organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[4-Acetyl-1,3-phenyl­enebis(­­oxy)]di­acetic acid

aSchool of Chemistry & Environmental Engineering, Jiujiang University, Jiujiang 332005, People's Republic of China
*Correspondence e-mail: jgwang117@163.com

(Received 9 November 2012; accepted 21 November 2012; online 28 November 2012)

In the title compound, C12H12O7, the dihedral angles between the benzene ring and the mean planes of the 3-carb­oxy­meth­oxy, 1-carb­oxy­meth­oxy and acetyl substituents are 8.67 (7), 7.81 (6) and 10.3 (18)°, respectively. In the crystal, mol­ecules are linked by typical carb­oxy­lic acid O—H⋯O hydrogen bonds, forming a zigzag chain. C—H⋯O inter­actions also occur.

Related literature

For a related structure, see: Zhang et al. (2007[Zhang, C., Li, H., Liu, D. & Liu, M. (2007). Acta Cryst. E63, o4210.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12O7

  • Mr = 268.22

  • Triclinic, [P \overline 1]

  • a = 5.1351 (6) Å

  • b = 7.8346 (9) Å

  • c = 15.6157 (18) Å

  • α = 86.217 (2)°

  • β = 81.321 (1)°

  • γ = 72.101 (2)°

  • V = 590.86 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.987

  • 3902 measured reflections

  • 2049 independent reflections

  • 1860 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.120

  • S = 1.05

  • 2049 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.83 2.6530 (14) 180
O6—H6⋯O5ii 0.82 1.83 2.6352 (15) 167
C2—H2⋯O7iii 0.93 2.44 3.3566 (17) 168
C4—H4⋯O6iv 0.93 2.52 3.4392 (19) 169
Symmetry codes: (i) -x+3, -y+2, -z; (ii) -x-1, -y+2, -z+1; (iii) x-1, y+1, z; (iv) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is a potential inhibitor of mushroom tyrosinase.

The dihedral angles between the mean planes of the benzene ring and those of the 2-carboxymethoxyl,(O1-C8-C7-O3-O2), 4-carboxymethoxyl (O6-C10-C9-O4-O5), and acetyl, (C11-C12-O7), substituents are 8.67 (7)°, 7.81 (6)°, and 10.3 (18)° respectively.

In the crystal, the molecules are linked by typical carboxylic acid O—H···O hydrogen bonding forming a one-dimensional zig-zag chain Table 1, Figure 2.

This chain is linked to anti-parallel chains by C—H···O weak hydrogen bonds to form a two dimensional sheet stabilizing the supramolecular structure, Table 1, Figure 2.

Related literature top

For a related structure, see: Zhang et al. (2007).

Experimental top

2,4-dihydroxyacetophenone (10.64 g, 0.07 mol) and potassium hydroxide (10.58 g, 0.189 mol) were dissolved in dry acetone (100 ml) in a three-neck flask. Then ethyl bromoacetate (28.06 g, 0.168 mol) was dropwise added at room temperature and vigorously stirred for 3 h. The progress of the reaction was monitored by TCL (Si gel, developing solvent V (acetone) /V (petroleum ether) = 1:2). After suction filtration and distillation to remove the solvent, a white solid was obtained, 19.76 g, yield 87.1%. This solid was dissolved in acetone (30 ml) and 20% aq. NaOH (50 ml) was added. The reaction mixture was stirred at 323 K for 1.5 h. After acidifying the misxture with dilute hydrochloric acid to pH=3, followed by suction filtrationand washing the residue with water, the target product was prepared. After recrystallization from ethanol, crystalline colorless needles were obtained.

Refinement top

All the carbon-bounded hydrogen atoms were located at their ideal positions with the C—H=0.93 Å, C—H=0.96 Å, C—H=0.97 Å and Uiso(H)=1.2Ueq(C). All the hydrogen atoms bonded to the oxygen atoms were located from the difference maps and refined with the restraints of O—H=0.82 (1) Å and Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing for (I), with hydrogen bonds shown as dashed lines. Hydrogen atoms not involved in the hydrogen bonding have been omitted.
2,2'-[4-Acetyl-1,3-phenylenebis(oxy)]diacetic acid top
Crystal data top
C12H12O7Z = 2
Mr = 268.22F(000) = 280
Triclinic, P1Dx = 1.508 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1351 (6) ÅCell parameters from 3359 reflections
b = 7.8346 (9) Åθ = 2.6–31.8°
c = 15.6157 (18) ŵ = 0.13 mm1
α = 86.217 (2)°T = 298 K
β = 81.321 (1)°Block, colourless
γ = 72.101 (2)°0.12 × 0.10 × 0.10 mm
V = 590.86 (12) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2049 independent reflections
Radiation source: fine-focus sealed tube1860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 66
Tmin = 0.985, Tmax = 0.987k = 99
3902 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.1078P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2049 reflectionsΔρmax = 0.24 e Å3
176 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (8)
Crystal data top
C12H12O7γ = 72.101 (2)°
Mr = 268.22V = 590.86 (12) Å3
Triclinic, P1Z = 2
a = 5.1351 (6) ÅMo Kα radiation
b = 7.8346 (9) ŵ = 0.13 mm1
c = 15.6157 (18) ÅT = 298 K
α = 86.217 (2)°0.12 × 0.10 × 0.10 mm
β = 81.321 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2049 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1860 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.987Rint = 0.016
3902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2049 reflectionsΔρmin = 0.23 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9386 (3)0.64900 (17)0.22991 (8)0.0282 (3)
C20.6877 (3)0.75023 (17)0.27294 (9)0.0291 (3)
H20.62540.87350.26300.035*
C30.5297 (3)0.66705 (18)0.33088 (9)0.0290 (3)
C40.6221 (3)0.48246 (18)0.34697 (9)0.0332 (3)
H40.51660.42660.38580.040*
C50.8736 (3)0.38464 (17)0.30388 (9)0.0329 (3)
H50.93610.26180.31520.040*
C61.0383 (3)0.46109 (17)0.24430 (9)0.0299 (3)
C71.0249 (3)0.90973 (18)0.15901 (10)0.0349 (3)
H7A1.02110.96960.21180.042*
H7B0.84240.95190.14120.042*
C81.2360 (3)0.94824 (18)0.08886 (9)0.0329 (3)
C90.1228 (3)0.70250 (18)0.43152 (9)0.0323 (3)
H9A0.22140.65720.48060.039*
H9B0.08690.60290.40680.039*
C100.1449 (3)0.84177 (18)0.46089 (9)0.0321 (3)
C111.3024 (3)0.33765 (19)0.20074 (10)0.0363 (3)
C121.4694 (4)0.3989 (2)0.12491 (12)0.0524 (5)
H12A1.61530.29770.10070.079*
H12B1.54730.48450.14360.079*
H12C1.35270.45370.08180.079*
O11.1504 (2)1.10815 (14)0.05426 (8)0.0472 (3)
H11.27071.12350.01640.071*
O21.4614 (2)0.84065 (14)0.06836 (7)0.0463 (3)
O31.1036 (2)0.72247 (13)0.17277 (7)0.0406 (3)
O40.28549 (19)0.77925 (13)0.36867 (7)0.0369 (3)
O50.2075 (2)0.99593 (13)0.43053 (7)0.0421 (3)
O60.2994 (2)0.78060 (14)0.51955 (8)0.0487 (3)
H60.44000.86160.53570.073*
O71.3789 (3)0.18327 (14)0.22649 (9)0.0579 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0251 (6)0.0269 (6)0.0304 (6)0.0088 (5)0.0037 (5)0.0021 (5)
C20.0258 (7)0.0232 (6)0.0344 (7)0.0059 (5)0.0025 (5)0.0039 (5)
C30.0231 (6)0.0288 (7)0.0317 (7)0.0059 (5)0.0019 (5)0.0009 (5)
C40.0300 (7)0.0300 (7)0.0372 (7)0.0111 (5)0.0041 (6)0.0061 (5)
C50.0315 (7)0.0233 (6)0.0408 (8)0.0071 (5)0.0005 (6)0.0034 (5)
C60.0279 (7)0.0247 (7)0.0344 (7)0.0065 (6)0.0003 (5)0.0003 (5)
C70.0299 (7)0.0264 (7)0.0420 (8)0.0064 (5)0.0089 (6)0.0039 (6)
C80.0306 (7)0.0283 (7)0.0375 (7)0.0101 (6)0.0031 (6)0.0028 (5)
C90.0266 (7)0.0322 (7)0.0342 (7)0.0087 (6)0.0057 (5)0.0036 (6)
C100.0292 (7)0.0322 (7)0.0328 (7)0.0105 (6)0.0051 (5)0.0010 (5)
C110.0314 (7)0.0283 (7)0.0448 (8)0.0061 (6)0.0033 (6)0.0045 (6)
C120.0432 (9)0.0373 (8)0.0602 (10)0.0011 (7)0.0226 (8)0.0061 (7)
O10.0391 (6)0.0365 (6)0.0568 (7)0.0098 (5)0.0118 (5)0.0142 (5)
O20.0342 (6)0.0394 (6)0.0540 (7)0.0066 (5)0.0142 (5)0.0094 (5)
O30.0337 (6)0.0259 (5)0.0518 (6)0.0064 (4)0.0185 (4)0.0047 (4)
O40.0270 (5)0.0298 (5)0.0446 (6)0.0047 (4)0.0126 (4)0.0052 (4)
O50.0344 (6)0.0333 (6)0.0508 (6)0.0076 (4)0.0102 (5)0.0047 (4)
O60.0371 (6)0.0384 (6)0.0574 (7)0.0071 (5)0.0228 (5)0.0052 (5)
O70.0491 (7)0.0285 (6)0.0774 (9)0.0037 (5)0.0135 (6)0.0050 (5)
Geometric parameters (Å, º) top
C1—O31.3596 (16)C8—O21.2154 (18)
C1—C21.3862 (19)C8—O11.3033 (17)
C1—C61.4170 (18)C9—O41.4166 (15)
C2—C31.3884 (18)C9—C101.4979 (19)
C2—H20.9300C9—H9A0.9700
C3—O41.3642 (17)C9—H9B0.9700
C3—C41.3949 (19)C10—O51.2323 (17)
C4—C51.381 (2)C10—O61.2863 (17)
C4—H40.9300C11—O71.2126 (18)
C5—C61.3927 (19)C11—C121.496 (2)
C5—H50.9300C12—H12A0.9600
C6—C111.4966 (19)C12—H12B0.9600
C7—O31.4079 (16)C12—H12C0.9600
C7—C81.5050 (18)O1—H10.8200
C7—H7A0.9700O6—H60.8200
C7—H7B0.9700
O3—C1—C2122.68 (11)O2—C8—C7122.72 (12)
O3—C1—C6116.25 (11)O1—C8—C7112.58 (12)
C2—C1—C6121.06 (12)O4—C9—C10109.47 (11)
C1—C2—C3119.83 (11)O4—C9—H9A109.8
C1—C2—H2120.1C10—C9—H9A109.8
C3—C2—H2120.1O4—C9—H9B109.8
O4—C3—C2114.79 (11)C10—C9—H9B109.8
O4—C3—C4124.56 (12)H9A—C9—H9B108.2
C2—C3—C4120.65 (12)O5—C10—O6124.81 (13)
C5—C4—C3118.49 (12)O5—C10—C9122.91 (12)
C5—C4—H4120.8O6—C10—C9112.28 (11)
C3—C4—H4120.8O7—C11—C12119.44 (13)
C4—C5—C6123.14 (12)O7—C11—C6118.94 (13)
C4—C5—H5118.4C12—C11—C6121.60 (12)
C6—C5—H5118.4C11—C12—H12A109.5
C5—C6—C1116.82 (12)C11—C12—H12B109.5
C5—C6—C11117.25 (11)H12A—C12—H12B109.5
C1—C6—C11125.93 (12)C11—C12—H12C109.5
O3—C7—C8106.80 (11)H12A—C12—H12C109.5
O3—C7—H7A110.4H12B—C12—H12C109.5
C8—C7—H7A110.4C8—O1—H1109.5
O3—C7—H7B110.4C1—O3—C7119.30 (10)
C8—C7—H7B110.4C3—O4—C9117.02 (10)
H7A—C7—H7B108.6C10—O6—H6109.5
O2—C8—O1124.70 (13)
O3—C1—C2—C3179.66 (12)O3—C7—C8—O1163.06 (12)
C6—C1—C2—C30.3 (2)O4—C9—C10—O52.36 (19)
C1—C2—C3—O4179.26 (11)O4—C9—C10—O6178.61 (11)
C1—C2—C3—C40.6 (2)C5—C6—C11—O79.3 (2)
O4—C3—C4—C5179.78 (12)C1—C6—C11—O7171.32 (14)
C2—C3—C4—C50.1 (2)C5—C6—C11—C12168.98 (14)
C3—C4—C5—C60.8 (2)C1—C6—C11—C1210.4 (2)
C4—C5—C6—C11.1 (2)C2—C1—O3—C72.9 (2)
C4—C5—C6—C11178.34 (13)C6—C1—O3—C7176.45 (12)
O3—C1—C6—C5178.87 (12)C8—C7—O3—C1176.25 (11)
C2—C1—C6—C50.52 (19)C2—C3—O4—C9176.96 (11)
O3—C1—C6—C111.8 (2)C4—C3—O4—C93.1 (2)
C2—C1—C6—C11178.85 (12)C10—C9—O4—C3175.88 (11)
O3—C7—C8—O217.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.6530 (14)180
O6—H6···O5ii0.821.832.6352 (15)167
C2—H2···O7iii0.932.443.3566 (17)168
C4—H4···O6iv0.932.523.4392 (19)169
Symmetry codes: (i) x+3, y+2, z; (ii) x1, y+2, z+1; (iii) x1, y+1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12O7
Mr268.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.1351 (6), 7.8346 (9), 15.6157 (18)
α, β, γ (°)86.217 (2), 81.321 (1), 72.101 (2)
V3)590.86 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.985, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
3902, 2049, 1860
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.120, 1.05
No. of reflections2049
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.6530 (14)180
O6—H6···O5ii0.821.832.6352 (15)167
C2—H2···O7iii0.932.443.3566 (17)168
C4—H4···O6iv0.932.523.4392 (19)169
Symmetry codes: (i) x+3, y+2, z; (ii) x1, y+2, z+1; (iii) x1, y+1, z; (iv) x, y+1, z+1.
 

Acknowledgements

This study was funded by Jiangxi Provincial Department of Education (GJJ08433) and the Doctoral Research Initiating Project of Jiujiang University.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C., Li, H., Liu, D. & Liu, M. (2007). Acta Cryst. E63, o4210.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds