organic compounds
N-(2-Oxo-2H-chromen-3-yl)cyclohexanecarboxamide
aDepartment of Organic Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
*Correspondence e-mail: mariacmatos@gmail.com
In the title compound, C16H17NO3, the coumarin moiety is essentially planar [maximum deviation from the mean plane formed by the C and O atoms of the coumarin = 0.0183 (12) Å] and that the cyclohexane ring adopts the usual chair conformation. The dihedral angle between the mean plane of the coumarin residue and the plane of the amide residue (defined as the N, C and O atoms) is 18.9 (2)°. There are two intramolecular hydrogen bonds involving the amide group. In one, the N atom acts as donor to the ketonic O atom and in the other, the amide O atom acts as acceptor of a C—H group of the coumarin. In the crystal, molecules are linked into inversion dimers by pairs of N—H⋯O contacts and these dimers are linked into pairs by weak C—H⋯O hydrogen bonds. The combination of these interactions creates a chain of rings which runs parallel to [2-10]. C—H⋯π and π–π [centroid–centroid distance = 3.8654 (10) Å] interactions are also observed.
Related literature
For the synthesis of the title compound, see: Viña, Matos, Ferino et al. (2012); Viña, Matos, Yáñez et al. (2012). For the biological activity of coumarin derivatives, see: Borges et al. (2009); Matos et al. (2009, 2010); Matos, Santana et al. (2011); Matos, Terán et al. (2011). For graph-set analysis of hydrogen bonds, see: Bernstein et al., (1995)
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2012); cell SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536812047903/go2076sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812047903/go2076Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812047903/go2076Isup3.cml
N-(coumarin-3-yl)cyclohexanecarboxamide was prepared according to the protocol described by (Viña, Matos, Ferino et al. 2012; Viña, Matos, Yáñez et al. 2012). To a solution of 3-aminocoumarin (1 mmol) and pyridine (1.1 mmol) in dichlorometane (9 ml), the corresponding acid chloride (1.1 mmol) was added dropwise and the reaction was stirred, at room temperature, for 3 h. The solvent was evaporated under vacuum and the dry residue was purified by FC (hexane/ethyl acetate 9:1). A pale yellow solid was obtained in a yield of 72%. Suitable crystals for X-ray studies were grown from slow evaporation from acetone/ethanol: Mp 180–181 °C.
Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30%probability level. The dashed lines indicate intramolecular close contacts. | |
Fig. 2. Part of the crystal structure of (2) showing the chain formed by molecules linked by R22(10) and R22(18) rings which runs parallel to the the {210]. Atoms labelled with an asterisk (*), hash (#) or dollar ($), are at(-x+1,-y,-z), (-x-1,-y+1,-z) and x+2,y-1,z respectively. Hydrogen atoms not involved in the hydrogen bonding have been omitted. |
C16H17NO3 | F(000) = 288 |
Mr = 271.31 | F(000) = 288 |
Triclinic, P1 | Dx = 1.372 Mg m−3 |
Hall symbol: -P 1 | Melting point: 100 K |
a = 6.4486 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6324 (11) Å | Cell parameters from 1680 reflections |
c = 11.0837 (11) Å | θ = 2.7–26.3° |
α = 83.061 (6)° | µ = 0.10 mm−1 |
β = 89.134 (5)° | T = 100 K |
γ = 73.987 (5)° | Plate, colourless |
V = 656.79 (12) Å3 | 0.48 × 0.45 × 0.09 mm |
Z = 2 |
Bruker X8 APEXII KappaCCD diffractometer | 2487 independent reflections |
Radiation source: fine-focus sealed tube | 1834 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω and phi scans | θmax = 25.7°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −7→7 |
Tmin = 0.910, Tmax = 1.000 | k = −11→11 |
9698 measured reflections | l = 0→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0577P)2] where P = (Fo2 + 2Fc2)/3 |
2487 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C16H17NO3 | γ = 73.987 (5)° |
Mr = 271.31 | V = 656.79 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.4486 (6) Å | Mo Kα radiation |
b = 9.6324 (11) Å | µ = 0.10 mm−1 |
c = 11.0837 (11) Å | T = 100 K |
α = 83.061 (6)° | 0.48 × 0.45 × 0.09 mm |
β = 89.134 (5)° |
Bruker X8 APEXII KappaCCD diffractometer | 2487 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | 1834 reflections with I > 2σ(I) |
Tmin = 0.910, Tmax = 1.000 | Rint = 0.044 |
9698 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.20 e Å−3 |
2487 reflections | Δρmin = −0.25 e Å−3 |
185 parameters |
Experimental. 1H NMR (300 MHz, CDCl3): δ 1.27–1.95 (10H, m, 2H-2, 2H-3, 2H-4, 2H-5, 2H-6), 2.33–2.40 (1H, m H-1), 7.25–7.29 (2H, m, H-6, H-8), 7.33 (1H, dd, H-7, J=8.5, J=1.5), 7.46 (1H, dd, H-5, J=8.5, J=1.6), 8.12 (1H, s, H-4), 8.70 (1H, s, –NH); 13C NMR (75.47?MHz, CDCl3): δ 25.6, 25.7, 29.7, 43.0, 116.6, 120.2, 123.4, 124.3, 125.4, 128.0, 129.8, 150.1, 159.2, 175.9; DEPT: 25.6, 25.7, 29.7, 43.0, 116.6, 120.2, 124.3, 125.4, 128.0; MS m/z 272 ([M + 1]+, 16), 271 (M+, 100). Anal. Calcd for C16H17NO3: C, 70.83; H, 6.32. Found: C, 70.85; H, 6.35. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.24398 (15) | 0.35744 (12) | −0.13872 (9) | 0.0151 (3) | |
C2 | 0.2812 (2) | 0.23542 (18) | −0.05704 (14) | 0.0135 (4) | |
C3 | 0.0969 (2) | 0.20233 (18) | 0.00628 (14) | 0.0124 (4) | |
C4 | −0.1049 (2) | 0.28990 (18) | −0.01851 (13) | 0.0136 (4) | |
H4 | −0.2245 | 0.2668 | 0.0216 | 0.016* | |
C5 | −0.1385 (2) | 0.41752 (18) | −0.10531 (13) | 0.0128 (4) | |
C6 | −0.3423 (2) | 0.51517 (19) | −0.13683 (14) | 0.0157 (4) | |
H6 | −0.4679 | 0.4963 | −0.1007 | 0.019* | |
C7 | −0.3625 (3) | 0.63721 (19) | −0.21886 (14) | 0.0177 (4) | |
H7 | −0.5009 | 0.7028 | −0.2381 | 0.021* | |
C8 | −0.1796 (3) | 0.66474 (19) | −0.27396 (14) | 0.0185 (4) | |
H8 | −0.1938 | 0.7492 | −0.3307 | 0.022* | |
C9 | 0.0224 (3) | 0.56983 (18) | −0.24641 (14) | 0.0165 (4) | |
H9 | 0.1473 | 0.5875 | −0.2843 | 0.02* | |
C10 | 0.0385 (2) | 0.44942 (18) | −0.16300 (14) | 0.0135 (4) | |
O11 | 0.46651 (16) | 0.16189 (12) | −0.04220 (10) | 0.0183 (3) | |
N12 | 0.1571 (2) | 0.07624 (16) | 0.08823 (12) | 0.0147 (3) | |
H12 | 0.285 (3) | 0.019 (2) | 0.0806 (15) | 0.028 (5)* | |
C13 | 0.0426 (2) | 0.03698 (18) | 0.18526 (14) | 0.0139 (4) | |
O14 | −0.13975 (16) | 0.10822 (13) | 0.20623 (10) | 0.0219 (3) | |
C15 | 0.1649 (2) | −0.09965 (18) | 0.26441 (14) | 0.0131 (4) | |
H15 | 0.24 | −0.1722 | 0.2095 | 0.016* | |
C16 | 0.0122 (2) | −0.16661 (18) | 0.34364 (14) | 0.0160 (4) | |
H16A | −0.0669 | −0.0959 | 0.3977 | 0.019* | |
H16B | −0.0948 | −0.1882 | 0.2911 | 0.019* | |
C17 | 0.1367 (2) | −0.30629 (19) | 0.42045 (15) | 0.0188 (4) | |
H17A | 0.0353 | −0.3448 | 0.4735 | 0.023* | |
H17B | 0.2042 | −0.3802 | 0.3664 | 0.023* | |
C18 | 0.3111 (3) | −0.27969 (19) | 0.49876 (15) | 0.0201 (4) | |
H18A | 0.2425 | −0.2148 | 0.5595 | 0.024* | |
H18B | 0.3954 | −0.3732 | 0.5431 | 0.024* | |
C19 | 0.4615 (3) | −0.21078 (19) | 0.42127 (15) | 0.0212 (4) | |
H19A | 0.5427 | −0.2807 | 0.3672 | 0.025* | |
H19B | 0.567 | −0.1889 | 0.4748 | 0.025* | |
C20 | 0.3377 (2) | −0.07084 (19) | 0.34427 (14) | 0.0174 (4) | |
H20A | 0.4394 | −0.0317 | 0.292 | 0.021* | |
H20B | 0.2681 | 0.0028 | 0.3981 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0132 (6) | 0.0145 (7) | 0.0169 (6) | −0.0041 (5) | 0.0012 (5) | 0.0019 (5) |
C2 | 0.0175 (8) | 0.0115 (10) | 0.0127 (9) | −0.0048 (7) | 0.0005 (7) | −0.0039 (7) |
C3 | 0.0168 (8) | 0.0117 (10) | 0.0096 (8) | −0.0053 (7) | 0.0014 (6) | −0.0015 (7) |
C4 | 0.0145 (8) | 0.0160 (10) | 0.0117 (9) | −0.0058 (7) | 0.0013 (7) | −0.0037 (8) |
C5 | 0.0170 (8) | 0.0126 (10) | 0.0098 (9) | −0.0048 (7) | 0.0007 (7) | −0.0039 (7) |
C6 | 0.0153 (8) | 0.0196 (11) | 0.0125 (9) | −0.0044 (7) | 0.0004 (7) | −0.0043 (8) |
C7 | 0.0199 (9) | 0.0175 (10) | 0.0133 (9) | 0.0000 (7) | −0.0041 (7) | −0.0037 (8) |
C8 | 0.0290 (9) | 0.0128 (10) | 0.0137 (9) | −0.0060 (8) | −0.0040 (7) | −0.0007 (8) |
C9 | 0.0207 (9) | 0.0178 (10) | 0.0138 (9) | −0.0099 (7) | 0.0015 (7) | −0.0022 (8) |
C10 | 0.0150 (8) | 0.0136 (10) | 0.0117 (9) | −0.0029 (7) | −0.0016 (6) | −0.0031 (7) |
O11 | 0.0129 (6) | 0.0174 (7) | 0.0229 (7) | −0.0024 (5) | 0.0014 (5) | −0.0005 (5) |
N12 | 0.0126 (7) | 0.0145 (8) | 0.0149 (8) | −0.0011 (6) | 0.0024 (6) | 0.0005 (6) |
C13 | 0.0157 (8) | 0.0161 (10) | 0.0123 (9) | −0.0079 (7) | 0.0021 (7) | −0.0036 (7) |
O14 | 0.0162 (6) | 0.0218 (8) | 0.0230 (7) | −0.0005 (5) | 0.0046 (5) | 0.0035 (6) |
C15 | 0.0161 (8) | 0.0118 (10) | 0.0112 (8) | −0.0036 (7) | 0.0008 (6) | −0.0014 (7) |
C16 | 0.0182 (8) | 0.0169 (10) | 0.0148 (9) | −0.0080 (7) | 0.0019 (7) | −0.0019 (8) |
C17 | 0.0241 (9) | 0.0178 (11) | 0.0156 (9) | −0.0083 (7) | 0.0029 (7) | −0.0011 (8) |
C18 | 0.0248 (9) | 0.0174 (11) | 0.0165 (9) | −0.0041 (8) | −0.0006 (7) | 0.0003 (8) |
C19 | 0.0213 (9) | 0.0221 (11) | 0.0194 (10) | −0.0067 (8) | −0.0049 (7) | 0.0029 (8) |
C20 | 0.0192 (8) | 0.0172 (10) | 0.0165 (9) | −0.0075 (7) | −0.0011 (7) | 0.0013 (8) |
O1—C2 | 1.3610 (19) | C13—O14 | 1.2220 (17) |
O1—C10 | 1.3852 (17) | C13—C15 | 1.514 (2) |
C2—O11 | 1.2115 (17) | C15—C16 | 1.531 (2) |
C2—C3 | 1.462 (2) | C15—C20 | 1.537 (2) |
C3—C4 | 1.3523 (19) | C15—H15 | 1 |
C3—N12 | 1.391 (2) | C16—C17 | 1.526 (2) |
C4—C5 | 1.434 (2) | C16—H16A | 0.99 |
C4—H4 | 0.95 | C16—H16B | 0.99 |
C5—C10 | 1.389 (2) | C17—C18 | 1.525 (2) |
C5—C6 | 1.410 (2) | C17—H17A | 0.99 |
C6—C7 | 1.373 (2) | C17—H17B | 0.99 |
C6—H6 | 0.95 | C18—C19 | 1.521 (2) |
C7—C8 | 1.395 (2) | C18—H18A | 0.99 |
C7—H7 | 0.95 | C18—H18B | 0.99 |
C8—C9 | 1.383 (2) | C19—C20 | 1.527 (2) |
C8—H8 | 0.95 | C19—H19A | 0.99 |
C9—C10 | 1.374 (2) | C19—H19B | 0.99 |
C9—H9 | 0.95 | C20—H20A | 0.99 |
N12—C13 | 1.370 (2) | C20—H20B | 0.99 |
N12—H12 | 0.867 (17) | ||
C2—O1—C10 | 121.98 (12) | C13—C15—C20 | 111.68 (14) |
O11—C2—O1 | 117.05 (14) | C16—C15—C20 | 110.15 (13) |
O11—C2—C3 | 124.73 (15) | C13—C15—H15 | 107.8 |
O1—C2—C3 | 118.23 (13) | C16—C15—H15 | 107.8 |
C4—C3—N12 | 127.29 (15) | C20—C15—H15 | 107.8 |
C4—C3—C2 | 120.24 (15) | C17—C16—C15 | 111.00 (12) |
N12—C3—C2 | 112.46 (13) | C17—C16—H16A | 109.4 |
C3—C4—C5 | 120.11 (15) | C15—C16—H16A | 109.4 |
C3—C4—H4 | 119.9 | C17—C16—H16B | 109.4 |
C5—C4—H4 | 119.9 | C15—C16—H16B | 109.4 |
C10—C5—C6 | 116.77 (15) | H16A—C16—H16B | 108 |
C10—C5—C4 | 119.08 (14) | C18—C17—C16 | 111.32 (14) |
C6—C5—C4 | 124.15 (15) | C18—C17—H17A | 109.4 |
C7—C6—C5 | 121.11 (15) | C16—C17—H17A | 109.4 |
C7—C6—H6 | 119.4 | C18—C17—H17B | 109.4 |
C5—C6—H6 | 119.4 | C16—C17—H17B | 109.4 |
C6—C7—C8 | 119.91 (15) | H17A—C17—H17B | 108 |
C6—C7—H7 | 120 | C19—C18—C17 | 111.01 (14) |
C8—C7—H7 | 120 | C19—C18—H18A | 109.4 |
C9—C8—C7 | 120.39 (16) | C17—C18—H18A | 109.4 |
C9—C8—H8 | 119.8 | C19—C18—H18B | 109.4 |
C7—C8—H8 | 119.8 | C17—C18—H18B | 109.4 |
C10—C9—C8 | 118.56 (15) | H18A—C18—H18B | 108 |
C10—C9—H9 | 120.7 | C18—C19—C20 | 111.67 (14) |
C8—C9—H9 | 120.7 | C18—C19—H19A | 109.3 |
C9—C10—O1 | 116.42 (14) | C20—C19—H19A | 109.3 |
C9—C10—C5 | 123.25 (14) | C18—C19—H19B | 109.3 |
O1—C10—C5 | 120.33 (15) | C20—C19—H19B | 109.3 |
C13—N12—C3 | 127.25 (13) | H19A—C19—H19B | 107.9 |
C13—N12—H12 | 115.9 (12) | C19—C20—C15 | 110.64 (14) |
C3—N12—H12 | 116.6 (12) | C19—C20—H20A | 109.5 |
O14—C13—N12 | 122.46 (15) | C15—C20—H20A | 109.5 |
O14—C13—C15 | 123.73 (14) | C19—C20—H20B | 109.5 |
N12—C13—C15 | 113.80 (13) | C15—C20—H20B | 109.5 |
C13—C15—C16 | 111.49 (12) | H20A—C20—H20B | 108.1 |
C10—O1—C2—O11 | 179.93 (13) | C4—C5—C10—C9 | −179.32 (15) |
C10—O1—C2—C3 | −0.1 (2) | C6—C5—C10—O1 | −178.81 (13) |
O11—C2—C3—C4 | −178.64 (15) | C4—C5—C10—O1 | 1.3 (2) |
O1—C2—C3—C4 | 1.4 (2) | C4—C3—N12—C13 | −21.3 (3) |
O11—C2—C3—N12 | 0.8 (2) | C2—C3—N12—C13 | 159.30 (15) |
O1—C2—C3—N12 | −179.14 (13) | C3—N12—C13—O14 | 5.0 (3) |
N12—C3—C4—C5 | 179.33 (14) | C3—N12—C13—C15 | −173.68 (14) |
C2—C3—C4—C5 | −1.3 (2) | O14—C13—C15—C16 | 20.2 (2) |
C3—C4—C5—C10 | 0.0 (2) | N12—C13—C15—C16 | −161.13 (14) |
C3—C4—C5—C6 | −179.90 (14) | O14—C13—C15—C20 | −103.50 (18) |
C10—C5—C6—C7 | −1.3 (2) | N12—C13—C15—C20 | 75.17 (17) |
C4—C5—C6—C7 | 178.56 (15) | C13—C15—C16—C17 | 178.50 (13) |
C5—C6—C7—C8 | 1.1 (2) | C20—C15—C16—C17 | −56.93 (18) |
C6—C7—C8—C9 | 0.0 (2) | C15—C16—C17—C18 | 56.43 (18) |
C7—C8—C9—C10 | −0.7 (2) | C16—C17—C18—C19 | −55.19 (18) |
C8—C9—C10—O1 | 179.81 (13) | C17—C18—C19—C20 | 55.31 (19) |
C8—C9—C10—C5 | 0.4 (2) | C18—C19—C20—C15 | −56.28 (18) |
C2—O1—C10—C9 | 179.36 (13) | C13—C15—C20—C19 | −178.89 (13) |
C2—O1—C10—C5 | −1.2 (2) | C16—C15—C20—C19 | 56.65 (17) |
C6—C5—C10—C9 | 0.6 (2) |
Cg1 and Cg2 are the centroids of the O1/C2–C5/C10 and C5–C10 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H12···O11 | 0.87 (2) | 2.346 (19) | 2.6990 (18) | 104.7 (14) |
N12—H12···O11i | 0.87 (2) | 2.098 (18) | 2.9303 (16) | 160.8 (17) |
C4—H4···O14 | 0.95 | 2.37 | 2.9094 (19) | 115 |
C7—H7···O14ii | 0.95 | 2.57 | 3.473 (2) | 158 |
C16—H16B···Cg1iii | 0.99 | 2.81 | 3.5732 (17) | 134 |
C17—H17B···Cg2iii | 0.99 | 2.70 | 3.5876 (19) | 149 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x−1, −y+1, −z; (iii) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C16H17NO3 |
Mr | 271.31 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.4486 (6), 9.6324 (11), 11.0837 (11) |
α, β, γ (°) | 83.061 (6), 89.134 (5), 73.987 (5) |
V (Å3) | 656.79 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.48 × 0.45 × 0.09 |
Data collection | |
Diffractometer | Bruker X8 APEXII KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2012) |
Tmin, Tmax | 0.910, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9698, 2487, 1834 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.113, 1.06 |
No. of reflections | 2487 |
No. of parameters | 185 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.25 |
Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012).
Cg1 and Cg2 are the centroids of the O1/C2–C5/C10 and C5–C10 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H12···O11 | 0.87 (2) | 2.346 (19) | 2.6990 (18) | 104.7 (14) |
N12—H12···O11i | 0.87 (2) | 2.098 (18) | 2.9303 (16) | 160.8 (17) |
C4—H4···O14 | 0.95 | 2.37 | 2.9094 (19) | 115 |
C7—H7···O14ii | 0.95 | 2.57 | 3.473 (2) | 158 |
C16—H16B···Cg1iii | 0.99 | 2.81 | 3.5732 (17) | 134 |
C17—H17B···Cg2iii | 0.99 | 2.70 | 3.5876 (19) | 149 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x−1, −y+1, −z; (iii) −x, −y, −z. |
Acknowledgements
This work was supported by funds of Xunta da Galicia (09CSA030203PR), Ministerio de Sanidad y Consumo (PS09/00501) and Fundação para a Ciência e Tecnologia (SFRH/BD/61262/2009).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85. Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011). Bioorg. Med. Chem. Lett. 21, 3342–3345. Web of Science CrossRef CAS PubMed Google Scholar
Matos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011). J. Med. Chem. 54, 7127–7137. Web of Science CrossRef CAS PubMed Google Scholar
Matos, M. J., Viña, D., Janeiro, P., Borges, F., Santana, L. & Uriarte, E. (2010). Bioorg. Med. Chem. Lett. 20, 5157–5160. Web of Science CrossRef CAS PubMed Google Scholar
Matos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268–3270. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Viña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012). Chem. Med. Chem. 7, 464–470. Web of Science PubMed Google Scholar
Viña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012). MedChemComm, 3, 213–218. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarin derivatives are very interesting molecules due to the biological properties that they may display (Borges et al. 2009; Matos et al. 2009, 2010; Matos, Santana et al., 2011); Matos, Terán et al., 2011). The title structure is a 3-substituted coumarin derivative that posses one cyclohexane ring linked by an amidic bridge at that position. Therefore, the X-ray analysis of this compound (figure 1) aims to contribute to the elucidation of structural requirements needed to understand the partial planarity of the compound (coumarin nucleus) and the torsion of the 3-substituent. Also, the X-ray analysis allows understanding the chair conformation of the cyclohexane. From the single-crystal diffraction measurements it can be concluded that the experimental bond lengths are within normal values with the average the molecule bond lengths. The planarity of the coumarin moiety is also evident by the torsion angles values between their carbons and oxygen atoms. The torsion angles C4—C3—N12—C13 (-21.3°), C3—N12—C13—C15 (-173.68°) and N12—C13—C15—C16 (-162.13°) are typical of the torsion permitted by the rotation of the amidic group at position 3. Also, the torsion angle C15—C16—C17—C18 (56.43°) is typical of a chair conformation of a cyclohexane ring.
There are intramolecular short contacts N12-H12···011 and C4–H4···O14.
The molecules are linked to form centrosymmetric R22(10) dimers, (Bernstein et al., 1995), by the N12-H12···O11(-x+1,-y,-z) hydrogen bond. The molecules are also link into R22 pairs, (Bernstein et al., 1995), by the weak C7···H7···O14 (-x-1,-y+1,-z) hydrogen bond.
Combination of these pair of interactions creates a chain of rings which runs parallel to [210]
There are C–H···π interactions between C16 and C17 and the centroids of the rings containing O11 and C9 respectively at (-x,-y,-z).
In addition there is π–π stacking between the rings containg O1 at (x,y,z) and (-x,-y+1,-z) in which the centroid to centroid distance is 3.8654 (10)Å, the perpendicular distance between the rings is 3.4428 (6)Å and the offset is 1.757Å.