
O2—C8—C7126.07 (9)O6—C21—N3123.87 (10)
O2—C8—C9113.74 (8)O6—C21—H21118.1
C7—C8—C9120.18 (9)N3—C21—H21118.1
O3—C9—C10118.26 (9)N3—C22—H22A109.5
O3—C9—C8121.99 (9)N3—C22—H22B109.5
C10—C9—C8119.74 (9)H22A—C22—H22B109.5
C9—C10—C11120.09 (9)N3—C22—H22C109.5
C9—C10—H10120.0H22A—C22—H22C109.5
C11—C10—H10120.0H22B—C22—H22C109.5
C10—C11—C6121.14 (9)N3—C23—H23A109.5
C10—C11—H11119.4N3—C23—H23B109.5
C6—C11—H11119.4H23A—C23—H23B109.5
O2—C12—C13106.71 (8)N3—C23—H23C109.5
O2—C12—H12A110.4H23A—C23—H23C109.5
C13—C12—H12A110.4H23B—C23—H23C109.5
O2—C12—H12B110.4
C14—N2—C1—N1179.41 (8)O2—C8—C9—O30.99 (13)
C14—N2—C1—S11.09 (14)C7—C8—C9—O3179.48 (9)
C3—N1—C1—N2176.75 (9)O2—C8—C9—C10178.36 (9)
C2—N1—C1—N20.86 (14)C7—C8—C9—C101.18 (14)
C3—N1—C1—S11.85 (10)O3—C9—C10—C11179.38 (9)
C2—N1—C1—S1179.46 (7)C8—C9—C10—C110.01 (14)
C4—S1—C1—N2177.56 (9)C9—C10—C11—C60.98 (15)
C4—S1—C1—N10.90 (7)C7—C6—C11—C100.81 (14)
C1—N1—C3—O1176.93 (8)C5—C6—C11—C10179.63 (9)
C2—N1—C3—O10.67 (14)C8—O2—C12—C13178.41 (8)
C1—N1—C3—C41.95 (11)C1—N2—C14—C19108.96 (11)
C2—N1—C3—C4179.54 (8)C1—N2—C14—C1577.22 (13)
O1—C3—C4—C50.48 (14)C19—C14—C15—C160.23 (15)
N1—C3—C4—C5179.32 (8)N2—C14—C15—C16173.49 (9)
O1—C3—C4—S1177.69 (8)C14—C15—C16—C170.20 (15)
N1—C3—C4—S11.15 (9)C15—C16—C17—C180.59 (15)
C1—S1—C4—C5178.01 (10)C15—C16—C17—C20178.47 (9)
C1—S1—C4—C30.14 (7)C16—C17—C18—C190.56 (14)
C3—C4—C5—C6178.92 (9)C20—C17—C18—C19178.48 (9)
S1—C4—C5—C61.18 (17)C17—C18—C19—C140.13 (15)
C4—C5—C6—C11170.63 (10)C15—C14—C19—C180.27 (15)
C4—C5—C6—C79.84 (17)N2—C14—C19—C18173.62 (9)
C11—C6—C7—C80.36 (13)C16—C17—C20—O41.91 (15)
C5—C6—C7—C8179.15 (9)C18—C17—C20—O4179.04 (10)
C12—O2—C8—C70.83 (14)C16—C17—C20—O5177.34 (9)
C12—O2—C8—C9178.67 (8)C18—C17—C20—O51.71 (13)
C6—C7—C8—O2178.13 (9)C23—N3—C21—O6175.35 (10)
C6—C7—C8—C91.34 (14)C22—N3—C21—O60.22 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5o···O60.841.732.5529 (10)167
O3—H3o···O4i0.842.052.7386 (11)139
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H18N2O5S·C3H7NO
Mr471.52
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7532 (3), 9.3081 (3), 15.6969 (3)
α, β, γ (°)86.390 (2), 89.813 (2), 87.656 (2)
V3)1129.61 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.53 × 0.35 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.89, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
29040, 6537, 5993
Rint0.024
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.02
No. of reflections6537
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5o···O60.841.732.5529 (10)167.1
O3—H3o···O4i0.842.052.7386 (11)138.9
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDayam, R., Aiello, F., Deng, J., Wu, Y., Garofalo, A., Chen, X. & Neamati, N. (2006). J. Med. Chem. 49, 4526–4534.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeepthi, S., Rajalakshmi, K., Gunasekaran, K., Velmurugan, D. & Nagarajan, K. (2001). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 369, 221–242.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOttanà, R., Maccari, R., Barreca, M. L., Bruno, G., Rotondo, A., Rossi, A., Chiricosta, G., Di Paola, R., Sautebin, L., Cuzzocrea, S. & Vigorita, M. G. (2005). Bioorg. Med. Chem. 13, 4243–4252.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomaščiková, J., Danihel, I., Böhm, S., Imrich, J., Kristian, P., Potočňák, I., Čejka, J. & Klika, K. D. (2008). J. Mol. Struct. 875, 419–426.  Google Scholar
First citationVerma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897–905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYavari, I., Hosseini, N. & Moradi, L. (2008). Monatsh. Chem. 139, 133–136.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3417-o3418
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds