organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3447-o3448

N-(2-Oxo-2H-chromen-3-yl)cyclo­hexane­carboxamide

aDepartment of Organic Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
*Correspondence e-mail: mariacmatos@gmail.com

(Received 15 November 2012; accepted 21 November 2012; online 24 November 2012)

In the title compound, C16H17NO3, the coumarin moiety is essentially planar [maximum deviation from the mean plane formed by the C and O atoms of the coumarin = 0.0183 (12) Å] and that the cyclo­hexane ring adopts the usual chair conformation. The dihedral angle between the mean plane of the coumarin residue and the plane of the amide residue (defined as the N, C and O atoms) is 18.9 (2)°. There are two intra­molecular hydrogen bonds involving the amide group. In one, the N atom acts as donor to the ketonic O atom and in the other, the amide O atom acts as acceptor of a C—H group of the coumarin. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯O contacts and these dimers are linked into pairs by weak C—H⋯O hydrogen bonds. The combination of these inter­actions creates a chain of rings which runs parallel to [2-10]. C—H⋯π and ππ [centroid–centroid distance = 3.8654 (10) Å] inter­actions are also observed.

Related literature

For the synthesis of the title compound, see: Viña, Matos, Ferino et al. (2012[Viña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012). Chem. Med. Chem. 7, 464-470.]); Viña, Matos, Yáñez et al. (2012[Viña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012). MedChemComm, 3, 213-218.]). For the biological activity of coumarin derivatives, see: Borges et al. (2009[Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23-85.]); Matos et al. (2009[Matos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268-3270.], 2010[Matos, M. J., Viña, D., Janeiro, P., Borges, F., Santana, L. & Uriarte, E. (2010). Bioorg. Med. Chem. Lett. 20, 5157-5160.]); Matos, Santana et al. (2011[Matos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011). Bioorg. Med. Chem. Lett. 21, 3342-3345.]); Matos, Terán et al. (2011[Matos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011). J. Med. Chem. 54, 7127-7137.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al., (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.])

[Scheme 1]

Experimental

Crystal data
  • C16H17NO3

  • Mr = 271.31

  • Triclinic, [P \overline 1]

  • a = 6.4486 (6) Å

  • b = 9.6324 (11) Å

  • c = 11.0837 (11) Å

  • α = 83.061 (6)°

  • β = 89.134 (5)°

  • γ = 73.987 (5)°

  • V = 656.79 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.48 × 0.45 × 0.09 mm

Data collection
  • Bruker X8 APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 1.000

  • 9698 measured reflections

  • 2487 independent reflections

  • 1834 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 1.06

  • 2487 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the O1/C2–C5/C10 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯O11 0.87 (2) 2.346 (19) 2.6990 (18) 104.7 (14)
N12—H12⋯O11i 0.87 (2) 2.098 (18) 2.9303 (16) 160.8 (17)
C4—H4⋯O14 0.95 2.37 2.9094 (19) 115
C7—H7⋯O14ii 0.95 2.57 3.473 (2) 158
C16—H16BCg1iii 0.99 2.81 3.5732 (17) 134
C17—H17BCg2iii 0.99 2.70 3.5876 (19) 149
Symmetry codes: (i) -x+1, -y, -z; (ii) -x-1, -y+1, -z; (iii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Coumarin derivatives are very interesting molecules due to the biological properties that they may display (Borges et al. 2009; Matos et al. 2009, 2010; Matos, Santana et al., 2011); Matos, Terán et al., 2011). The title structure is a 3-substituted coumarin derivative that posses one cyclohexane ring linked by an amidic bridge at that position. Therefore, the X-ray analysis of this compound (figure 1) aims to contribute to the elucidation of structural requirements needed to understand the partial planarity of the compound (coumarin nucleus) and the torsion of the 3-substituent. Also, the X-ray analysis allows understanding the chair conformation of the cyclohexane. From the single-crystal diffraction measurements it can be concluded that the experimental bond lengths are within normal values with the average the molecule bond lengths. The planarity of the coumarin moiety is also evident by the torsion angles values between their carbons and oxygen atoms. The torsion angles C4—C3—N12—C13 (-21.3°), C3—N12—C13—C15 (-173.68°) and N12—C13—C15—C16 (-162.13°) are typical of the torsion permitted by the rotation of the amidic group at position 3. Also, the torsion angle C15—C16—C17—C18 (56.43°) is typical of a chair conformation of a cyclohexane ring.

There are intramolecular short contacts N12-H12···011 and C4–H4···O14.

The molecules are linked to form centrosymmetric R22(10) dimers, (Bernstein et al., 1995), by the N12-H12···O11(-x+1,-y,-z) hydrogen bond. The molecules are also link into R22 pairs, (Bernstein et al., 1995), by the weak C7···H7···O14 (-x-1,-y+1,-z) hydrogen bond.

Combination of these pair of interactions creates a chain of rings which runs parallel to [210]

There are C–H···π interactions between C16 and C17 and the centroids of the rings containing O11 and C9 respectively at (-x,-y,-z).

In addition there is ππ stacking between the rings containg O1 at (x,y,z) and (-x,-y+1,-z) in which the centroid to centroid distance is 3.8654 (10)Å, the perpendicular distance between the rings is 3.4428 (6)Å and the offset is 1.757Å.

Related literature top

For the synthesis of the title compound, see: Viña, Matos, Ferino et al. (2012); Viña, Matos, Yáñez et al. (2012). For the biological activity of coumarin derivatives, see: Borges et al. (2009); Matos et al. (2009, 2010); Matos, Santana et al. (2011); Matos, Terán et al. (2011). For graph-set analysis of hydrogen bonds, see: Bernstein et al., (1995)

Experimental top

N-(coumarin-3-yl)cyclohexanecarboxamide was prepared according to the protocol described by (Viña, Matos, Ferino et al. 2012; Viña, Matos, Yáñez et al. 2012). To a solution of 3-aminocoumarin (1 mmol) and pyridine (1.1 mmol) in dichlorometane (9 ml), the corresponding acid chloride (1.1 mmol) was added dropwise and the reaction was stirred, at room temperature, for 3 h. The solvent was evaporated under vacuum and the dry residue was purified by FC (hexane/ethyl acetate 9:1). A pale yellow solid was obtained in a yield of 72%. Suitable crystals for X-ray studies were grown from slow evaporation from acetone/ethanol: Mp 180–181 °C.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30%probability level. The dashed lines indicate intramolecular close contacts.
[Figure 2] Fig. 2. Part of the crystal structure of (2) showing the chain formed by molecules linked by R22(10) and R22(18) rings which runs parallel to the the {210]. Atoms labelled with an asterisk (*), hash (#) or dollar ($), are at(-x+1,-y,-z), (-x-1,-y+1,-z) and x+2,y-1,z respectively. Hydrogen atoms not involved in the hydrogen bonding have been omitted.
N-(2-Oxo-2H-chromen-3-yl)cyclohexanecarboxamide top
Crystal data top
C16H17NO3F(000) = 288
Mr = 271.31F(000) = 288
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: -P 1Melting point: 100 K
a = 6.4486 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6324 (11) ÅCell parameters from 1680 reflections
c = 11.0837 (11) Åθ = 2.7–26.3°
α = 83.061 (6)°µ = 0.10 mm1
β = 89.134 (5)°T = 100 K
γ = 73.987 (5)°Plate, colourless
V = 656.79 (12) Å30.48 × 0.45 × 0.09 mm
Z = 2
Data collection top
Bruker X8 APEXII KappaCCD
diffractometer
2487 independent reflections
Radiation source: fine-focus sealed tube1834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and phi scansθmax = 25.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 77
Tmin = 0.910, Tmax = 1.000k = 1111
9698 measured reflectionsl = 013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0577P)2]
where P = (Fo2 + 2Fc2)/3
2487 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H17NO3γ = 73.987 (5)°
Mr = 271.31V = 656.79 (12) Å3
Triclinic, P1Z = 2
a = 6.4486 (6) ÅMo Kα radiation
b = 9.6324 (11) ŵ = 0.10 mm1
c = 11.0837 (11) ÅT = 100 K
α = 83.061 (6)°0.48 × 0.45 × 0.09 mm
β = 89.134 (5)°
Data collection top
Bruker X8 APEXII KappaCCD
diffractometer
2487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
1834 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.044
9698 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
2487 reflectionsΔρmin = 0.25 e Å3
185 parameters
Special details top

Experimental. 1H NMR (300 MHz, CDCl3): δ 1.27–1.95 (10H, m, 2H-2, 2H-3, 2H-4, 2H-5, 2H-6), 2.33–2.40 (1H, m H-1), 7.25–7.29 (2H, m, H-6, H-8), 7.33 (1H, dd, H-7, J=8.5, J=1.5), 7.46 (1H, dd, H-5, J=8.5, J=1.6), 8.12 (1H, s, H-4), 8.70 (1H, s, –NH); 13C NMR (75.47?MHz, CDCl3): δ 25.6, 25.7, 29.7, 43.0, 116.6, 120.2, 123.4, 124.3, 125.4, 128.0, 129.8, 150.1, 159.2, 175.9; DEPT: 25.6, 25.7, 29.7, 43.0, 116.6, 120.2, 124.3, 125.4, 128.0; MS m/z 272 ([M + 1]+, 16), 271 (M+, 100). Anal. Calcd for C16H17NO3: C, 70.83; H, 6.32. Found: C, 70.85; H, 6.35.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24398 (15)0.35744 (12)0.13872 (9)0.0151 (3)
C20.2812 (2)0.23542 (18)0.05704 (14)0.0135 (4)
C30.0969 (2)0.20233 (18)0.00628 (14)0.0124 (4)
C40.1049 (2)0.28990 (18)0.01851 (13)0.0136 (4)
H40.22450.26680.02160.016*
C50.1385 (2)0.41752 (18)0.10531 (13)0.0128 (4)
C60.3423 (2)0.51517 (19)0.13683 (14)0.0157 (4)
H60.46790.49630.10070.019*
C70.3625 (3)0.63721 (19)0.21886 (14)0.0177 (4)
H70.50090.70280.23810.021*
C80.1796 (3)0.66474 (19)0.27396 (14)0.0185 (4)
H80.19380.74920.33070.022*
C90.0224 (3)0.56983 (18)0.24641 (14)0.0165 (4)
H90.14730.58750.28430.02*
C100.0385 (2)0.44942 (18)0.16300 (14)0.0135 (4)
O110.46651 (16)0.16189 (12)0.04220 (10)0.0183 (3)
N120.1571 (2)0.07624 (16)0.08823 (12)0.0147 (3)
H120.285 (3)0.019 (2)0.0806 (15)0.028 (5)*
C130.0426 (2)0.03698 (18)0.18526 (14)0.0139 (4)
O140.13975 (16)0.10822 (13)0.20623 (10)0.0219 (3)
C150.1649 (2)0.09965 (18)0.26441 (14)0.0131 (4)
H150.240.17220.20950.016*
C160.0122 (2)0.16661 (18)0.34364 (14)0.0160 (4)
H16A0.06690.09590.39770.019*
H16B0.09480.18820.29110.019*
C170.1367 (2)0.30629 (19)0.42045 (15)0.0188 (4)
H17A0.03530.34480.47350.023*
H17B0.20420.38020.36640.023*
C180.3111 (3)0.27969 (19)0.49876 (15)0.0201 (4)
H18A0.24250.21480.55950.024*
H18B0.39540.37320.54310.024*
C190.4615 (3)0.21078 (19)0.42127 (15)0.0212 (4)
H19A0.54270.28070.36720.025*
H19B0.5670.18890.47480.025*
C200.3377 (2)0.07084 (19)0.34427 (14)0.0174 (4)
H20A0.43940.03170.2920.021*
H20B0.26810.00280.39810.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0132 (6)0.0145 (7)0.0169 (6)0.0041 (5)0.0012 (5)0.0019 (5)
C20.0175 (8)0.0115 (10)0.0127 (9)0.0048 (7)0.0005 (7)0.0039 (7)
C30.0168 (8)0.0117 (10)0.0096 (8)0.0053 (7)0.0014 (6)0.0015 (7)
C40.0145 (8)0.0160 (10)0.0117 (9)0.0058 (7)0.0013 (7)0.0037 (8)
C50.0170 (8)0.0126 (10)0.0098 (9)0.0048 (7)0.0007 (7)0.0039 (7)
C60.0153 (8)0.0196 (11)0.0125 (9)0.0044 (7)0.0004 (7)0.0043 (8)
C70.0199 (9)0.0175 (10)0.0133 (9)0.0000 (7)0.0041 (7)0.0037 (8)
C80.0290 (9)0.0128 (10)0.0137 (9)0.0060 (8)0.0040 (7)0.0007 (8)
C90.0207 (9)0.0178 (10)0.0138 (9)0.0099 (7)0.0015 (7)0.0022 (8)
C100.0150 (8)0.0136 (10)0.0117 (9)0.0029 (7)0.0016 (6)0.0031 (7)
O110.0129 (6)0.0174 (7)0.0229 (7)0.0024 (5)0.0014 (5)0.0005 (5)
N120.0126 (7)0.0145 (8)0.0149 (8)0.0011 (6)0.0024 (6)0.0005 (6)
C130.0157 (8)0.0161 (10)0.0123 (9)0.0079 (7)0.0021 (7)0.0036 (7)
O140.0162 (6)0.0218 (8)0.0230 (7)0.0005 (5)0.0046 (5)0.0035 (6)
C150.0161 (8)0.0118 (10)0.0112 (8)0.0036 (7)0.0008 (6)0.0014 (7)
C160.0182 (8)0.0169 (10)0.0148 (9)0.0080 (7)0.0019 (7)0.0019 (8)
C170.0241 (9)0.0178 (11)0.0156 (9)0.0083 (7)0.0029 (7)0.0011 (8)
C180.0248 (9)0.0174 (11)0.0165 (9)0.0041 (8)0.0006 (7)0.0003 (8)
C190.0213 (9)0.0221 (11)0.0194 (10)0.0067 (8)0.0049 (7)0.0029 (8)
C200.0192 (8)0.0172 (10)0.0165 (9)0.0075 (7)0.0011 (7)0.0013 (8)
Geometric parameters (Å, º) top
O1—C21.3610 (19)C13—O141.2220 (17)
O1—C101.3852 (17)C13—C151.514 (2)
C2—O111.2115 (17)C15—C161.531 (2)
C2—C31.462 (2)C15—C201.537 (2)
C3—C41.3523 (19)C15—H151
C3—N121.391 (2)C16—C171.526 (2)
C4—C51.434 (2)C16—H16A0.99
C4—H40.95C16—H16B0.99
C5—C101.389 (2)C17—C181.525 (2)
C5—C61.410 (2)C17—H17A0.99
C6—C71.373 (2)C17—H17B0.99
C6—H60.95C18—C191.521 (2)
C7—C81.395 (2)C18—H18A0.99
C7—H70.95C18—H18B0.99
C8—C91.383 (2)C19—C201.527 (2)
C8—H80.95C19—H19A0.99
C9—C101.374 (2)C19—H19B0.99
C9—H90.95C20—H20A0.99
N12—C131.370 (2)C20—H20B0.99
N12—H120.867 (17)
C2—O1—C10121.98 (12)C13—C15—C20111.68 (14)
O11—C2—O1117.05 (14)C16—C15—C20110.15 (13)
O11—C2—C3124.73 (15)C13—C15—H15107.8
O1—C2—C3118.23 (13)C16—C15—H15107.8
C4—C3—N12127.29 (15)C20—C15—H15107.8
C4—C3—C2120.24 (15)C17—C16—C15111.00 (12)
N12—C3—C2112.46 (13)C17—C16—H16A109.4
C3—C4—C5120.11 (15)C15—C16—H16A109.4
C3—C4—H4119.9C17—C16—H16B109.4
C5—C4—H4119.9C15—C16—H16B109.4
C10—C5—C6116.77 (15)H16A—C16—H16B108
C10—C5—C4119.08 (14)C18—C17—C16111.32 (14)
C6—C5—C4124.15 (15)C18—C17—H17A109.4
C7—C6—C5121.11 (15)C16—C17—H17A109.4
C7—C6—H6119.4C18—C17—H17B109.4
C5—C6—H6119.4C16—C17—H17B109.4
C6—C7—C8119.91 (15)H17A—C17—H17B108
C6—C7—H7120C19—C18—C17111.01 (14)
C8—C7—H7120C19—C18—H18A109.4
C9—C8—C7120.39 (16)C17—C18—H18A109.4
C9—C8—H8119.8C19—C18—H18B109.4
C7—C8—H8119.8C17—C18—H18B109.4
C10—C9—C8118.56 (15)H18A—C18—H18B108
C10—C9—H9120.7C18—C19—C20111.67 (14)
C8—C9—H9120.7C18—C19—H19A109.3
C9—C10—O1116.42 (14)C20—C19—H19A109.3
C9—C10—C5123.25 (14)C18—C19—H19B109.3
O1—C10—C5120.33 (15)C20—C19—H19B109.3
C13—N12—C3127.25 (13)H19A—C19—H19B107.9
C13—N12—H12115.9 (12)C19—C20—C15110.64 (14)
C3—N12—H12116.6 (12)C19—C20—H20A109.5
O14—C13—N12122.46 (15)C15—C20—H20A109.5
O14—C13—C15123.73 (14)C19—C20—H20B109.5
N12—C13—C15113.80 (13)C15—C20—H20B109.5
C13—C15—C16111.49 (12)H20A—C20—H20B108.1
C10—O1—C2—O11179.93 (13)C4—C5—C10—C9179.32 (15)
C10—O1—C2—C30.1 (2)C6—C5—C10—O1178.81 (13)
O11—C2—C3—C4178.64 (15)C4—C5—C10—O11.3 (2)
O1—C2—C3—C41.4 (2)C4—C3—N12—C1321.3 (3)
O11—C2—C3—N120.8 (2)C2—C3—N12—C13159.30 (15)
O1—C2—C3—N12179.14 (13)C3—N12—C13—O145.0 (3)
N12—C3—C4—C5179.33 (14)C3—N12—C13—C15173.68 (14)
C2—C3—C4—C51.3 (2)O14—C13—C15—C1620.2 (2)
C3—C4—C5—C100.0 (2)N12—C13—C15—C16161.13 (14)
C3—C4—C5—C6179.90 (14)O14—C13—C15—C20103.50 (18)
C10—C5—C6—C71.3 (2)N12—C13—C15—C2075.17 (17)
C4—C5—C6—C7178.56 (15)C13—C15—C16—C17178.50 (13)
C5—C6—C7—C81.1 (2)C20—C15—C16—C1756.93 (18)
C6—C7—C8—C90.0 (2)C15—C16—C17—C1856.43 (18)
C7—C8—C9—C100.7 (2)C16—C17—C18—C1955.19 (18)
C8—C9—C10—O1179.81 (13)C17—C18—C19—C2055.31 (19)
C8—C9—C10—C50.4 (2)C18—C19—C20—C1556.28 (18)
C2—O1—C10—C9179.36 (13)C13—C15—C20—C19178.89 (13)
C2—O1—C10—C51.2 (2)C16—C15—C20—C1956.65 (17)
C6—C5—C10—C90.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the O1/C2–C5/C10 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N12—H12···O110.87 (2)2.346 (19)2.6990 (18)104.7 (14)
N12—H12···O11i0.87 (2)2.098 (18)2.9303 (16)160.8 (17)
C4—H4···O140.952.372.9094 (19)115
C7—H7···O14ii0.952.573.473 (2)158
C16—H16B···Cg1iii0.992.813.5732 (17)134
C17—H17B···Cg2iii0.992.703.5876 (19)149
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC16H17NO3
Mr271.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.4486 (6), 9.6324 (11), 11.0837 (11)
α, β, γ (°)83.061 (6), 89.134 (5), 73.987 (5)
V3)656.79 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.45 × 0.09
Data collection
DiffractometerBruker X8 APEXII KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9698, 2487, 1834
Rint0.044
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.06
No. of reflections2487
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the O1/C2–C5/C10 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N12—H12···O110.87 (2)2.346 (19)2.6990 (18)104.7 (14)
N12—H12···O11i0.87 (2)2.098 (18)2.9303 (16)160.8 (17)
C4—H4···O140.952.372.9094 (19)115
C7—H7···O14ii0.952.573.473 (2)158
C16—H16B···Cg1iii0.992.813.5732 (17)134
C17—H17B···Cg2iii0.992.703.5876 (19)149
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z; (iii) x, y, z.
 

Acknowledgements

This work was supported by funds of Xunta da Galicia (09CSA030203PR), Ministerio de Sanidad y Consumo (PS09/00501) and Fundação para a Ciência e Tecnologia (SFRH/BD/61262/2009).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011). Bioorg. Med. Chem. Lett. 21, 3342–3345.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011). J. Med. Chem. 54, 7127–7137.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatos, M. J., Viña, D., Janeiro, P., Borges, F., Santana, L. & Uriarte, E. (2010). Bioorg. Med. Chem. Lett. 20, 5157–5160.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268–3270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012). Chem. Med. Chem. 7, 464–470.  Web of Science PubMed Google Scholar
First citationViña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012). MedChemComm, 3, 213–218.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3447-o3448
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds