organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Ethyl 2-chloro-2-[2-(4-methyl­phen­yl)hydrazinyl­­idene]acetate

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan
*Correspondence e-mail: aasiri2@kau.edu.sa, sthbukhari@yahoo.co.uk

(Received 4 November 2012; accepted 10 November 2012; online 24 November 2012)

The mol­ecule of the title compound, C11H13ClN2O2, is approximately planar (r.m.s. deviation = 0.099 Å for non-H atoms) and adopts a Z conformation about the C=N double bond. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds to the same O-atom acceptor, forming zigzag chains propagating along [010]. These inter­actions give rise to R21(6) loops.

Related literature

For related structures, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Zayed, M. E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1964.], 2012[Asiri, A. M., Arshad, M. N., Zayed, M. E. M., Alamry, K. A. & Shafiq, M. (2012). Acta Cryst. E68, o3274.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13ClN2O2

  • Mr = 240.68

  • Monoclinic, P 21 /c

  • a = 4.6152 (1) Å

  • b = 9.9444 (1) Å

  • c = 26.3152 (3) Å

  • β = 90.692 (1)°

  • V = 1207.66 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.71 mm−1

  • T = 296 K

  • 0.41 × 0.14 × 0.13 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.692, Tmax = 1.000

  • 9526 measured reflections

  • 2436 independent reflections

  • 2224 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.06

  • 2436 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.52 3.331 (2) 145
N1—H1⋯O1i 0.85 (2) 2.30 (2) 3.1120 (18) 161 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The present structure (I) is related to compounds already reported by our group, that is, (Z)-Ethyl 2-chloro-2-(2-(4-methoxyphenyl)hydrazono)acetate (II) (Asiri et al., 2012) and 1-Chloro-1-[(4-methylphenyl)hydrazinylidene]propan-2-one (III) (Asiri et al., 2011).

The title compound, Fig. 1, and II contain methyl and methoxy groups respectively at para positions of aromatic ring, which make them different from each other. The aromatic ring (C1—C6) is oriented at a dihedral angle of 9.49 (8)° with respect to the mean plane of the ester moiety (N1/N2/O1/O2 C7-Cl0; r.m.s. deviation 0.0454 Å), while the same angle in II is 3.05 (2) °. The spatial arrangements of different functional groups around the C7N2 double bond give rise to trans isomer i.e. Z conformation.

In the crystal, N—H···O and C—H···O hydrogen bonds connect the molecules along the b axis to form zigzag chains, enclosing six membered R12(6) ring motifs - see Table. 1 and Fig. 2.

Related literature top

For related structures, see: Asiri et al. (2011, 2012).

Experimental top

The molecule was synthesised according to the literature procedure (Asiri et al., 2011) and recrystallized from ethanol under slow evaporation giving yellow needles.

Refinement top

The N—H H atom was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96 and 0.97 Å for CH(aromatic), CHmethyl, and CHmethylene H atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CHmethyl H atoms and = 1.2 for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of the crystal packing of the title compound showing N-H···O and C-H···O hydrogen bonds as dashed lines - see Table 1 for details.
(Z)-Ethyl 2-chloro-2-[2-(4-methylphenyl)hydrazinylidene]acetate top
Crystal data top
C11H13ClN2O2F(000) = 504
Mr = 240.68Dx = 1.324 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 6552 reflections
a = 4.6152 (1) Åθ = 4.4–75.9°
b = 9.9444 (1) ŵ = 2.71 mm1
c = 26.3152 (3) ÅT = 296 K
β = 90.692 (1)°Needle, yellow
V = 1207.66 (3) Å30.41 × 0.14 × 0.13 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas) CCD
diffractometer
2436 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2224 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
ω scansθmax = 76.1°, θmin = 4.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 45
Tmin = 0.692, Tmax = 1.000k = 1212
9526 measured reflectionsl = 3233
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2618P]
where P = (Fo2 + 2Fc2)/3
2436 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H13ClN2O2V = 1207.66 (3) Å3
Mr = 240.68Z = 4
Monoclinic, P21/cCu Kα radiation
a = 4.6152 (1) ŵ = 2.71 mm1
b = 9.9444 (1) ÅT = 296 K
c = 26.3152 (3) Å0.41 × 0.14 × 0.13 mm
β = 90.692 (1)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas) CCD
diffractometer
2436 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2224 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 1.000Rint = 0.019
9526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
2436 reflectionsΔρmin = 0.23 e Å3
150 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43464 (11)0.05667 (5)0.234472 (17)0.07524 (19)
O10.1041 (3)0.28559 (14)0.27188 (5)0.0730 (4)
O20.2685 (3)0.27966 (12)0.35220 (4)0.0641 (3)
N10.8092 (3)0.02052 (14)0.31951 (5)0.0541 (3)
N20.6346 (3)0.08135 (12)0.32924 (5)0.0508 (3)
C10.9873 (3)0.07483 (15)0.35803 (6)0.0491 (3)
C21.0086 (4)0.01791 (17)0.40583 (6)0.0579 (4)
H20.90350.05900.41360.070*
C31.1886 (4)0.07686 (18)0.44203 (6)0.0621 (4)
H31.20340.03790.47410.074*
C41.3468 (3)0.19164 (17)0.43198 (6)0.0574 (4)
C51.3267 (4)0.24428 (17)0.38355 (7)0.0626 (4)
H51.43560.31990.37550.075*
C61.1496 (4)0.18777 (17)0.34674 (6)0.0592 (4)
H61.13930.22550.31440.071*
C70.4608 (3)0.12591 (16)0.29498 (6)0.0518 (3)
C80.2603 (3)0.23844 (16)0.30433 (6)0.0546 (4)
C90.0576 (5)0.3840 (2)0.36460 (8)0.0774 (5)
H9A0.10420.46680.34700.093*
H9B0.13540.35600.35410.093*
C100.0685 (7)0.4052 (3)0.41932 (10)0.1069 (9)
H10A0.00650.32500.43630.160*
H10B0.05720.47830.42810.160*
H10C0.26340.42630.42970.160*
C111.5322 (5)0.2579 (2)0.47260 (8)0.0768 (5)
H11A1.45760.34600.47970.115*
H11B1.52890.20450.50300.115*
H11C1.72780.26530.46090.115*
H10.799 (5)0.063 (2)0.2915 (10)0.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0816 (3)0.0890 (3)0.0549 (3)0.0032 (2)0.0103 (2)0.0051 (2)
O10.0795 (8)0.0712 (8)0.0680 (7)0.0077 (6)0.0172 (6)0.0174 (6)
O20.0687 (7)0.0615 (7)0.0618 (7)0.0123 (5)0.0083 (5)0.0025 (5)
N10.0542 (7)0.0577 (7)0.0502 (7)0.0023 (6)0.0021 (6)0.0015 (6)
N20.0478 (7)0.0507 (7)0.0539 (7)0.0047 (5)0.0002 (5)0.0055 (5)
C10.0459 (7)0.0495 (7)0.0520 (8)0.0049 (6)0.0007 (6)0.0022 (6)
C20.0621 (9)0.0567 (8)0.0549 (8)0.0072 (7)0.0012 (7)0.0032 (7)
C30.0664 (10)0.0685 (10)0.0513 (9)0.0011 (8)0.0026 (7)0.0048 (7)
C40.0508 (8)0.0597 (9)0.0615 (9)0.0048 (7)0.0038 (7)0.0064 (7)
C50.0611 (10)0.0557 (9)0.0709 (10)0.0073 (7)0.0042 (8)0.0039 (7)
C60.0639 (10)0.0575 (9)0.0561 (9)0.0035 (7)0.0023 (7)0.0083 (7)
C70.0502 (8)0.0552 (8)0.0499 (8)0.0079 (6)0.0021 (6)0.0064 (6)
C80.0549 (8)0.0529 (8)0.0557 (8)0.0078 (6)0.0039 (7)0.0122 (6)
C90.0837 (13)0.0655 (11)0.0826 (13)0.0187 (10)0.0084 (10)0.0009 (9)
C100.137 (2)0.0947 (17)0.0889 (17)0.0374 (16)0.0124 (15)0.0014 (13)
C110.0738 (12)0.0788 (12)0.0773 (12)0.0022 (9)0.0163 (10)0.0121 (10)
Geometric parameters (Å, º) top
Cl1—C71.7377 (16)C4—C111.512 (2)
O1—C81.2056 (19)C5—C61.380 (2)
O2—C81.325 (2)C5—H50.9300
O2—C91.462 (2)C6—H60.9300
N1—N21.3215 (19)C7—C81.475 (2)
N1—C11.405 (2)C9—C101.456 (3)
N1—H10.85 (2)C9—H9A0.9700
N2—C71.2788 (19)C9—H9B0.9700
C1—C21.382 (2)C10—H10A0.9600
C1—C61.384 (2)C10—H10B0.9600
C2—C31.386 (2)C10—H10C0.9600
C2—H20.9300C11—H11A0.9600
C3—C41.382 (2)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.380 (2)
C8—O2—C9114.85 (13)N2—C7—Cl1123.01 (13)
N2—N1—C1120.49 (13)C8—C7—Cl1114.63 (11)
N2—N1—H1121.5 (16)O1—C8—O2124.26 (16)
C1—N1—H1117.4 (16)O1—C8—C7123.24 (16)
C7—N2—N1120.52 (14)O2—C8—C7112.49 (13)
C2—C1—C6119.67 (15)C10—C9—O2107.95 (17)
C2—C1—N1122.27 (14)C10—C9—H9A110.1
C6—C1—N1118.05 (14)O2—C9—H9A110.1
C1—C2—C3119.20 (15)C10—C9—H9B110.1
C1—C2—H2120.4O2—C9—H9B110.1
C3—C2—H2120.4H9A—C9—H9B108.4
C4—C3—C2122.08 (16)C9—C10—H10A109.5
C4—C3—H3119.0C9—C10—H10B109.5
C2—C3—H3119.0H10A—C10—H10B109.5
C5—C4—C3117.41 (15)C9—C10—H10C109.5
C5—C4—C11121.23 (17)H10A—C10—H10C109.5
C3—C4—C11121.35 (17)H10B—C10—H10C109.5
C6—C5—C4121.77 (16)C4—C11—H11A109.5
C6—C5—H5119.1C4—C11—H11B109.5
C4—C5—H5119.1H11A—C11—H11B109.5
C5—C6—C1119.83 (15)C4—C11—H11C109.5
C5—C6—H6120.1H11A—C11—H11C109.5
C1—C6—H6120.1H11B—C11—H11C109.5
N2—C7—C8122.34 (14)
C1—N1—N2—C7176.05 (13)C2—C1—C6—C51.3 (2)
N2—N1—C1—C26.0 (2)N1—C1—C6—C5179.88 (15)
N2—N1—C1—C6175.21 (14)N1—N2—C7—C8179.40 (13)
C6—C1—C2—C31.3 (2)N1—N2—C7—Cl11.1 (2)
N1—C1—C2—C3179.99 (15)C9—O2—C8—O13.6 (2)
C1—C2—C3—C40.4 (3)C9—O2—C8—C7175.40 (14)
C2—C3—C4—C52.0 (3)N2—C7—C8—O1176.63 (15)
C2—C3—C4—C11177.38 (17)Cl1—C7—C8—O14.9 (2)
C3—C4—C5—C61.9 (3)N2—C7—C8—O24.4 (2)
C11—C4—C5—C6177.44 (17)Cl1—C7—C8—O2174.06 (11)
C4—C5—C6—C10.3 (3)C8—O2—C9—C10172.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.523.331 (2)145
N1—H1···O1i0.85 (2)2.30 (2)3.1120 (18)161 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13ClN2O2
Mr240.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.6152 (1), 9.9444 (1), 26.3152 (3)
β (°) 90.692 (1)
V3)1207.66 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.71
Crystal size (mm)0.41 × 0.14 × 0.13
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas) CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.692, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9526, 2436, 2224
Rint0.019
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.06
No. of reflections2436
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.523.331 (2)145
N1—H1···O1i0.85 (2)2.30 (2)3.1120 (18)161 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Deanship of Scientific Research at King Abdulaziz University for the support of this research via a Research Group Track Grant (No. 3-102/428).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Zayed, M. E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1964.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Arshad, M. N., Zayed, M. E. M., Alamry, K. A. & Shafiq, M. (2012). Acta Cryst. E68, o3274.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds