metal-organic compounds
(Nitrato-κ2O,O′)bis(1,10-phenanthroline-κ2N,N′)copper(II) tricyanomethanide
aDepartment of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia
*Correspondence e-mail: katarina.lackova@student.upjs.sk
The title compound, [Cu(NO3)(C12H8N2)2][C(CN)3], is formed of discrete [Cu(NO3)(phen)2]+ complex cations (phen is 1,10-phenanthroline) and C(CN)3− counter-anions. The CuII atom has an asymmetric tetragonal–bipyramidal (4 + 1+1) stereochemistry with a pseudo-C2 symmetry axis bisecting the nitrate ligand and passing through the CuII atom between the two phen ligands. The four N atoms of the phen ligands coordinate to the CuII atom with Cu—N distances in the range 1.974 (2)–2.126 (2) Å, while the two O atoms coordinate at substantially different distances [2.154 (2) and 2.586 (2) Å]. The structure is stabilized by C—H⋯O hydrogen bonds and weak π–π interactions between nearly parallel benzene and pyridine rings of two adjacent phen molecules, with centroid–centroid distances of 3.684 (2) and 3.6111 (2) Å, and between π-electrons of the tricyanomethanide anion and the pyridine or benzene rings [N⋯(ring centroid) distances = 3.553 (3)–3.875 (3) Å].
Related literature
For five-coordinate CuII in [Cu(L)2X]Y complexes [L = 1,10-phenanthroline (phen) or 2,2′-bipyridine (bpy); X = N(CN)2− or ONC(CN)2−, Y = 1− anion], see: Potočňák et al. (2005, 2008). For complexes containing [Cu(NO3)(phen)2]+ cations, see: van Meerssche et al. (1981); Marsh (1997); Chen et al. (2005); Ovens et al. (2010). For complexes containing [Cu(bpy)2NO3]+ cations, see: Prasad et al. (1999); Marjani et al. (2005). For π–π interactions, see: Janiak (2000). For a description of the properties of the tricyanomethanide (tcm or C(CN)3−) anion, see: Golub et al. (1986). For [Cu(L)2Y]tcm (Y = Cl− or Br−), see: Lacková (2012).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812047757/gk2531sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812047757/gk2531Isup2.hkl
The title compound was prepared by chance during our attempts to prepare [Cu(phen)2(tcm)]NO3 compound with a five-coordinated CuII atom. Crystals of the title compound were prepared by mixing a 0.1 M aqueous solution of Cu(NO3)2 (5 ml, 0.5 mmol) with a 0.1 M methanol solution of 1,10-phenanthroline (10 ml, 1 mmol). To the resulting green solution, a 0.1 M aqueous solution of KC(CN)3 (5 ml, 0.5 mmol) was added (all solutions were heated almost to boiling before mixing). After 15 days, green crystals were filtered off and dried in air.
H-atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(NO3)(C12H8N2)2](C4N3) | F(000) = 1172 |
Mr = 576.03 | Dx = 1.498 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 4424 reflections |
a = 13.3011 (4) Å | θ = 2.9–29.4° |
b = 10.1155 (3) Å | µ = 0.90 mm−1 |
c = 19.5597 (6) Å | T = 183 K |
β = 103.997 (3)° | Prism, green |
V = 2553.56 (13) Å3 | 0.38 × 0.31 × 0.26 mm |
Z = 4 |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 5283 independent reflections |
Radiation source: fine-focus sealed tube | 4034 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.3438 pixels mm-1 | θmax = 26.5°, θmin = 2.9° |
ω scans | h = −16→9 |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived from Clark & Reid (1995)] | k = −11→12 |
Tmin = 0.777, Tmax = 0.825 | l = −22→24 |
10675 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0384P)2 + 1.6904P] where P = (Fo2 + 2Fc2)/3 |
5283 reflections | (Δ/σ)max = 0.001 |
361 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Cu(NO3)(C12H8N2)2](C4N3) | V = 2553.56 (13) Å3 |
Mr = 576.03 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.3011 (4) Å | µ = 0.90 mm−1 |
b = 10.1155 (3) Å | T = 183 K |
c = 19.5597 (6) Å | 0.38 × 0.31 × 0.26 mm |
β = 103.997 (3)° |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 5283 independent reflections |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived from Clark & Reid (1995)] | 4034 reflections with I > 2σ(I) |
Tmin = 0.777, Tmax = 0.825 | Rint = 0.024 |
10675 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.40 e Å−3 |
5283 reflections | Δρmin = −0.43 e Å−3 |
361 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.23397 (2) | 0.23042 (3) | 0.492800 (16) | 0.02860 (11) | |
N10 | 0.20297 (15) | 0.0829 (2) | 0.42426 (10) | 0.0279 (5) | |
N20 | 0.37950 (15) | 0.2104 (2) | 0.47543 (10) | 0.0254 (4) | |
N30 | 0.27128 (15) | 0.3747 (2) | 0.56231 (10) | 0.0269 (5) | |
N40 | 0.12822 (15) | 0.3762 (2) | 0.43990 (10) | 0.0273 (5) | |
O1 | 0.12472 (15) | 0.1517 (2) | 0.54749 (10) | 0.0456 (5) | |
O2 | 0.27099 (14) | 0.0638 (2) | 0.59615 (12) | 0.0480 (5) | |
O3 | 0.13425 (17) | 0.0080 (2) | 0.62999 (11) | 0.0535 (6) | |
N4 | 0.17688 (15) | 0.07347 (19) | 0.59182 (11) | 0.0251 (5) | |
C11 | 0.28763 (18) | 0.0376 (2) | 0.40462 (12) | 0.0247 (5) | |
C12 | 0.1122 (2) | 0.0234 (3) | 0.39845 (13) | 0.0326 (6) | |
H12 | 0.0538 | 0.0542 | 0.4117 | 0.039* | |
C13 | 0.1022 (2) | −0.0837 (3) | 0.35220 (14) | 0.0358 (6) | |
H13 | 0.0376 | −0.1216 | 0.3340 | 0.043* | |
C14 | 0.1878 (2) | −0.1322 (3) | 0.33397 (13) | 0.0341 (6) | |
H14 | 0.1820 | −0.2053 | 0.3045 | 0.041* | |
C15 | 0.2850 (2) | −0.0715 (2) | 0.35975 (12) | 0.0280 (6) | |
C16 | 0.3793 (2) | −0.1106 (3) | 0.34200 (13) | 0.0316 (6) | |
H16 | 0.3789 | −0.1841 | 0.3134 | 0.038* | |
C21 | 0.38273 (18) | 0.1067 (2) | 0.43158 (12) | 0.0236 (5) | |
C22 | 0.46619 (19) | 0.2782 (3) | 0.49966 (13) | 0.0302 (6) | |
H22 | 0.4648 | 0.3495 | 0.5294 | 0.036* | |
C23 | 0.5594 (2) | 0.2471 (3) | 0.48255 (13) | 0.0320 (6) | |
H23 | 0.6186 | 0.2971 | 0.5007 | 0.038* | |
C24 | 0.5630 (2) | 0.1427 (3) | 0.43896 (13) | 0.0319 (6) | |
H24 | 0.6248 | 0.1209 | 0.4273 | 0.038* | |
C25 | 0.47279 (19) | 0.0682 (2) | 0.41169 (12) | 0.0251 (5) | |
C26 | 0.4683 (2) | −0.0431 (3) | 0.36593 (13) | 0.0311 (6) | |
H26 | 0.5277 | −0.0694 | 0.3525 | 0.037* | |
C31 | 0.21763 (18) | 0.4890 (2) | 0.54394 (12) | 0.0240 (5) | |
C32 | 0.3421 (2) | 0.3704 (3) | 0.62327 (13) | 0.0327 (6) | |
H32 | 0.3780 | 0.2919 | 0.6365 | 0.039* | |
C33 | 0.3646 (2) | 0.4792 (3) | 0.66803 (14) | 0.0350 (6) | |
H33 | 0.4153 | 0.4735 | 0.7101 | 0.042* | |
C34 | 0.3117 (2) | 0.5938 (3) | 0.64957 (13) | 0.0327 (6) | |
H34 | 0.3265 | 0.6673 | 0.6789 | 0.039* | |
C35 | 0.23491 (19) | 0.6016 (2) | 0.58662 (13) | 0.0267 (5) | |
C36 | 0.1738 (2) | 0.7169 (3) | 0.56400 (14) | 0.0322 (6) | |
H36 | 0.1847 | 0.7924 | 0.5920 | 0.039* | |
C41 | 0.14034 (18) | 0.4896 (2) | 0.47829 (13) | 0.0252 (5) | |
C42 | 0.0572 (2) | 0.3760 (3) | 0.37912 (13) | 0.0348 (6) | |
H42 | 0.0484 | 0.2998 | 0.3517 | 0.042* | |
C43 | −0.0048 (2) | 0.4860 (3) | 0.35470 (14) | 0.0378 (7) | |
H43 | −0.0538 | 0.4821 | 0.3118 | 0.045* | |
C44 | 0.0065 (2) | 0.5983 (3) | 0.39360 (14) | 0.0351 (6) | |
H44 | −0.0352 | 0.6713 | 0.3778 | 0.042* | |
C45 | 0.08147 (18) | 0.6040 (3) | 0.45786 (13) | 0.0282 (6) | |
C46 | 0.1005 (2) | 0.7181 (3) | 0.50269 (15) | 0.0340 (6) | |
H46 | 0.0615 | 0.7943 | 0.4893 | 0.041* | |
C1 | 0.3205 (3) | 0.4583 (3) | 0.34844 (17) | 0.0488 (8) | |
C2 | 0.4051 (2) | 0.3074 (3) | 0.28228 (14) | 0.0384 (7) | |
C3 | 0.2207 (2) | 0.2859 (3) | 0.27295 (14) | 0.0408 (7) | |
C4 | 0.3157 (2) | 0.3509 (3) | 0.30173 (14) | 0.0381 (7) | |
N1 | 0.3254 (3) | 0.5442 (3) | 0.38713 (17) | 0.0772 (10) | |
N2 | 0.4774 (2) | 0.2697 (3) | 0.26576 (13) | 0.0481 (7) | |
N3 | 0.1445 (2) | 0.2311 (3) | 0.25020 (14) | 0.0594 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02404 (17) | 0.02999 (18) | 0.02883 (17) | 0.00306 (14) | 0.00066 (12) | −0.00604 (14) |
N10 | 0.0248 (11) | 0.0302 (12) | 0.0268 (11) | 0.0005 (9) | 0.0026 (9) | −0.0015 (9) |
N20 | 0.0246 (10) | 0.0265 (11) | 0.0233 (10) | −0.0003 (9) | 0.0026 (9) | 0.0008 (9) |
N30 | 0.0253 (11) | 0.0267 (11) | 0.0268 (11) | 0.0050 (9) | 0.0027 (9) | −0.0008 (9) |
N40 | 0.0210 (10) | 0.0315 (12) | 0.0270 (11) | 0.0020 (9) | 0.0007 (9) | 0.0003 (9) |
O1 | 0.0396 (11) | 0.0472 (12) | 0.0433 (11) | 0.0154 (10) | −0.0029 (9) | −0.0071 (10) |
O2 | 0.0230 (10) | 0.0497 (13) | 0.0711 (14) | 0.0028 (9) | 0.0111 (10) | −0.0105 (11) |
O3 | 0.0639 (15) | 0.0471 (13) | 0.0574 (14) | −0.0118 (11) | 0.0298 (12) | −0.0044 (11) |
N4 | 0.0220 (11) | 0.0207 (11) | 0.0337 (11) | −0.0005 (9) | 0.0092 (9) | −0.0091 (9) |
C11 | 0.0266 (13) | 0.0253 (13) | 0.0203 (12) | 0.0015 (11) | 0.0019 (10) | 0.0032 (10) |
C12 | 0.0279 (13) | 0.0373 (15) | 0.0305 (14) | −0.0031 (12) | 0.0032 (11) | −0.0003 (12) |
C13 | 0.0337 (15) | 0.0374 (16) | 0.0332 (14) | −0.0103 (13) | 0.0018 (12) | −0.0005 (12) |
C14 | 0.0465 (17) | 0.0266 (14) | 0.0267 (13) | −0.0054 (12) | 0.0038 (12) | −0.0056 (11) |
C15 | 0.0355 (14) | 0.0257 (13) | 0.0210 (12) | 0.0002 (11) | 0.0030 (11) | 0.0025 (10) |
C16 | 0.0454 (16) | 0.0263 (13) | 0.0233 (12) | 0.0063 (12) | 0.0090 (12) | −0.0021 (11) |
C21 | 0.0279 (13) | 0.0232 (12) | 0.0181 (11) | 0.0019 (10) | 0.0024 (10) | 0.0055 (10) |
C22 | 0.0309 (14) | 0.0302 (14) | 0.0281 (13) | −0.0042 (12) | 0.0044 (11) | −0.0029 (11) |
C23 | 0.0262 (13) | 0.0402 (16) | 0.0284 (13) | −0.0071 (12) | 0.0040 (11) | 0.0023 (12) |
C24 | 0.0263 (13) | 0.0414 (16) | 0.0286 (13) | 0.0031 (12) | 0.0080 (11) | 0.0068 (12) |
C25 | 0.0295 (13) | 0.0248 (13) | 0.0206 (11) | 0.0047 (11) | 0.0051 (10) | 0.0056 (10) |
C26 | 0.0343 (14) | 0.0351 (15) | 0.0258 (13) | 0.0088 (12) | 0.0108 (11) | 0.0052 (11) |
C31 | 0.0200 (12) | 0.0276 (13) | 0.0256 (12) | 0.0012 (10) | 0.0077 (10) | 0.0016 (10) |
C32 | 0.0324 (14) | 0.0326 (15) | 0.0285 (13) | 0.0049 (12) | −0.0017 (11) | 0.0014 (11) |
C33 | 0.0356 (15) | 0.0374 (16) | 0.0274 (13) | −0.0011 (12) | −0.0014 (12) | −0.0038 (12) |
C34 | 0.0370 (15) | 0.0298 (14) | 0.0301 (13) | −0.0030 (12) | 0.0057 (12) | −0.0075 (11) |
C35 | 0.0246 (13) | 0.0276 (13) | 0.0298 (13) | −0.0013 (11) | 0.0102 (11) | 0.0004 (11) |
C36 | 0.0343 (14) | 0.0248 (13) | 0.0397 (15) | 0.0014 (11) | 0.0131 (12) | −0.0024 (12) |
C41 | 0.0199 (12) | 0.0292 (13) | 0.0277 (13) | −0.0010 (10) | 0.0080 (10) | 0.0030 (11) |
C42 | 0.0300 (14) | 0.0417 (16) | 0.0296 (14) | −0.0020 (12) | 0.0013 (11) | −0.0009 (12) |
C43 | 0.0268 (14) | 0.0500 (18) | 0.0313 (14) | 0.0018 (13) | −0.0032 (12) | 0.0086 (13) |
C44 | 0.0264 (14) | 0.0384 (16) | 0.0389 (15) | 0.0052 (12) | 0.0046 (12) | 0.0114 (13) |
C45 | 0.0213 (12) | 0.0323 (14) | 0.0327 (13) | 0.0039 (11) | 0.0097 (11) | 0.0064 (11) |
C46 | 0.0306 (14) | 0.0277 (14) | 0.0458 (16) | 0.0088 (12) | 0.0132 (13) | 0.0065 (13) |
C1 | 0.055 (2) | 0.0455 (19) | 0.0450 (17) | −0.0154 (16) | 0.0094 (15) | −0.0067 (16) |
C2 | 0.0484 (18) | 0.0380 (17) | 0.0226 (13) | −0.0190 (15) | −0.0033 (13) | 0.0032 (12) |
C3 | 0.0483 (18) | 0.0447 (17) | 0.0283 (14) | −0.0067 (15) | 0.0072 (13) | −0.0054 (13) |
C4 | 0.0443 (17) | 0.0364 (16) | 0.0299 (14) | −0.0098 (13) | 0.0015 (13) | −0.0003 (12) |
N1 | 0.086 (2) | 0.062 (2) | 0.085 (2) | −0.0259 (18) | 0.025 (2) | −0.0363 (19) |
N2 | 0.0455 (16) | 0.0587 (17) | 0.0381 (14) | −0.0186 (14) | 0.0064 (12) | −0.0048 (13) |
N3 | 0.0510 (17) | 0.075 (2) | 0.0492 (16) | −0.0219 (15) | 0.0059 (14) | −0.0160 (15) |
Cu1—N10 | 1.981 (2) | C23—H23 | 0.9300 |
Cu1—N20 | 2.055 (2) | C24—C25 | 1.409 (3) |
Cu1—N30 | 1.974 (2) | C24—H24 | 0.9300 |
Cu1—N40 | 2.126 (2) | C25—C26 | 1.431 (3) |
Cu1—O1 | 2.154 (2) | C26—H26 | 0.9300 |
Cu1—O2 | 2.586 (2) | C31—C35 | 1.398 (3) |
O1—N4 | 1.253 (3) | C31—C41 | 1.438 (3) |
O2—N4 | 1.238 (3) | C32—C33 | 1.393 (4) |
O3—N4 | 1.234 (3) | C32—H32 | 0.9300 |
N10—C11 | 1.354 (3) | C33—C34 | 1.359 (4) |
N10—C12 | 1.334 (3) | C33—H33 | 0.9300 |
N20—C21 | 1.362 (3) | C34—C35 | 1.399 (3) |
N20—C22 | 1.326 (3) | C34—H34 | 0.9300 |
N30—C31 | 1.361 (3) | C35—C36 | 1.429 (3) |
N30—C32 | 1.330 (3) | C36—C46 | 1.351 (4) |
N40—C41 | 1.359 (3) | C36—H36 | 0.9300 |
N40—C42 | 1.327 (3) | C41—C45 | 1.401 (3) |
C11—C15 | 1.405 (3) | C42—C43 | 1.400 (4) |
C11—C21 | 1.430 (3) | C42—H42 | 0.9300 |
C12—C13 | 1.397 (4) | C43—C44 | 1.355 (4) |
C12—H12 | 0.9300 | C43—H43 | 0.9300 |
C13—C14 | 1.364 (4) | C44—C45 | 1.404 (3) |
C13—H13 | 0.9300 | C44—H44 | 0.9300 |
C14—C15 | 1.410 (4) | C45—C46 | 1.434 (4) |
C14—H14 | 0.9300 | C46—H46 | 0.9300 |
C15—C16 | 1.435 (4) | C1—N1 | 1.144 (4) |
C16—C26 | 1.349 (4) | C1—C4 | 1.411 (4) |
C16—H16 | 0.9300 | C2—N2 | 1.151 (4) |
C21—C25 | 1.401 (3) | C2—C4 | 1.404 (4) |
C22—C23 | 1.396 (4) | C3—N3 | 1.147 (4) |
C22—H22 | 0.9300 | C3—C4 | 1.415 (4) |
C23—C24 | 1.366 (4) | ||
N10—Cu1—N30 | 177.46 (8) | C23—C22—H22 | 118.5 |
N10—Cu1—N40 | 100.85 (8) | C24—C23—C22 | 119.4 (2) |
N20—Cu1—N10 | 82.20 (8) | C24—C23—H23 | 120.3 |
N20—Cu1—N30 | 95.54 (8) | C22—C23—H23 | 120.3 |
N20—Cu1—N40 | 121.78 (8) | C23—C24—C25 | 119.7 (2) |
N30—Cu1—N40 | 81.31 (8) | C23—C24—H24 | 120.2 |
N10—Cu1—O1 | 90.15 (8) | C25—C24—H24 | 120.2 |
N20—Cu1—O1 | 145.22 (8) | C21—C25—C24 | 117.0 (2) |
N30—Cu1—O1 | 91.07 (8) | C21—C25—C26 | 118.9 (2) |
N40—Cu1—O1 | 92.97 (8) | C24—C25—C26 | 124.1 (2) |
N10—Cu1—O2 | 90.41 (8) | C16—C26—C25 | 121.1 (2) |
N20—Cu1—O2 | 93.23 (7) | C16—C26—H26 | 119.5 |
N30—Cu1—O2 | 88.55 (7) | C25—C26—H26 | 119.5 |
N40—Cu1—O2 | 144.19 (7) | N30—C31—C35 | 122.3 (2) |
O1—Cu1—O2 | 52.76 (6) | N30—C31—C41 | 117.1 (2) |
C12—N10—C11 | 118.6 (2) | C35—C31—C41 | 120.6 (2) |
C12—N10—Cu1 | 128.10 (18) | N30—C32—C33 | 122.4 (2) |
C11—N10—Cu1 | 113.29 (15) | N30—C32—H32 | 118.8 |
C22—N20—C21 | 117.7 (2) | C33—C32—H32 | 118.8 |
C22—N20—Cu1 | 131.50 (18) | C34—C33—C32 | 119.2 (2) |
C21—N20—Cu1 | 110.75 (16) | C34—C33—H33 | 120.4 |
C32—N30—C31 | 118.5 (2) | C32—C33—H33 | 120.4 |
C32—N30—Cu1 | 126.82 (17) | C33—C34—C35 | 120.2 (2) |
C31—N30—Cu1 | 114.70 (15) | C33—C34—H34 | 119.9 |
C42—N40—C41 | 117.4 (2) | C35—C34—H34 | 119.9 |
C42—N40—Cu1 | 132.69 (18) | C31—C35—C34 | 117.3 (2) |
C41—N40—Cu1 | 109.91 (15) | C31—C35—C36 | 118.8 (2) |
N4—O1—Cu1 | 104.48 (15) | C34—C35—C36 | 123.9 (2) |
N4—O2—Cu1 | 84.07 (15) | C46—C36—C35 | 121.1 (2) |
O3—N4—O2 | 121.4 (2) | C46—C36—H36 | 119.5 |
O3—N4—O1 | 120.0 (2) | C35—C36—H36 | 119.5 |
O2—N4—O1 | 118.6 (2) | N40—C41—C45 | 123.8 (2) |
N10—C11—C15 | 123.1 (2) | N40—C41—C31 | 117.0 (2) |
N10—C11—C21 | 116.9 (2) | C45—C41—C31 | 119.2 (2) |
C15—C11—C21 | 120.0 (2) | N40—C42—C43 | 122.5 (3) |
N10—C12—C13 | 122.1 (3) | N40—C42—H42 | 118.8 |
N10—C12—H12 | 119.0 | C43—C42—H42 | 118.8 |
C13—C12—H12 | 119.0 | C44—C43—C42 | 119.9 (2) |
C14—C13—C12 | 119.6 (2) | C44—C43—H43 | 120.0 |
C14—C13—H13 | 120.2 | C42—C43—H43 | 120.0 |
C12—C13—H13 | 120.2 | C43—C44—C45 | 119.7 (2) |
C13—C14—C15 | 120.1 (2) | C43—C44—H44 | 120.1 |
C13—C14—H14 | 120.0 | C45—C44—H44 | 120.1 |
C15—C14—H14 | 120.0 | C41—C45—C44 | 116.6 (2) |
C11—C15—C14 | 116.6 (2) | C41—C45—C46 | 119.1 (2) |
C11—C15—C16 | 118.5 (2) | C44—C45—C46 | 124.2 (2) |
C14—C15—C16 | 124.9 (2) | C36—C46—C45 | 121.2 (2) |
C26—C16—C15 | 121.4 (2) | C36—C46—H46 | 119.4 |
C26—C16—H16 | 119.3 | C45—C46—H46 | 119.4 |
C15—C16—H16 | 119.3 | N1—C1—C4 | 178.9 (4) |
N20—C21—C25 | 123.2 (2) | N2—C2—C4 | 178.7 (3) |
N20—C21—C11 | 116.7 (2) | N3—C3—C4 | 178.8 (4) |
C25—C21—C11 | 120.1 (2) | C1—C4—C2 | 120.6 (3) |
N20—C22—C23 | 123.0 (2) | C2—C4—C3 | 118.7 (3) |
N20—C22—H22 | 118.5 | C3—C4—C1 | 120.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O3i | 0.93 | 2.52 | 3.206 (3) | 131 |
C24—H24···O2ii | 0.93 | 2.44 | 3.231 (3) | 144 |
C36—H36···O3iii | 0.93 | 2.45 | 3.307 (3) | 153 |
C46—H46···O1iv | 0.93 | 2.47 | 3.201 (3) | 136 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x, y+1, z; (iv) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(NO3)(C12H8N2)2](C4N3) |
Mr | 576.03 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 183 |
a, b, c (Å) | 13.3011 (4), 10.1155 (3), 19.5597 (6) |
β (°) | 103.997 (3) |
V (Å3) | 2553.56 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.90 |
Crystal size (mm) | 0.38 × 0.31 × 0.26 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire2 diffractometer |
Absorption correction | Analytical [CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived from Clark & Reid (1995)] |
Tmin, Tmax | 0.777, 0.825 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10675, 5283, 4034 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.097, 1.01 |
No. of reflections | 5283 |
No. of parameters | 361 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.43 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O3i | 0.93 | 2.52 | 3.206 (3) | 131 |
C24—H24···O2ii | 0.93 | 2.44 | 3.231 (3) | 144 |
C36—H36···O3iii | 0.93 | 2.45 | 3.307 (3) | 153 |
C46—H46···O1iv | 0.93 | 2.47 | 3.201 (3) | 136 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x, y+1, z; (iv) −x, −y+1, −z+1. |
Acknowledgements
This work was supported by the Slovak Research and Development Agency under contract No. APVV–0132–11 and by the internal P·J. Šafárik University grant system VVGS-PF-2012–24 and VVGS 1/12–13.
References
Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Chen, Z.-M., Li, W., Yang, Y.-Q., Kuang, D.-Z., Feng, Y.-L., Wang, J.-Q. & Zhang, F.-X. (2005). Hunan Shifan Daxue Ziran Kexue Xuebao, 28, 54–58. CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Golub, A. M., Kőhler, H. & Skopensko, V. V. (1986). In Chemistry of Pseudohalides. Amsterdam: Elsevier. Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Lacková, K. (2012). Unpublished results. Google Scholar
Marjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11–m14. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marsh, R. E. (1997). Acta Cryst. B53, 317–322. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Meerssche, M. van, Germain, G., Declercq, J. P. & Wilputte-Steinert, L. (1981). Cryst. Struct. Commun. 10, 47–53. Google Scholar
Ovens, J. S., Geisheimer, A. R., Bokov, A. A., Ye, Z.-G. & Leznoff, D. B. (2010). Inorg. Chem. 49, 9609–9616. Web of Science CSD CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Potočňák, I., Burčák, M., Baran, P. & Jäger, L. (2005). Transition Met. Chem. 30, 889–896. Google Scholar
Potočňák, I., Vavra, M., Jäger, L., Baran, P. & Wagner, C. (2008). Transition Met. Chem. 33, 1–8. Google Scholar
Prasad, B. L. V., Sato, H., Enoki, T., Cohen, S. & Radhakrishnan, T. P. (1999). J. Chem. Soc. Dalton Trans. pp. 25–29. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The shape of coordination polyhedra (SCP) in the case of five-coordination is one of the current problems in coordination chemistry. With the aim of establishing possible reasons for different SCP in related compounds, our research group has previously prepared and studied the structures of five-coordinate copper(II) complexes of the general formula [Cu(L)2X]Y, where L is 1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy), X is N(CN)2- or ONC(CN)2- and Y is 1- anion (Potočňák et al., 2005, 2008). The obtained results showed that the preferred SCP for compounds with phen is close to trigonal bipyramid, whereas SCP for bpy compounds is close to tetragonal pyramid. It is known that tricyanomethanide anion (tcm, C(CN)3-) can coordinate similarly as N(CN)2- and ONC(CN)2- anions (Golub et al., 1986). Thus, to verify the findings about SCP, we have attempted to prepare compounds with X = tcm and Y = Cl- or Br- and checked their SCP. However, X-ray structure analysis of four prepared complexes has shown that their formulae are [Cu(L)2Y]tcm, thus smaller Cl- and Br- anions were coordinated while larger tcm anion remained out of coordination sphere (Lacková, 2012). Therefore, we have decided to replace smaller Cl- or Br- anions by larger NO3- anion with the hope that it remains uncoordinated. Nevertheless, the title compound, [Cu(NO3)(phen)2]tcm with coordinated NO3- and uncoordinated tcm anions has been prepared during our attempts and we present its structure here.
The title compound is formed by discrete [Cu(NO3)(phen)2]+ cation and an uncoordinated C(CN)3- anion (Figure 1). The CuII atom is coordinated by four nitrogen atoms from two phen ligands at average Cu–N distance of 2.03 (7) Å and O1 atom from the nitrato ligand at 2.154 (2) Å. The second nitrato oxygen atom (O2) is 2.586 (2) Å away from the CuII atom, thus it can be considered as semi-coordinated; similar values have been observed in the [Cu(bpy)2NO3]NO3 (2.138 (6) and 2.520 (6) Å) (Marjani et al., 2005) and [Cu(bpy)2(NO3)]NO3.HDCI.H2O, HDCI = 4,5-dicyanoimidazole (2.078 (3) and 2.639 (4) Å) (Prasad et al., 1999) compounds. Thus, the CuII atom in the title compound has an asymmetric tetragonal–bipyramidal (4+1+1) stereochemistry with pseudo-C2 symmetry axis bisecting the NO3 ligand and passing between the two phen ligands. On the other hand, the two Cu–O distances in known [Cu(NO3)(phen)2]Y complexes are much closer to each other [2.1549 (5) and 2.4886 (5) Å for Y = CCl3COO- (van Meerssche et al., 1981), 2.3119 (5) and 2.3119 (5) Å for Y = CCl3COO- (Marsh, 1997), 2.0137 (3) and 2.3316 (3) Å for Y = OH- (Chen et al., 2005) and 2.302 (6) and 2.416 (6) Å for Y = [AuBr2(CN)2]- (Ovens et al., 2010)].
Each of the two phen molecules in the title compound possesses one nitrogen atom (N20 and N40) occupying an equatorial position and one nitrogen atom (N10 and N30) coordinated in an axial position (corresponding bond lengths are reported in Table of geometric parameters), two remaining equatorial positions are occupied by O1 and O2 atoms from the nitrato ligand. Aromatic rings of phen molecules are nearly planar; the largest deviation of atoms from their mean planes is 0.060 (3) Å for C13 atom and bond distances and angles are normal (van Meerssche et al., 1981; Marsh, 1997; Chen et al., 2005; Ovens et al., 2010). The positive charge of the [Cu(NO3)(phen)2]+ cation is balanced by an uncoordinated tcm anion, which is settled under the "umbrella" of the copper atom and the two phen molecules. The N≡C as well as the C–C distances (Table of geometric parameters) are usual for triple N≡C (1.15 Å) and single C–C (1.40 Å) bonds (Golub et al., 1986). The bond angles around methanide and cyanide carbon atoms are, as expected, nearly 120 and 180° confirming sp2 and sp hybridization states of the corresponding carbon atoms (Table of geometric parameters).
The structure of the title compound is stabilized by weak C–H···O hydrogen bonds (Table 1, Figure 2) which link the cations and anions into the plane parallel with (001). The next stabilization comes from two kinds of π-π interactions (Janiak, 2000). There are face to face π-π interactions between nearly planar benzene and pyridine rings [Cg1i (N20i, C21i – C25i)···Cg3 (C11, C15, C16, C26, C25, C21) = 3.684 (2) Å; Cg2 (N40, C41 – C45)···Cg4ii (C31ii, C35ii, C36ii, C46ii, C45ii, C41ii) = 3.611 (2) Å (Cg = centroid); symmetry codes: (i) = 1 - x, -y, 1 - z; (ii) = -x, 1 - y, 1 - z] and π-π interaction between π electrons of the tcm anion and the benzene or pyridine rings [N1···Cg2 = 3.654 (4) Å; N2···Cg1 (N20, C21 – C25) = 3.875 (3) Å; N3···Cg5 (N10, C11 – C15)= 3.553 (3) Å] as shown in Figure 3.