organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1-Benzyl-1H-benzimidazol-2-yl)ethanone

aTaishan Medical University, Tai an 271016, People's Republic of China
*Correspondence e-mail: yqge@yahoo.cn

(Received 19 September 2012; accepted 23 October 2012; online 14 November 2012)

In the title compound, C16H14N2O, the benzimidazole ring system is essentially planar. The planes of the benzene rings make a dihedral angle of 85.92 (8)°. In the crystal, neighbouring molecule are connected into paris along the c axis by weak C—H⋯O interactions and the connected pairs are expanded through C—H⋯N hydrogen bonds and C—H⋯π interactions along the b axis.

Related literature

For the synthesis, see: Cao et al. (2012[Cao, X. Q., Lin, X. H., Zhu, Y. & Ge, Y. Q. (2012). Spectrochim. Acta Part A, 98, 76-80.]). For applications of nitro­gen-containing heterocyclic compounds in the agrochemical and pharmaceutical fields, see: Ge et al. (2009[Ge, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009). Heterocycles, 78, 725-736.], 2011[Ge, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070-1076.]). For a related structure, see: Sun et al. (2012[Sun, T., Xie, J.-W., Zhao, R.-Y., Zhu, A.-G. & Ge, Y.-Q. (2012). Acta Cryst. E68, o2947.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O

  • Mr = 250.29

  • Triclinic, [P \overline 1]

  • a = 6.1307 (10) Å

  • b = 6.5226 (12) Å

  • c = 34.739 (6) Å

  • α = 90.021 (3)°

  • β = 92.749 (3)°

  • γ = 110.674 (3)°

  • V = 1298.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.19 mm

Data collection
  • Brucker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.985

  • 6666 measured reflections

  • 4523 independent reflections

  • 3775 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.189

  • S = 1.05

  • 4523 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.93 2.62 3.517 (4) 161
C16—H16⋯O1ii 0.93 2.58 3.427 (4) 152
C21—H21⋯N4iii 0.93 2.62 3.513 (4) 161
C32—H32⋯O2ii 0.93 2.57 3.410 (4) 150
C1—H1CCg1iv 0.96 2.61 3.487 (4) 151
C17—H17ACg2iv 0.96 2.61 3.491 (4) 153
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z; (iii) -x, -y, -z+1; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to the wide applications in the agrochemical and pharmaceutical fields (Ge et al.; 2009, 2011). Some benzoimidazole derivatives which belong to this category exhibit interesting biological properties, such as anti-bacterial, anti-inflammatory, anti-fungal and anti-tumor. The title benzoimidazole(I) (Fig. 1) was synthesized in order to study its biological properties. (I) was screened for anticancer activities and found to be inactive.

We report here the crystal structure of the title compound. In the molecular structure, the 90 degree angle on alpha shows the benzene ring and the imidazole are in the same plane and the two benzene ring makes dihedral angle of 85.92 (8)°. Moreover, there exist inermolecular weak C—H···O and C—H···N hydrogen bonding, also the intermolecular face-to-face C—H···π stacking interaction.

Related literature top

For the synthesis, see: Cao et al. (2012). For applications of nitrogen-containing heterocyclic compounds in the agrochemical and pharmaceutical fields, see: Ge et al. (2009, 2011). For a related structure, see: Sun et al. (2012).

Experimental top

A mixture of 1-(1H-benzo[d]imidazol-2-yl)ethanone(0.02 mol), (chloromethyl)benzene (0.024 mol) and potassium carbonate (0.024 mol) in acetonitrile (100 ml) was heated to reflux for 5 h. The solvent was removed under reduced pressure and the product was isolated by column chromatography on silica gel (yield 85%). Crystals of (I) suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate (0.10 M) to cool slowly to room temperature (without temperature control) and allowing the solvent to evaporate for 12 h.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.93 Å (for aromatic protons), their isotropic displacement parameters were set to 1.2 times the equivalent displacement parameter of their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
1-(1-Benzyl-1H-benzimidazol-2-yl)ethanone top
Crystal data top
C16H14N2OZ = 4
Mr = 250.29F(000) = 528
Triclinic, P1Dx = 1.281 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1307 (10) ÅCell parameters from 3788 reflections
b = 6.5226 (12) Åθ = 2.9–28.3°
c = 34.739 (6) ŵ = 0.08 mm1
α = 90.021 (3)°T = 293 K
β = 92.749 (3)°Block, colorless
γ = 110.674 (3)°0.28 × 0.24 × 0.19 mm
V = 1298.0 (4) Å3
Data collection top
Brucker APEXII CCD area-detector
diffractometer
4523 independent reflections
Radiation source: fine-focus sealed tube3775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 75
Tmin = 0.978, Tmax = 0.985k = 67
6666 measured reflectionsl = 4140
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.080P)2 + 1.3353P]
where P = (Fo2 + 2Fc2)/3
4523 reflections(Δ/σ)max = 0.009
345 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H14N2Oγ = 110.674 (3)°
Mr = 250.29V = 1298.0 (4) Å3
Triclinic, P1Z = 4
a = 6.1307 (10) ÅMo Kα radiation
b = 6.5226 (12) ŵ = 0.08 mm1
c = 34.739 (6) ÅT = 293 K
α = 90.021 (3)°0.28 × 0.24 × 0.19 mm
β = 92.749 (3)°
Data collection top
Brucker APEXII CCD area-detector
diffractometer
4523 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3775 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.061
6666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
4523 reflectionsΔρmin = 0.29 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.2590 (4)0.5385 (4)0.04941 (6)0.0375 (5)
N10.3603 (4)0.6559 (4)0.11075 (6)0.0387 (5)
C90.2089 (5)0.7550 (4)0.09724 (8)0.0360 (6)
C40.1469 (5)0.6810 (4)0.05892 (8)0.0349 (6)
O10.6433 (4)0.3837 (4)0.11196 (7)0.0618 (7)
C30.3821 (5)0.5266 (5)0.08078 (8)0.0374 (6)
C110.3396 (5)0.4803 (5)0.17452 (8)0.0431 (7)
C80.1216 (6)0.9027 (5)0.11414 (9)0.0457 (7)
H80.16390.95310.13940.055*
C100.4598 (6)0.6760 (5)0.15034 (8)0.0478 (7)
H10A0.44930.80610.16240.057*
H10B0.62390.69520.14970.057*
C50.0061 (5)0.7522 (5)0.03642 (8)0.0415 (7)
H50.04770.70430.01100.050*
C20.5329 (5)0.3922 (5)0.08265 (9)0.0426 (7)
C10.5351 (6)0.2674 (5)0.04673 (10)0.0533 (8)
H1A0.67000.22490.04780.080*
H1B0.54010.35810.02480.080*
H1C0.39650.13880.04450.080*
C60.0931 (6)0.8958 (5)0.05327 (9)0.0481 (7)
H60.19640.94480.03890.058*
C70.0307 (6)0.9703 (5)0.09136 (10)0.0497 (8)
H70.09331.06790.10170.060*
C160.0981 (6)0.3821 (5)0.17316 (9)0.0487 (7)
H160.00720.43600.15680.058*
C120.4703 (7)0.3977 (7)0.19917 (9)0.0612 (9)
H120.63220.46210.20050.073*
C130.3631 (8)0.2209 (8)0.22184 (11)0.0769 (12)
H130.45360.16600.23810.092*
C140.1242 (8)0.1247 (7)0.22070 (10)0.0694 (11)
H140.05270.00700.23640.083*
C150.0081 (7)0.2042 (6)0.19608 (10)0.0605 (9)
H150.16990.13820.19480.073*
N30.2918 (4)0.1314 (4)0.38915 (6)0.0382 (5)
N40.2276 (4)0.0279 (4)0.45054 (6)0.0373 (5)
C250.1488 (5)0.2343 (4)0.40291 (8)0.0365 (6)
C200.1103 (5)0.1685 (4)0.44105 (7)0.0343 (6)
O20.5754 (4)0.1398 (4)0.38807 (7)0.0604 (6)
C190.3329 (5)0.0094 (4)0.41922 (8)0.0367 (6)
C270.2311 (5)0.0590 (5)0.32567 (8)0.0420 (7)
C210.0289 (5)0.2441 (5)0.46367 (8)0.0420 (7)
H210.05460.20180.48910.050*
C260.3662 (5)0.1418 (5)0.34957 (8)0.0463 (7)
H26A0.53060.16090.35020.056*
H26B0.34820.26890.33740.056*
C180.4815 (5)0.1260 (5)0.41743 (9)0.0429 (7)
C240.0503 (5)0.3784 (5)0.38595 (8)0.0447 (7)
H240.07600.42280.36060.054*
C170.5069 (6)0.2427 (5)0.45347 (10)0.0511 (8)
H17A0.37550.37670.45480.077*
H17B0.51360.15110.47550.077*
H17C0.64790.27510.45330.077*
C280.3418 (7)0.1542 (6)0.30162 (9)0.0580 (9)
H280.50330.09370.30050.070*
C320.0115 (6)0.1540 (6)0.32685 (9)0.0495 (8)
H320.09090.09350.34290.059*
C230.0862 (6)0.4507 (5)0.40859 (9)0.0479 (7)
H230.15410.54710.39840.058*
C220.1260 (6)0.3834 (5)0.44664 (9)0.0483 (7)
H220.22140.43490.46090.058*
C310.1339 (7)0.3367 (6)0.30447 (11)0.0619 (9)
H310.29540.39850.30550.074*
C290.2199 (8)0.3370 (7)0.27911 (10)0.0714 (11)
H290.29830.39820.26300.086*
C300.0193 (8)0.4277 (7)0.28074 (11)0.0697 (11)
H300.10300.55100.26570.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0412 (13)0.0429 (12)0.0320 (12)0.0194 (10)0.0003 (10)0.0024 (9)
N10.0393 (13)0.0487 (13)0.0301 (12)0.0185 (11)0.0017 (10)0.0009 (10)
C90.0356 (14)0.0407 (14)0.0315 (14)0.0131 (12)0.0028 (11)0.0027 (11)
C40.0361 (14)0.0363 (13)0.0326 (13)0.0132 (11)0.0029 (11)0.0035 (11)
O10.0563 (14)0.0921 (18)0.0516 (14)0.0450 (14)0.0029 (11)0.0094 (12)
C30.0351 (14)0.0423 (14)0.0358 (14)0.0149 (12)0.0023 (11)0.0040 (11)
C110.0473 (17)0.0631 (18)0.0257 (13)0.0283 (15)0.0018 (12)0.0035 (12)
C80.0525 (18)0.0479 (16)0.0392 (16)0.0208 (14)0.0034 (13)0.0027 (13)
C100.0443 (17)0.0619 (19)0.0340 (15)0.0162 (14)0.0093 (13)0.0031 (13)
C50.0471 (17)0.0460 (16)0.0345 (14)0.0211 (13)0.0027 (12)0.0053 (12)
C20.0354 (15)0.0516 (17)0.0443 (17)0.0196 (13)0.0040 (13)0.0078 (13)
C10.059 (2)0.0536 (18)0.058 (2)0.0321 (16)0.0067 (16)0.0002 (15)
C60.0492 (18)0.0515 (17)0.0515 (18)0.0278 (15)0.0000 (14)0.0079 (14)
C70.0538 (19)0.0478 (17)0.0553 (19)0.0271 (15)0.0085 (15)0.0009 (14)
C160.0509 (18)0.0628 (19)0.0368 (16)0.0259 (16)0.0005 (13)0.0005 (14)
C120.058 (2)0.096 (3)0.0390 (17)0.039 (2)0.0002 (15)0.0114 (17)
C130.085 (3)0.111 (3)0.054 (2)0.057 (3)0.007 (2)0.030 (2)
C140.095 (3)0.076 (2)0.046 (2)0.040 (2)0.0195 (19)0.0160 (17)
C150.058 (2)0.067 (2)0.057 (2)0.0204 (17)0.0105 (16)0.0019 (17)
N30.0403 (13)0.0476 (13)0.0287 (11)0.0178 (11)0.0051 (9)0.0045 (9)
N40.0401 (13)0.0428 (13)0.0325 (12)0.0188 (10)0.0039 (10)0.0037 (9)
C250.0363 (14)0.0391 (14)0.0344 (14)0.0136 (12)0.0019 (11)0.0017 (11)
C200.0379 (14)0.0357 (13)0.0296 (13)0.0130 (11)0.0022 (11)0.0015 (10)
O20.0567 (14)0.0883 (17)0.0514 (14)0.0436 (13)0.0108 (11)0.0015 (12)
C190.0355 (14)0.0406 (14)0.0349 (14)0.0149 (12)0.0010 (11)0.0024 (11)
C270.0492 (17)0.0603 (18)0.0256 (13)0.0303 (14)0.0049 (12)0.0091 (12)
C210.0478 (17)0.0451 (16)0.0370 (15)0.0205 (13)0.0069 (12)0.0013 (12)
C260.0446 (17)0.0598 (18)0.0353 (15)0.0181 (14)0.0120 (13)0.0125 (13)
C180.0364 (15)0.0513 (17)0.0436 (17)0.0190 (13)0.0001 (13)0.0014 (13)
C240.0523 (18)0.0495 (16)0.0349 (15)0.0219 (14)0.0015 (13)0.0072 (12)
C170.0552 (19)0.0553 (18)0.0538 (19)0.0334 (16)0.0008 (15)0.0070 (14)
C280.062 (2)0.092 (3)0.0353 (16)0.046 (2)0.0044 (15)0.0034 (16)
C320.0486 (18)0.065 (2)0.0413 (16)0.0274 (16)0.0057 (13)0.0009 (14)
C230.0519 (18)0.0477 (17)0.0516 (18)0.0275 (14)0.0025 (14)0.0054 (14)
C220.0525 (18)0.0511 (17)0.0502 (18)0.0288 (15)0.0056 (14)0.0019 (14)
C310.058 (2)0.071 (2)0.057 (2)0.0253 (18)0.0066 (17)0.0025 (17)
C290.095 (3)0.099 (3)0.0431 (19)0.063 (3)0.0003 (19)0.0115 (19)
C300.089 (3)0.079 (3)0.050 (2)0.043 (2)0.0192 (19)0.0122 (18)
Geometric parameters (Å, º) top
N2—C31.313 (4)N3—C251.379 (4)
N2—C41.385 (4)N3—C191.380 (4)
N1—C91.372 (4)N3—C261.464 (4)
N1—C31.380 (4)N4—C191.318 (4)
N1—C101.464 (4)N4—C201.382 (4)
C9—C81.398 (4)C25—C241.401 (4)
C9—C41.404 (4)C25—C201.398 (4)
C4—C51.394 (4)C20—C211.397 (4)
O1—C21.208 (4)O2—C181.213 (4)
C3—C21.481 (4)C19—C181.480 (4)
C11—C121.380 (4)C27—C281.377 (4)
C11—C161.389 (5)C27—C321.397 (4)
C11—C101.508 (4)C27—C261.503 (4)
C8—C71.383 (4)C21—C221.371 (4)
C8—H80.9300C21—H210.9300
C10—H10A0.9700C26—H26A0.9700
C10—H10B0.9700C26—H26B0.9700
C5—C61.373 (4)C18—C171.495 (4)
C5—H50.9300C24—C231.372 (4)
C2—C11.493 (4)C24—H240.9300
C1—H1A0.9600C17—H17A0.9600
C1—H1B0.9600C17—H17B0.9600
C1—H1C0.9600C17—H17C0.9600
C6—C71.398 (5)C28—C291.380 (6)
C6—H60.9300C28—H280.9300
C7—H70.9300C32—C311.378 (5)
C16—C151.386 (5)C32—H320.9300
C16—H160.9300C23—C221.398 (5)
C12—C131.378 (6)C23—H230.9300
C12—H120.9300C22—H220.9300
C13—C141.373 (6)C31—C301.370 (6)
C13—H130.9300C31—H310.9300
C14—C151.375 (5)C29—C301.378 (6)
C14—H140.9300C29—H290.9300
C15—H150.9300C30—H300.9300
C3—N2—C4105.1 (2)C25—N3—C19106.0 (2)
C9—N1—C3106.3 (2)C25—N3—C26125.3 (2)
C9—N1—C10124.9 (2)C19—N3—C26128.6 (2)
C3—N1—C10128.7 (2)C19—N4—C20105.3 (2)
N1—C9—C8132.5 (3)N3—C25—C24132.4 (3)
N1—C9—C4105.9 (2)N3—C25—C20106.1 (2)
C8—C9—C4121.6 (3)C24—C25—C20121.5 (3)
N2—C4—C5129.5 (2)N4—C20—C21129.3 (2)
N2—C4—C9109.7 (2)N4—C20—C25109.7 (2)
C5—C4—C9120.8 (3)C21—C20—C25121.0 (3)
N2—C3—N1113.0 (2)N4—C19—N3112.8 (2)
N2—C3—C2122.5 (3)N4—C19—C18122.6 (2)
N1—C3—C2124.5 (2)N3—C19—C18124.5 (2)
C12—C11—C16118.7 (3)C28—C27—C32117.8 (3)
C12—C11—C10119.9 (3)C28—C27—C26121.2 (3)
C16—C11—C10121.5 (3)C32—C27—C26121.0 (3)
C7—C8—C9116.7 (3)C22—C21—C20116.9 (3)
C7—C8—H8121.7C22—C21—H21121.5
C9—C8—H8121.7C20—C21—H21121.5
N1—C10—C11113.2 (2)N3—C26—C27113.3 (2)
N1—C10—H10A108.9N3—C26—H26A108.9
C11—C10—H10A108.9C27—C26—H26A108.9
N1—C10—H10B108.9N3—C26—H26B108.9
C11—C10—H10B108.9C27—C26—H26B108.9
H10A—C10—H10B107.7H26A—C26—H26B107.7
C6—C5—C4117.4 (3)O2—C18—C19120.9 (3)
C6—C5—H5121.3O2—C18—C17123.0 (3)
C4—C5—H5121.3C19—C18—C17116.2 (3)
O1—C2—C3121.0 (3)C23—C24—C25116.7 (3)
O1—C2—C1122.9 (3)C23—C24—H24121.7
C3—C2—C1116.0 (3)C25—C24—H24121.7
C2—C1—H1A109.5C18—C17—H17A109.5
C2—C1—H1B109.5C18—C17—H17B109.5
H1A—C1—H1B109.5H17A—C17—H17B109.5
C2—C1—H1C109.5C18—C17—H17C109.5
H1A—C1—H1C109.5H17A—C17—H17C109.5
H1B—C1—H1C109.5H17B—C17—H17C109.5
C5—C6—C7121.9 (3)C27—C28—C29121.8 (4)
C5—C6—H6119.1C27—C28—H28119.1
C7—C6—H6119.1C29—C28—H28119.1
C8—C7—C6121.7 (3)C31—C32—C27120.5 (3)
C8—C7—H7119.2C31—C32—H32119.7
C6—C7—H7119.2C27—C32—H32119.7
C15—C16—C11120.3 (3)C24—C23—C22121.7 (3)
C15—C16—H16119.9C24—C23—H23119.1
C11—C16—H16119.9C22—C23—H23119.1
C13—C12—C11120.6 (4)C21—C22—C23122.1 (3)
C13—C12—H12119.7C21—C22—H22118.9
C11—C12—H12119.7C23—C22—H22118.9
C14—C13—C12120.8 (4)C30—C31—C32120.4 (4)
C14—C13—H13119.6C30—C31—H31119.8
C12—C13—H13119.6C32—C31—H31119.8
C15—C14—C13119.3 (4)C28—C29—C30119.3 (3)
C15—C14—H14120.4C28—C29—H29120.3
C13—C14—H14120.4C30—C29—H29120.3
C14—C15—C16120.4 (4)C31—C30—C29120.1 (4)
C14—C15—H15119.8C31—C30—H30119.9
C16—C15—H15119.8C29—C30—H30119.9
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.623.517 (4)161
C10—H10B···O10.972.462.887 (4)106
C16—H16···O1ii0.932.583.427 (4)152
C21—H21···N4iii0.932.623.513 (4)161
C26—H26A···O20.972.452.882 (4)107
C32—H32···O2ii0.932.573.410 (4)150
C1—H1C···Cg1iv0.962.613.487 (4)151
C17—H17A···Cg2iv0.962.613.491 (4)153
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H14N2O
Mr250.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.1307 (10), 6.5226 (12), 34.739 (6)
α, β, γ (°)90.021 (3), 92.749 (3), 110.674 (3)
V3)1298.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.24 × 0.19
Data collection
DiffractometerBrucker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6666, 4523, 3775
Rint0.061
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.189, 1.05
No. of reflections4523
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.623.517 (4)161.4
C16—H16···O1ii0.932.583.427 (4)151.9
C21—H21···N4iii0.932.623.513 (4)161.4
C32—H32···O2ii0.932.573.410 (4)150.2
C1—H1C···Cg1iv0.962.613.487 (4)151.0
C17—H17A···Cg2iv0.962.613.491 (4)153.0
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y, z+1; (iv) x, y1, z.
 

Acknowledgements

This study was supported by theShandong Natural Science Foundation (No. ZR2012BL04)

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, X. Q., Lin, X. H., Zhu, Y. & Ge, Y. Q. (2012). Spectrochim. Acta Part A, 98, 76–80.  CrossRef CAS Google Scholar
First citationGe, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070–1076.  Web of Science CrossRef CAS Google Scholar
First citationGe, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009). Heterocycles, 78, 725–736.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T., Xie, J.-W., Zhao, R.-Y., Zhu, A.-G. & Ge, Y.-Q. (2012). Acta Cryst. E68, o2947.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds