organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-benz­yl­oxy-2-hy­dr­oxy­benzoate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, Karnataka, India, cSoild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and dDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 4 November 2012; accepted 10 November 2012; online 17 November 2012)

In the title compound, C15H14O4, the dihedral angle between the benzene rings is 67.18 (8)°. The Ca—Cm—O—Ca (a = aromatic and m = methyl­ene) torsion angle is 172.6 (3)° and an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains propagating in [001] and C—H⋯π inter­actions also occur.

Related literature

For general background to benzyl­oxybenzoates, see: Pifferi et al. (1977[Pifferi, G., Gaviraghi, G., Pinza, M. & Ventura, P. J. (1977). J. Heterocycl. Chem. 14, 1257-1259.]); Ghosh et al. (2008[Ghosh, S., Li, X. Q., Stepanenko, V. & Wurthner, F. (2008). Chem. Eur. J. 14, 11343-11357.]). For related structures and further synthetic details, see: Tangdenpaisal et al. (2009[Tangdenpaisal, K., Sualek, S., Ruchirawat, S. & Ploypradith, P. (2009). Tetrahedron, 65, 4316-4325.]); Kashi et al. (2010[Kashi, H. K. A., Palakshamurthy, B. S., VinduVahini, M., Srinivasa, H. T. & Devarajegowda, H. C. (2010). Acta Cryst. E66, o2126.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O4

  • Mr = 258.26

  • Triclinic, [P \overline 1]

  • a = 5.7731 (10) Å

  • b = 7.9855 (14) Å

  • c = 14.046 (3) Å

  • α = 89.490 (6)°

  • β = 80.111 (5)°

  • γ = 87.210 (6)°

  • V = 637.16 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.983

  • 12770 measured reflections

  • 2231 independent reflections

  • 1679 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.07

  • 2231 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.89 2.6133 (17) 146
C19—H19C⋯O2i 0.96 2.54 3.469 (3) 163
C11—H11ACg1ii 0.97 2.78 3.5991 (19) 143
C13—H13⋯Cg1iii 0.93 2.95 3.7324 (19) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Protected benzyloxyphenols and benzyloxybenzoates are an important class of compounds for the syntheses of pharmaceuticals, natural products and polymers (Pifferi et al., 1977). In particular, Methyl 4-(benzyloxy)-2-hydroxybenzoates are essential components of various types of liquid crystals and materials science (Ghosh et al., 2008), also will play an important role in synthesizing rod shaped liquid crystal which exhibits monotropic nematic mesophase (Kashi et al., 2010). Solid supported reagents have been employed for the protection and deprotection process frequently in organic synthesis particularly for title compound (Tangdenpaisal et al., 2009).

The asymmetric unit of the title compound is shown in Fig. 1. The dihedral angle between the least-squares planes of the two benzene rings (C5–C10) and (C12–C17) is 67.18 (8)°. The crystal structure is characterized by intermolecular C19—H19···O2 and intramolecular O2—H2···O3 hydrogen bonding and also features C11—H11A···Cg(1) (C5–C10) and C13—H13···Cg(1) (C5–C10) (Table 1) interactions.

Related literature top

For general background to benzyloxybenzoates, see: Pifferi et al. (1977); Ghosh et al. (2008). For related structures and further synthetic details, see: Tangdenpaisal et al. (2009); Kashi et al. (2010).

Experimental top

A mixture of methyl 2,4-dihydroxybenzoate (1 mmol) and benzylchloride (1.2 mmol) anhydrous potassium carbonate (1.5 mmol) in methyethylketone was refluxed for 12hrs. After completion of reaction, the reaction mixture was extracted into chloroform washed with water dried over anhydrous sodium sulfate. On removal of organic solvent offered crude white solid, which was purified by column chromatography on silica gel (60–120 mesh size) using 5% ethyl acetate in hexane as an eluent. Finaly the title compound was recrystallized from pure ethanol to yield colourless plates.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H,and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of molecules.
Methyl 4-benzyloxy-2-hydroxybenzoate top
Crystal data top
C15H14O4Z = 2
Mr = 258.26F(000) = 272
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Melting point: 377 K
a = 5.7731 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9855 (14) ÅCell parameters from 2231 reflections
c = 14.046 (3) Åθ = 2.6–25.0°
α = 89.490 (6)°µ = 0.10 mm1
β = 80.111 (5)°T = 293 K
γ = 87.210 (6)°Plate, colourless
V = 637.16 (19) Å30.24 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2231 independent reflections
Radiation source: fine-focus sealed tube1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω and ϕ scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 66
Tmin = 0.977, Tmax = 0.983k = 99
12770 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.0386P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2231 reflectionsΔρmax = 0.17 e Å3
173 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.069 (9)
Crystal data top
C15H14O4γ = 87.210 (6)°
Mr = 258.26V = 637.16 (19) Å3
Triclinic, P1Z = 2
a = 5.7731 (10) ÅMo Kα radiation
b = 7.9855 (14) ŵ = 0.10 mm1
c = 14.046 (3) ÅT = 293 K
α = 89.490 (6)°0.24 × 0.22 × 0.18 mm
β = 80.111 (5)°
Data collection top
Bruker SMART CCD
diffractometer
2231 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1679 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.053
12770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
2231 reflectionsΔρmin = 0.15 e Å3
173 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3228 (2)0.20059 (14)0.10019 (7)0.0518 (4)
O20.1364 (2)0.41392 (14)0.42117 (8)0.0574 (4)
H20.18560.41090.47260.086*
O30.4189 (2)0.31994 (16)0.54049 (8)0.0605 (4)
O40.7269 (2)0.14432 (15)0.48726 (8)0.0568 (4)
C50.0453 (3)0.2119 (2)0.06754 (12)0.0516 (5)
H50.16330.16090.02530.062*
C60.0486 (3)0.2107 (2)0.16596 (12)0.0579 (5)
H60.16930.16000.18930.069*
C70.1252 (3)0.2840 (2)0.22893 (12)0.0563 (5)
H70.12240.28380.29490.068*
C80.3032 (3)0.3575 (2)0.19423 (12)0.0578 (5)
H80.42260.40630.23680.069*
C90.3056 (3)0.3594 (2)0.09595 (12)0.0549 (5)
H90.42710.40970.07300.066*
C100.1305 (3)0.2876 (2)0.03155 (11)0.0443 (4)
C110.1266 (3)0.2994 (2)0.07531 (11)0.0534 (5)
H11A0.13660.41540.09350.064*
H11B0.01970.25850.11010.064*
C120.3616 (3)0.21291 (19)0.19290 (10)0.0406 (4)
C130.5597 (3)0.1217 (2)0.21350 (11)0.0477 (4)
H130.65210.05520.16620.057*
C140.6165 (3)0.1310 (2)0.30389 (11)0.0471 (4)
H140.74930.07070.31710.057*
C150.4801 (3)0.22901 (18)0.37723 (10)0.0400 (4)
C160.2802 (3)0.31707 (18)0.35554 (11)0.0406 (4)
C170.2211 (3)0.30868 (19)0.26383 (11)0.0433 (4)
H170.08750.36740.25030.052*
C180.5349 (3)0.23696 (19)0.47507 (11)0.0444 (4)
C190.7991 (4)0.1564 (2)0.58079 (13)0.0637 (5)
H19A0.93780.08550.58170.096*
H19B0.67490.12130.63030.096*
H19C0.83230.27040.59220.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0604 (7)0.0624 (7)0.0333 (6)0.0172 (6)0.0155 (5)0.0058 (5)
O20.0632 (8)0.0671 (8)0.0402 (7)0.0173 (6)0.0085 (6)0.0148 (5)
O30.0718 (9)0.0731 (8)0.0362 (7)0.0062 (7)0.0110 (6)0.0084 (6)
O40.0628 (8)0.0695 (8)0.0423 (7)0.0048 (6)0.0230 (6)0.0020 (6)
C50.0496 (10)0.0602 (10)0.0461 (10)0.0027 (8)0.0109 (8)0.0012 (8)
C60.0567 (11)0.0682 (12)0.0534 (11)0.0005 (9)0.0229 (9)0.0096 (9)
C70.0670 (12)0.0686 (11)0.0345 (9)0.0143 (9)0.0164 (8)0.0038 (8)
C80.0580 (11)0.0699 (12)0.0427 (10)0.0022 (9)0.0012 (8)0.0039 (8)
C90.0491 (10)0.0693 (12)0.0484 (10)0.0070 (9)0.0130 (8)0.0057 (8)
C100.0454 (9)0.0522 (9)0.0358 (8)0.0082 (7)0.0114 (7)0.0019 (7)
C110.0523 (10)0.0702 (11)0.0378 (9)0.0136 (8)0.0127 (8)0.0024 (8)
C120.0471 (9)0.0443 (9)0.0312 (8)0.0008 (7)0.0095 (7)0.0004 (6)
C130.0510 (10)0.0563 (10)0.0340 (8)0.0119 (8)0.0060 (7)0.0059 (7)
C140.0457 (9)0.0555 (10)0.0401 (9)0.0090 (8)0.0102 (7)0.0008 (7)
C150.0446 (9)0.0425 (8)0.0333 (8)0.0026 (7)0.0077 (7)0.0009 (6)
C160.0464 (9)0.0393 (8)0.0346 (8)0.0000 (7)0.0035 (7)0.0026 (6)
C170.0452 (9)0.0459 (9)0.0396 (9)0.0057 (7)0.0115 (7)0.0001 (7)
C180.0507 (10)0.0461 (9)0.0377 (9)0.0071 (8)0.0094 (7)0.0026 (7)
C190.0778 (13)0.0748 (12)0.0459 (10)0.0062 (10)0.0311 (9)0.0036 (9)
Geometric parameters (Å, º) top
O1—C121.3638 (17)C9—H90.9300
O1—C111.4393 (19)C10—C111.501 (2)
O2—C161.3509 (18)C11—H11A0.9700
O2—H20.8200C11—H11B0.9700
O3—C181.2198 (19)C12—C171.382 (2)
O4—C181.337 (2)C12—C131.397 (2)
O4—C191.4502 (19)C13—C141.368 (2)
C5—C101.376 (2)C13—H130.9300
C5—C61.386 (2)C14—C151.403 (2)
C5—H50.9300C14—H140.9300
C6—C71.369 (3)C15—C161.399 (2)
C6—H60.9300C15—C181.465 (2)
C7—C81.369 (3)C16—C171.391 (2)
C7—H70.9300C17—H170.9300
C8—C91.383 (2)C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C9—C101.379 (2)C19—H19C0.9600
C12—O1—C11116.82 (12)O1—C12—C17124.30 (14)
C16—O2—H2109.5O1—C12—C13115.41 (14)
C18—O4—C19116.31 (14)C17—C12—C13120.29 (14)
C10—C5—C6120.76 (17)C14—C13—C12119.41 (15)
C10—C5—H5119.6C14—C13—H13120.3
C6—C5—H5119.6C12—C13—H13120.3
C7—C6—C5120.18 (16)C13—C14—C15121.85 (15)
C7—C6—H6119.9C13—C14—H14119.1
C5—C6—H6119.9C15—C14—H14119.1
C8—C7—C6119.67 (16)C16—C15—C14117.79 (14)
C8—C7—H7120.2C16—C15—C18119.60 (14)
C6—C7—H7120.2C14—C15—C18122.57 (14)
C7—C8—C9120.09 (17)O2—C16—C17116.75 (14)
C7—C8—H8120.0O2—C16—C15122.45 (14)
C9—C8—H8120.0C17—C16—C15120.81 (14)
C10—C9—C8120.92 (16)C12—C17—C16119.83 (14)
C10—C9—H9119.5C12—C17—H17120.1
C8—C9—H9119.5C16—C17—H17120.1
C5—C10—C9118.37 (15)O3—C18—O4122.01 (14)
C5—C10—C11121.05 (16)O3—C18—C15124.12 (15)
C9—C10—C11120.52 (15)O4—C18—C15113.87 (14)
O1—C11—C10109.23 (13)O4—C19—H19A109.5
O1—C11—H11A109.8O4—C19—H19B109.5
C10—C11—H11A109.8H19A—C19—H19B109.5
O1—C11—H11B109.8O4—C19—H19C109.5
C10—C11—H11B109.8H19A—C19—H19C109.5
H11A—C11—H11B108.3H19B—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.892.6133 (17)146
C19—H19C···O2i0.962.543.469 (3)163
C11—H11A···Cg1ii0.972.783.5991 (19)143
C13—H13···Cg1iii0.932.953.7324 (19)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14O4
Mr258.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.7731 (10), 7.9855 (14), 14.046 (3)
α, β, γ (°)89.490 (6), 80.111 (5), 87.210 (6)
V3)637.16 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.977, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12770, 2231, 1679
Rint0.053
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.07
No. of reflections2231
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.892.6133 (17)146
C19—H19C···O2i0.962.543.469 (3)163
C11—H11A···Cg1ii0.972.783.5991 (19)143
C13—H13···Cg1iii0.932.953.7324 (19)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

The authors thank to Professor T. N. Guru Row, Soild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore and G. B. Sadananda, Department of Studies and Research in Physics, U.C.S. Tumkur University, Tumkur, for their help and suggestions.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, S., Li, X. Q., Stepanenko, V. & Wurthner, F. (2008). Chem. Eur. J. 14, 11343–11357.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKashi, H. K. A., Palakshamurthy, B. S., VinduVahini, M., Srinivasa, H. T. & Devarajegowda, H. C. (2010). Acta Cryst. E66, o2126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPifferi, G., Gaviraghi, G., Pinza, M. & Ventura, P. J. (1977). J. Heterocycl. Chem. 14, 1257–1259.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTangdenpaisal, K., Sualek, S., Ruchirawat, S. & Ploypradith, P. (2009). Tetrahedron, 65, 4316–4325.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds