organic compounds
Bis{(E)-3-[(2-hydroxybenzylidene)amino]propyl}ammonium chloride
aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: maldamen@ju.edu.jo
The title salt, C20H26N3O2+·Cl−, lies across a twofold crystallographic axis with the central N atom of the cation and the chloride anion sitting on this axis, Z′ = 0.5. There is an intramolecular hydrogen bond between the hydroxy H atom and the imino N atom. The chloride anion and the cation are connected into chains along the a axis by an N—H⋯Cl hydrogen bond. In the crystal, the chains are linked via C—H⋯Cl interactions forming two-dimensional networks lying parallel to (101).
Related literature
For applications of similar ligands, see: Taha et al. (2011a,b). For analgous structures, see: Ramazani et al. (2006); Cheng et al. (2009); Chen et al. (2011); Pavel et al. (2007).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536812045424/go2068sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812045424/go2068Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812045424/go2068Isup3.cml
Facile condensation of 3,3 –Diaminodipropylamine and salicylaldehyde 1:2 molar ratio afforded a neutral condensate as following:
3,3 –Diaminodipropylamine (30 ml, 0.208 mol) was added dropwise to a solution of salicylaldehyde (50.7 g, 0.416 mol) in absolute ethanol (250 ml); the solution became instantly yellow. The mixture was heated for 1 h at 50°C. Evaporation of the solvent under reduced pressure afforded the desired compound in 95% yield as yellow oil. The obtained Schiff base was then mixed with cyanuric acid in ethanol with few drops of 1M HCl added. The mixture then stir heated (40°C) for 24 then filtered. After few days crystals suitable for X-ray diffraction were formed.
H atoms were treated as riding atoms with C—H(aromatic), 0.93Å and C—H(CH2), 0.97Å, with Uiso = 1.2Ueq(C). The hydrogens attached N1 and O1 were located on a difference map and refined as riding atoms with Uiso = 1.2Ueq(N1) and Uiso = 1.5Ueq(O1). The positions of these latter atoms was confirmed on a final difference map. The position of the Cl anion was chosen so that it formed a hydrogen bonded asymmetric unit.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H26N3O2+·Cl− | Dx = 1.252 Mg m−3 |
Mr = 375.88 | Mo Kα radiation, λ = 0.7107 Å |
Orthorhombic, Pccn | Cell parameters from 2556 reflections |
a = 4.9848 (3) Å | θ = 3.7–26.3° |
b = 38.714 (2) Å | µ = 0.21 mm−1 |
c = 10.3299 (7) Å | T = 100 K |
V = 1993.5 (2) Å3 | Prism, white |
Z = 4 | 0.52 × 0.37 × 0.04 mm |
F(000) = 800 |
Oxford Diffraction Xcalibur (Eos, Gemini ultra) diffractometer | 2040 independent reflections |
Radiation source: fine-focus sealed tube | 1654 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 16.0122 pixels mm-1 | θmax = 26.4°, θmin = 4.0° |
ω scans | h = −6→5 |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] | k = −48→48 |
Tmin = 0.94, Tmax = 0.992 | l = −12→12 |
8874 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.076 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.150 | Only H-atom displacement parameters refined |
S = 1.21 | w = 1/[σ2(Fo2) + (0.0141P)2 + 6.1394P] where P = (Fo2 + 2Fc2)/3 |
2040 reflections | (Δ/σ)max < 0.001 |
119 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.88 e Å−3 |
C20H26N3O2+·Cl− | V = 1993.5 (2) Å3 |
Mr = 375.88 | Z = 4 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 4.9848 (3) Å | µ = 0.21 mm−1 |
b = 38.714 (2) Å | T = 100 K |
c = 10.3299 (7) Å | 0.52 × 0.37 × 0.04 mm |
Oxford Diffraction Xcalibur (Eos, Gemini ultra) diffractometer | 2040 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] | 1654 reflections with I > 2σ(I) |
Tmin = 0.94, Tmax = 0.992 | Rint = 0.049 |
8874 measured reflections |
R[F2 > 2σ(F2)] = 0.076 | 0 restraints |
wR(F2) = 0.150 | Only H-atom displacement parameters refined |
S = 1.21 | Δρmax = 0.39 e Å−3 |
2040 reflections | Δρmin = −0.88 e Å−3 |
119 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.1873 (5) | 0.13196 (7) | 0.8454 (3) | 0.0340 (7) | |
H1 | −0.0740 | 0.1460 | 0.7900 | 0.051* | |
N1 | 0.2500 | 0.2500 | 0.5049 (4) | 0.0174 (8) | |
H1A | 0.1010 | 0.2508 | 0.5560 | 0.021* | |
N2 | 0.1804 (6) | 0.14754 (7) | 0.6799 (3) | 0.0229 (7) | |
C1 | 0.2328 (7) | 0.21793 (8) | 0.4236 (3) | 0.0213 (7) | |
H1B | 0.4094 | 0.2126 | 0.3897 | 0.026* | |
H1C | 0.1150 | 0.2223 | 0.3507 | 0.026* | |
C2 | 0.1289 (7) | 0.18696 (8) | 0.4984 (3) | 0.0230 (8) | |
H2A | 0.0861 | 0.1688 | 0.4373 | 0.028* | |
H2B | −0.0364 | 0.1935 | 0.5414 | 0.028* | |
C3 | 0.3212 (7) | 0.17249 (9) | 0.5993 (3) | 0.0236 (8) | |
H3A | 0.4716 | 0.1614 | 0.5566 | 0.028* | |
H3B | 0.3901 | 0.1911 | 0.6526 | 0.028* | |
C4 | 0.2480 (7) | 0.11586 (8) | 0.6762 (3) | 0.0226 (7) | |
H4 | 0.3885 | 0.1092 | 0.6225 | 0.027* | |
C5 | 0.1112 (7) | 0.08970 (9) | 0.7539 (3) | 0.0234 (8) | |
C6 | −0.1012 (7) | 0.09900 (9) | 0.8369 (3) | 0.0257 (8) | |
C7 | −0.2244 (9) | 0.07364 (10) | 0.9119 (4) | 0.0345 (9) | |
H7 | −0.3635 | 0.0796 | 0.9676 | 0.041* | |
C8 | −0.1417 (9) | 0.03980 (11) | 0.9042 (4) | 0.0388 (10) | |
H8 | −0.2260 | 0.0231 | 0.9547 | 0.047* | |
C9 | 0.0656 (9) | 0.03018 (10) | 0.8224 (4) | 0.0394 (10) | |
H9 | 0.1205 | 0.0073 | 0.8177 | 0.047* | |
C10 | 0.1893 (8) | 0.05520 (9) | 0.7478 (4) | 0.0325 (9) | |
H10 | 0.3278 | 0.0489 | 0.6924 | 0.039* | |
Cl1 | −0.2500 | 0.2500 | 0.68790 (11) | 0.0223 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0353 (16) | 0.0380 (14) | 0.0286 (15) | 0.0007 (12) | 0.0106 (13) | −0.0020 (12) |
N1 | 0.0110 (18) | 0.0282 (19) | 0.0131 (19) | −0.0011 (17) | 0.000 | 0.000 |
N2 | 0.0248 (16) | 0.0259 (14) | 0.0180 (15) | −0.0025 (12) | −0.0038 (13) | −0.0005 (12) |
C1 | 0.0195 (16) | 0.0289 (17) | 0.0156 (16) | −0.0015 (15) | −0.0012 (14) | −0.0030 (13) |
C2 | 0.0200 (18) | 0.0259 (17) | 0.0230 (19) | −0.0021 (14) | −0.0039 (15) | −0.0010 (14) |
C3 | 0.0235 (19) | 0.0263 (17) | 0.0208 (18) | −0.0040 (14) | −0.0011 (15) | −0.0029 (14) |
C4 | 0.0210 (17) | 0.0310 (17) | 0.0158 (16) | 0.0000 (15) | 0.0007 (15) | −0.0017 (14) |
C5 | 0.0202 (18) | 0.0298 (18) | 0.0201 (18) | −0.0024 (14) | −0.0037 (15) | 0.0004 (14) |
C6 | 0.0252 (19) | 0.0342 (19) | 0.0178 (18) | −0.0038 (16) | −0.0034 (15) | −0.0008 (15) |
C7 | 0.031 (2) | 0.048 (2) | 0.024 (2) | −0.0092 (19) | 0.0037 (18) | 0.0034 (17) |
C8 | 0.037 (2) | 0.045 (2) | 0.035 (2) | −0.0136 (19) | −0.0037 (19) | 0.0133 (19) |
C9 | 0.045 (3) | 0.030 (2) | 0.043 (3) | 0.0001 (18) | 0.000 (2) | 0.0099 (18) |
C10 | 0.032 (2) | 0.0319 (19) | 0.033 (2) | 0.0000 (17) | 0.0020 (18) | 0.0014 (17) |
Cl1 | 0.0132 (5) | 0.0368 (6) | 0.0169 (5) | −0.0037 (5) | 0.000 | 0.000 |
O1—C6 | 1.349 (4) | C3—H3B | 0.9700 |
O1—H1 | 0.9705 | C4—C5 | 1.461 (5) |
N1—C1i | 1.501 (4) | C4—H4 | 0.9300 |
N1—C1 | 1.501 (4) | C5—C10 | 1.393 (5) |
N1—H1A | 0.9117 | C5—C6 | 1.409 (5) |
N2—C4 | 1.272 (4) | C6—C7 | 1.394 (5) |
N2—C3 | 1.456 (4) | C7—C8 | 1.376 (6) |
C1—C2 | 1.518 (4) | C7—H7 | 0.9300 |
C1—H1B | 0.9700 | C8—C9 | 1.386 (6) |
C1—H1C | 0.9700 | C8—H8 | 0.9300 |
C2—C3 | 1.522 (5) | C9—C10 | 1.383 (5) |
C2—H2A | 0.9700 | C9—H9 | 0.9300 |
C2—H2B | 0.9700 | C10—H10 | 0.9300 |
C3—H3A | 0.9700 | ||
C6—O1—H1 | 107.8 | H3A—C3—H3B | 108.2 |
C1i—N1—C1 | 112.0 (3) | N2—C4—C5 | 121.8 (3) |
C1i—N1—H1A | 110.0 | N2—C4—H4 | 119.1 |
C1—N1—H1A | 107.8 | C5—C4—H4 | 119.1 |
C4—N2—C3 | 119.6 (3) | C10—C5—C6 | 118.8 (3) |
N1—C1—C2 | 112.8 (3) | C10—C5—C4 | 120.6 (3) |
N1—C1—H1B | 109.0 | C6—C5—C4 | 120.5 (3) |
C2—C1—H1B | 109.0 | O1—C6—C7 | 119.3 (3) |
N1—C1—H1C | 109.0 | O1—C6—C5 | 121.3 (3) |
C2—C1—H1C | 109.0 | C7—C6—C5 | 119.3 (3) |
H1B—C1—H1C | 107.8 | C8—C7—C6 | 120.4 (4) |
C1—C2—C3 | 115.1 (3) | C8—C7—H7 | 119.8 |
C1—C2—H2A | 108.5 | C6—C7—H7 | 119.8 |
C3—C2—H2A | 108.5 | C7—C8—C9 | 121.0 (4) |
C1—C2—H2B | 108.5 | C7—C8—H8 | 119.5 |
C3—C2—H2B | 108.5 | C9—C8—H8 | 119.5 |
H2A—C2—H2B | 107.5 | C10—C9—C8 | 119.0 (4) |
N2—C3—C2 | 109.4 (3) | C10—C9—H9 | 120.5 |
N2—C3—H3A | 109.8 | C8—C9—H9 | 120.5 |
C2—C3—H3A | 109.8 | C9—C10—C5 | 121.5 (4) |
N2—C3—H3B | 109.8 | C9—C10—H10 | 119.3 |
C2—C3—H3B | 109.8 | C5—C10—H10 | 119.3 |
C1i—N1—C1—C2 | −161.9 (3) | C10—C5—C6—C7 | 1.0 (5) |
N1—C1—C2—C3 | −70.5 (4) | C4—C5—C6—C7 | −178.7 (3) |
C4—N2—C3—C2 | 114.2 (3) | O1—C6—C7—C8 | 179.5 (4) |
C1—C2—C3—N2 | 169.3 (3) | C5—C6—C7—C8 | −0.6 (6) |
C3—N2—C4—C5 | −179.2 (3) | C6—C7—C8—C9 | 0.2 (6) |
N2—C4—C5—C10 | 180.0 (3) | C7—C8—C9—C10 | 0.0 (6) |
N2—C4—C5—C6 | −0.4 (5) | C8—C9—C10—C5 | 0.4 (6) |
C10—C5—C6—O1 | −179.2 (3) | C6—C5—C10—C9 | −0.8 (6) |
C4—C5—C6—O1 | 1.2 (5) | C4—C5—C10—C9 | 178.8 (4) |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.91 | 2.22 | 3.128 (2) | 176 |
O1—H1···N2 | 0.97 | 1.70 | 2.577 (4) | 148 |
C1—H1C···Cl1ii | 0.97 | 2.70 | 3.642 (4) | 164 |
Symmetry code: (ii) −x−1/2, y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H26N3O2+·Cl− |
Mr | 375.88 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 100 |
a, b, c (Å) | 4.9848 (3), 38.714 (2), 10.3299 (7) |
V (Å3) | 1993.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.52 × 0.37 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur (Eos, Gemini ultra) diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] |
Tmin, Tmax | 0.94, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8874, 2040, 1654 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.076, 0.150, 1.21 |
No. of reflections | 2040 |
No. of parameters | 119 |
H-atom treatment | Only H-atom displacement parameters refined |
Δρmax, Δρmin (e Å−3) | 0.39, −0.88 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.91 | 2.22 | 3.128 (2) | 176 |
O1—H1···N2 | 0.97 | 1.70 | 2.577 (4) | 148 |
C1—H1C···Cl1i | 0.97 | 2.70 | 3.642 (4) | 164 |
Symmetry code: (i) −x−1/2, y, z−1/2. |
References
Chen, Y., Ge, Y., Zhou, W., Ye, L., Gu, Z., Ma, G., Li, W., Li, H. & Cai, Y. (2011). Inorg. Chem. Commun. 14, 1228–1232. Web of Science CSD CrossRef CAS Google Scholar
Cheng, K., Zheng, Q., Qian, Y., Shi, L., Zhao, J. & Zhu, H. (2009). Bioorg. Med. Chem. 17, 7861–7871. Web of Science CSD CrossRef PubMed CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pavel, K., Kamenicek, J., Petricek, V., Kurecka, A., Kalinska, B. & Mrozinski, J. (2007). Polyhedron, 26, 535–542. Google Scholar
Ramazani, A., Dolatyari, L., Morsali, A., Yilmaz, V. T. & Bueyuekguengoer, O. (2006). J. Iran. Chem. Soc., 3, 367-370. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taha, Z. A., Ajlouni, A. M., Al-Hassan, K. A., Hijazi, A. K. & Faiq, A. B. (2011a). Spectrochim. Acta Part A, 81, 317–323. CrossRef CAS Google Scholar
Taha, Z. A., Ajlouni, A. M., Al Momani, W. & Al-Ghzawi, A. A. (2011b). Spectrochim. Acta Part A, 81, 570–577. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tetradentate Schiff bases are flexible ligands and difficult to crystallize and most of the crystal structures published for these ligands are complexes with transition metals or anthanides/actinides.
As far as we can determine there are no published structures for this type of ligand and published data for these types of ligand with antimicrobial or of interst because of their optical properies have been were has been obtained from solid state techniques like NMR or elemental analysis Taha et al. (2011a); Taha et al. (2011b). We crystallized (I) as salt. (Fig. 1). The molecule sits across a two-fold crystallographic axis with the ammonium nitrogen atom, N1, and the Cl anion sitting on the two-fold axis.
The bond lengths of N1—C1 and N2—C3 are 1.501 (4) and 1.456 (4) respectively indicate that these are single bonds and the bond length of N2—C4 (1.273 (4) Å) shows that this is a double bond exhibits a double bond. The distances are in agreement with other salicylic and dipropylamino ligands and complexes found in literature (Ramazani et al. (2006), Cheng et al. (2009), Pavel et al. (2007) & Chen et al. (2011)).
There is an intramolecular hydrogen bond between the phenolic oxygen, O1 and N2, Table 1, Fig1 The N1—HH1A···Cl1 hydrogen bond connects the chloride ion to two adjacent ligands to form chains which run parallel to the a axis, Table 1 and Fig. 1. In addition there is a short contact between C1 and Cl1, Table 1. There are no C–H···π interactions nor is there any π-π stacking.