organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Phenyl-1H-1,5-benzodiazepin-2(3H)-one

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, cDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, and eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr, a.r.Kennedy@strath.ac.uk

(Received 4 November 2012; accepted 10 November 2012; online 17 November 2012)

In the title compound, C15H12N2O, the phenyl ring makes a dihedral angle of 32.45 (9)° with the benzene ring of the 1,5-benzodiazepin-2-one unit. The seven-membered ring adopts a boat conformation with the methyl­ene group as the prow and the fused benzene-ring C atoms as the stern. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops. The dimers are further linked by C—H⋯O hydrogen bonds, so forming a column along the a-axis direction.

Related literature

For background to benzodiazepine compounds, see: McKernan (2000[McKernan, R. M. (2000). Nat. Neurosci. 3, 587-592.]); Thakur et al. (2003[Thakur, A., Thakur, M. & Khadikar, P. V. (2003). Bioorg. Med. Chem. 11, 5203-5207.]). For related structures, see: Benelbaghdadi et al. (2003[Benelbaghdadi, R., Hasnaoui, R. A., Lavergne, J. P., Ait Itto, M. & Pierrot, M. (2003). Acta Cryst. E59, o143-o144.]); Višnjevac et al. (2002[Višnjevac, A., Avdagić, A. & Kojić-Prodić, B. (2002). Acta Cryst. E58, o148-o150.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O

  • Mr = 236.27

  • Triclinic, [P \overline 1]

  • a = 4.6894 (5) Å

  • b = 10.8353 (13) Å

  • c = 11.7540 (13) Å

  • α = 77.721 (10)°

  • β = 83.805 (9)°

  • γ = 82.112 (10)°

  • V = 576.13 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.35 × 0.09 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur Eos CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.928, Tmax = 1.000

  • 4335 measured reflections

  • 2584 independent reflections

  • 1830 reflections with I > 2σI

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.140

  • S = 1.02

  • 2584 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.91 (2) 1.99 (2) 2.900 (2) 175 (2)
C1—H1B⋯O1ii 0.99 2.56 3.468 (2) 153
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

Due to their wide range of pharmacological activity in synthetic and industrial applications, benzodiazepines (BZDs) have attracted the interest of chemists and biologists. They are widely used as anti-inflammatory, analgesic, hypnotic, tranquillizers and anti-depressive agents (e.g. Thakur et al. 2003; McKernan, 2000).

In the title molecule (I), (Fig. 1), the C10–C15 phenyl and C3–C8 benzene rings make a dihedral angle of 32.45 (9)° with each other. All bond lengths and bond angles in (I) are comparable to those reported for similar compounds (Višnjevac et al., 2002; Benelbaghdadi et al., 2003).

The seven-membered ring (N1/N2/C1—C3/C8/C9) of the 1,3-dihydro-2H-1,5-benzodiazepin-2-one moiety exhibits a puckered conformation, with puckering parameters q2= 0.7977 (19) Å, ϕ2 = 337.34 (14)°, q3= 0.250 (2) Å, ϕ3 = 228.2 (5)°, and QT= 0.836 (2) Å.

In the crystal, a pair of N—H···O hydrogen bonds (Table 1) link two molecules into an inversion dimer with an R22(8) motif. Furhermore, C—H···O hydrogen bonds link the dimers, so forming a column along the a axis direction (Fig. 2).

Related literature top

For background to benzodiazepine compounds, see: McKernan (2000); Thakur et al. (2003). For related structures, see: Benelbaghdadi et al. (2003); Višnjevac et al. (2002).

Experimental top

To a stirred boiling solution of 0.1 mol (10.8 g) benzene-1,2-diamine in 100 ml p-xylene, 0.12 mol (23.12 g) ethyl 3-oxo-3-phenylpropanoate was added in dropwise and refluxed for 2 h. The reaction mixture was left to stand at room temperature for 24 h. The precipitated solid was collected by filtration and recrystallized from benzene to give colourless rods in 90% yield (M.p. 480 K).

Refinement top

The amine H atom was located from a difference map and refined with a distance restraint of N—H = 0.91 (2) Å. H atoms bound to C atoms were positioned geometrically and refined using a riding model [C—H = 0.95–0.99 Å, and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the dimers formed by pairs of N—H···O hydrogen bonds, forming the R22(8) motifs, down the a axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
4-Phenyl-1H-1,5-benzodiazepin-2(3H)-one top
Crystal data top
C15H12N2OZ = 2
Mr = 236.27F(000) = 248
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6894 (5) ÅCell parameters from 1808 reflections
b = 10.8353 (13) Åθ = 3.6–28.6°
c = 11.7540 (13) ŵ = 0.09 mm1
α = 77.721 (10)°T = 123 K
β = 83.805 (9)°Rod, colourless
γ = 82.112 (10)°0.35 × 0.09 × 0.06 mm
V = 576.13 (12) Å3
Data collection top
Oxford Diffraction Xcalibur Eos CCD
diffractometer
2584 independent reflections
Radiation source: Enhance (Mo) X-ray Source1830 reflections with I > 2σI
Graphite monochromatorRint = 0.034
Detector resolution: 16.0727 pixels mm-1θmax = 28.7°, θmin = 3.6°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1314
Tmin = 0.928, Tmax = 1.000l = 1414
4335 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.0566P]
where P = (Fo2 + 2Fc2)/3
2584 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H12N2Oγ = 82.112 (10)°
Mr = 236.27V = 576.13 (12) Å3
Triclinic, P1Z = 2
a = 4.6894 (5) ÅMo Kα radiation
b = 10.8353 (13) ŵ = 0.09 mm1
c = 11.7540 (13) ÅT = 123 K
α = 77.721 (10)°0.35 × 0.09 × 0.06 mm
β = 83.805 (9)°
Data collection top
Oxford Diffraction Xcalibur Eos CCD
diffractometer
2584 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1830 reflections with I > 2σI
Tmin = 0.928, Tmax = 1.000Rint = 0.034
4335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
2584 reflectionsΔρmin = 0.29 e Å3
167 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5985 (3)0.83316 (12)0.01502 (12)0.0240 (4)
N10.2761 (3)0.91004 (15)0.11765 (15)0.0196 (5)
N20.1807 (3)0.67999 (15)0.30340 (14)0.0208 (5)
C10.2541 (4)0.69700 (17)0.09252 (17)0.0198 (6)
C20.3919 (4)0.81833 (18)0.05942 (17)0.0189 (6)
C30.0429 (4)0.90428 (18)0.20457 (17)0.0191 (6)
C40.1284 (4)1.01875 (18)0.21167 (18)0.0223 (6)
C50.3538 (4)1.0235 (2)0.29689 (19)0.0265 (7)
C60.4128 (4)0.9137 (2)0.37674 (19)0.0264 (7)
C70.2380 (4)0.80156 (19)0.37327 (18)0.0238 (6)
C80.0060 (4)0.79387 (18)0.28803 (17)0.0198 (6)
C90.3135 (4)0.63570 (17)0.21650 (17)0.0188 (6)
C100.5331 (4)0.52265 (17)0.24188 (17)0.0187 (6)
C110.7291 (4)0.48274 (18)0.15578 (18)0.0219 (6)
C120.9357 (4)0.37853 (19)0.18455 (19)0.0255 (7)
C130.9510 (4)0.31567 (19)0.29879 (19)0.0263 (7)
C140.7573 (4)0.35380 (19)0.38557 (19)0.0265 (7)
C150.5496 (4)0.45695 (18)0.35707 (18)0.0230 (6)
H1A0.335000.638900.039400.0240*
H1B0.043200.715400.085800.0240*
H1N0.324 (4)0.990 (2)0.089 (2)0.038 (6)*
H40.089401.094100.157300.0270*
H50.468901.101900.301000.0320*
H60.573000.916200.433400.0320*
H70.275200.727600.429900.0290*
H110.721900.526800.076900.0260*
H121.066700.350700.125100.0310*
H131.095200.245700.318200.0320*
H140.766600.309600.464300.0320*
H150.416900.483200.416800.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0232 (7)0.0258 (8)0.0206 (8)0.0022 (6)0.0039 (6)0.0025 (6)
N10.0205 (8)0.0168 (8)0.0207 (10)0.0034 (6)0.0005 (7)0.0021 (7)
N20.0188 (8)0.0212 (9)0.0216 (10)0.0027 (6)0.0008 (6)0.0033 (7)
C10.0198 (9)0.0200 (10)0.0200 (11)0.0020 (7)0.0025 (7)0.0048 (8)
C20.0188 (9)0.0197 (10)0.0175 (11)0.0005 (7)0.0061 (7)0.0008 (8)
C30.0151 (9)0.0241 (10)0.0199 (11)0.0041 (7)0.0007 (7)0.0079 (8)
C40.0225 (10)0.0191 (10)0.0251 (12)0.0032 (8)0.0028 (8)0.0033 (8)
C50.0205 (10)0.0295 (11)0.0309 (13)0.0017 (8)0.0038 (8)0.0110 (10)
C60.0183 (10)0.0351 (12)0.0276 (12)0.0023 (8)0.0015 (8)0.0125 (10)
C70.0189 (10)0.0285 (11)0.0239 (12)0.0061 (8)0.0007 (8)0.0043 (9)
C80.0161 (9)0.0224 (10)0.0221 (11)0.0028 (7)0.0028 (8)0.0065 (8)
C90.0189 (9)0.0197 (10)0.0183 (11)0.0057 (7)0.0010 (7)0.0028 (8)
C100.0178 (9)0.0188 (10)0.0211 (11)0.0047 (7)0.0022 (7)0.0054 (8)
C110.0233 (10)0.0239 (11)0.0188 (11)0.0049 (8)0.0010 (8)0.0042 (8)
C120.0221 (10)0.0271 (11)0.0284 (13)0.0021 (8)0.0020 (8)0.0106 (9)
C130.0207 (10)0.0248 (11)0.0336 (13)0.0003 (8)0.0039 (8)0.0068 (9)
C140.0278 (11)0.0270 (11)0.0229 (12)0.0022 (8)0.0033 (8)0.0012 (9)
C150.0232 (10)0.0249 (11)0.0206 (11)0.0019 (8)0.0008 (8)0.0053 (9)
Geometric parameters (Å, º) top
O1—C21.237 (2)C10—C111.390 (3)
N1—C21.346 (3)C11—C121.391 (3)
N1—C31.412 (3)C12—C131.375 (3)
N2—C81.402 (3)C13—C141.383 (3)
N2—C91.285 (3)C14—C151.387 (3)
N1—H1N0.91 (2)C1—H1A0.9900
C1—C91.506 (3)C1—H1B0.9900
C1—C21.503 (3)C4—H40.9500
C3—C81.405 (3)C5—H50.9500
C3—C41.395 (3)C6—H60.9500
C4—C51.379 (3)C7—H70.9500
C5—C61.390 (3)C11—H110.9500
C6—C71.375 (3)C12—H120.9500
C7—C81.404 (3)C13—H130.9500
C9—C101.488 (3)C14—H140.9500
C10—C151.394 (3)C15—H150.9500
C2—N1—C3127.34 (17)C12—C13—C14120.27 (19)
C8—N2—C9122.03 (17)C13—C14—C15119.7 (2)
C2—N1—H1N117.5 (14)C10—C15—C14120.81 (19)
C3—N1—H1N113.8 (13)C2—C1—H1A110.00
C2—C1—C9108.46 (16)C2—C1—H1B110.00
O1—C2—C1122.81 (17)C9—C1—H1A110.00
O1—C2—N1122.06 (18)C9—C1—H1B110.00
N1—C2—C1115.13 (16)H1A—C1—H1B108.00
N1—C3—C8123.51 (17)C3—C4—H4120.00
C4—C3—C8119.81 (18)C5—C4—H4120.00
N1—C3—C4116.43 (17)C4—C5—H5120.00
C3—C4—C5120.61 (19)C6—C5—H5120.00
C4—C5—C6120.12 (19)C5—C6—H6120.00
C5—C6—C7119.63 (19)C7—C6—H6120.00
C6—C7—C8121.54 (19)C6—C7—H7119.00
C3—C8—C7118.18 (18)C8—C7—H7119.00
N2—C8—C7116.13 (17)C10—C11—H11120.00
N2—C8—C3125.11 (17)C12—C11—H11120.00
N2—C9—C1121.42 (17)C11—C12—H12120.00
N2—C9—C10117.88 (17)C13—C12—H12120.00
C1—C9—C10120.69 (16)C12—C13—H13120.00
C9—C10—C11122.52 (18)C14—C13—H13120.00
C11—C10—C15118.72 (18)C13—C14—H14120.00
C9—C10—C15118.73 (17)C15—C14—H14120.00
C10—C11—C12120.32 (19)C10—C15—H15120.00
C11—C12—C13120.21 (19)C14—C15—H15120.00
C3—N1—C2—O1179.53 (18)C3—C4—C5—C60.1 (3)
C3—N1—C2—C10.2 (3)C4—C5—C6—C72.7 (3)
C2—N1—C3—C4149.39 (19)C5—C6—C7—C82.3 (3)
C2—N1—C3—C836.4 (3)C6—C7—C8—N2171.13 (18)
C9—N2—C8—C340.1 (3)C6—C7—C8—C30.6 (3)
C9—N2—C8—C7148.81 (19)N2—C9—C10—C11166.64 (18)
C8—N2—C9—C16.0 (3)N2—C9—C10—C1511.0 (3)
C8—N2—C9—C10172.89 (17)C1—C9—C10—C1112.3 (3)
C9—C1—C2—O1112.8 (2)C1—C9—C10—C15170.04 (17)
C9—C1—C2—N166.6 (2)C9—C10—C11—C12178.16 (18)
C2—C1—C9—N274.3 (2)C15—C10—C11—C120.5 (3)
C2—C1—C9—C10104.6 (2)C9—C10—C15—C14177.71 (18)
N1—C3—C4—C5177.32 (18)C11—C10—C15—C140.0 (3)
C8—C3—C4—C52.9 (3)C10—C11—C12—C131.2 (3)
N1—C3—C8—N26.3 (3)C11—C12—C13—C141.4 (3)
N1—C3—C8—C7177.21 (18)C12—C13—C14—C150.9 (3)
C4—C3—C8—N2167.75 (18)C13—C14—C15—C100.1 (3)
C4—C3—C8—C73.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.91 (2)1.99 (2)2.900 (2)175 (2)
C1—H1B···O1ii0.992.563.468 (2)153
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H12N2O
Mr236.27
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)4.6894 (5), 10.8353 (13), 11.7540 (13)
α, β, γ (°)77.721 (10), 83.805 (9), 82.112 (10)
V3)576.13 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.09 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur Eos CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.928, 1.000
No. of measured, independent and
observed (I > 2σI) reflections
4335, 2584, 1830
Rint0.034
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.140, 1.02
No. of reflections2584
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.91 (2)1.99 (2)2.900 (2)175 (2)
C1—H1B···O1ii0.992.563.468 (2)153
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z.
 

Acknowledgements

Manchester Metropolitan University, Erciyes University and University of Strathclyde are gratefully acknowledged for supporting this study.

References

First citationBenelbaghdadi, R., Hasnaoui, R. A., Lavergne, J. P., Ait Itto, M. & Pierrot, M. (2003). Acta Cryst. E59, o143–o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKernan, R. M. (2000). Nat. Neurosci. 3, 587–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakur, A., Thakur, M. & Khadikar, P. V. (2003). Bioorg. Med. Chem. 11, 5203–5207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVišnjevac, A., Avdagić, A. & Kojić-Prodić, B. (2002). Acta Cryst. E58, o148–o150.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds