organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(2-Bromo­phen­yl)-1-(5-bromo­thio­phen-2-yl)prop-2-en-1-one

aInstitute of Pharmacy, GITAM University, Visakhapatnam-45, Andhrapradesh, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, cKaruna College of Pharmacy, Thirumittacode, Palakad 679 533, Kerala, India, and dCollege of Pharmacy, Andhra University, Visakhapatnam, Andhrapradesh, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 9 November 2012; accepted 21 November 2012; online 28 November 2012)

The asymmetric unit of the title compound, C13H8Br2OS, contains two mol­ecules, in which the dihedral angles between the thio­phene and benzene rings are 10.5 (3) and 33.2 (4)°. There are no significant directional inter­actions in the crystal.

Related literature

For further details of conformational modelling, see: Pascard (1995[Pascard, C. (1995). Acta Cryst. D51, 407-417.]); Thomas et al. (2004[Thomas, A. H., Robert, B. M., Richard, A. F., Hege, S. B., Leah, L. F., Thomas, W. P. & Jay, L. B. (2004). J. Med. Chem. 47, 1750-1759.]). For related structures, see: Liang et al. (2011[Liang, Y.-S., Mu, S., Wang, J.-Y. & Liu, D.-K. (2011). Acta Cryst. E67, o830.]); Alex et al. (1993[Alex, G., Srinivasan, S., Krishnasamy, V., Suresh, R. V., Iyer, R. & Iyer, P. R. (1993). Acta Cryst. C49, 70-72.]); Li & Su (1993[Li, Z. & Su, G. (1993). Acta Cryst. C49, 1075-1077.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Br2OS

  • Mr = 372.07

  • Monoclinic, C c

  • a = 34.524 (8) Å

  • b = 3.9994 (9) Å

  • c = 23.428 (5) Å

  • β = 126.804 (3)°

  • V = 2590.1 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.40 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.228, Tmax = 1.000

  • 13574 measured reflections

  • 5988 independent reflections

  • 4266 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.109

  • S = 0.97

  • 5988 reflections

  • 308 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2846 Friedel pairs

  • Flack parameter: 0.000 (13)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Apart from numerous applications in basic research, crystal structure conformation of small molecules has always been the choice for binding energy calculations in molecular modeling during drug discovery process (Pascard, 1995). The reason is it provides coordinates for the most favorable stereo positions of the atoms in solid state.Use of the low energy conformation obtained in this bound state may provide good rationality in drug design study. As a part of our effort in designing lead compound for human aldose reductase inhibiton we are interested in studying the crystal structure conformation of (2E)-1-(5-bromothiophen-2-yl)-3-[4-(dimethylamino) phenyl]prop-2-en-1-one. In our docking studies the title chalcone has shown good binding affinity with dock score -9.490027 calculated by using GLIDE scoring (Thomas et al., 2004) function from Schrodinger 9.2v molecular modeling suite.

The asymmetric unit of (2E)-1-(5-bromothiophen-2-yl)-3- (2-bromophenyl)prop-2-en-1-one, C13H8Br2OS, contain two molecules (Fig. 1). The five-membered thiophene rings (S3a\C5a\···C8a) & (S3b\C5b\···C8b) are not coplanar with the phenyl rings (C12a\C13a\···C17a) & (C12b\C13b\···C17b) system; the dihedral angle between the two planes are 10.5 (3)° and 33.2 (4)° of A and B molecules respectivelly. Bond distances and bond angles are in good agreement with those observed in related crystal structures (Liang et al., 2011; Alex et al., 1993; Li et al., 1993). The packing of molecules in the crystal structure is depicted in Fig. 2.

Related literature top

For further details of conformational modelling, see: Pascard (1995); Thomas et al. (2004). For related structures, see: Liang et al. (2011); Alex et al. (1993); Li et al. (1993).

Experimental top

A mixture of 2-acetyl-5-bromothiophene (0.01 mole) and 2-bromobenzaldehyde (0.01 mole) were stirred in ethanol (30 ml) and then an aqueous solution of potassium hydroxide (40%, 15 ml)was added to it. The mixture was kept over night at room temperature and then it was poured into crushed ice and acidified with dilute hydrochloric acid. The precipiteted chalcone was filtered and crystallized from ethanol as colourless prisms.

Refinement top

All H atoms were positioned at calculated positions C—H = 0.93 Å for aromatic H and refined using a riding model with Uiso(H) = 1.2Ueq(C)for aromatic H. Attempts to model non-merohedral twinning resulted in no improvement.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules.
(2E)-3-(2-Bromophenyl)-1-(5-bromothiophen-2-yl)prop-2-en-1-one top
Crystal data top
C13H8Br2OSF(000) = 1440
Mr = 372.07Dx = 1.908 Mg m3
Monoclinic, CcMelting point: 403 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 34.524 (8) ÅCell parameters from 5988 reflections
b = 3.9994 (9) Åθ = 1.8–28.0°
c = 23.428 (5) ŵ = 6.40 mm1
β = 126.804 (3)°T = 293 K
V = 2590.1 (10) Å3Prism, colourless
Z = 80.22 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
5988 independent reflections
Radiation source: Mova (Mo) X-ray Source4266 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 16.0839 pixels mm-1θmax = 28.0°, θmin = 1.8°
ω scansh = 4444
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 55
Tmin = 0.228, Tmax = 1.000l = 3030
13574 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0425P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
5988 reflectionsΔρmax = 0.58 e Å3
308 parametersΔρmin = 0.44 e Å3
2 restraintsAbsolute structure: Flack (1983), 2846 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (13)
Crystal data top
C13H8Br2OSV = 2590.1 (10) Å3
Mr = 372.07Z = 8
Monoclinic, CcMo Kα radiation
a = 34.524 (8) ŵ = 6.40 mm1
b = 3.9994 (9) ÅT = 293 K
c = 23.428 (5) Å0.22 × 0.15 × 0.12 mm
β = 126.804 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
5988 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4266 reflections with I > 2σ(I)
Tmin = 0.228, Tmax = 1.000Rint = 0.051
13574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.58 e Å3
S = 0.97Δρmin = 0.44 e Å3
5988 reflectionsAbsolute structure: Flack (1983), 2846 Friedel pairs
308 parametersAbsolute structure parameter: 0.000 (13)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.49316 (2)0.58296 (18)0.54216 (3)0.05287 (19)
Br2A0.83387 (2)0.64813 (18)0.74346 (3)0.0554 (2)
S3A0.58670 (6)0.2854 (4)0.57198 (9)0.0491 (4)
O4A0.6766 (2)0.0276 (16)0.6126 (3)0.0756 (17)
C5A0.5553 (2)0.3956 (14)0.6035 (4)0.0416 (14)
C6A0.5789 (2)0.3287 (16)0.6733 (3)0.0468 (16)
H6A0.56640.37090.69830.056*
C7A0.6247 (3)0.1873 (16)0.7037 (4)0.0498 (17)
H7A0.64630.12950.75160.060*
C8A0.6338 (2)0.1449 (14)0.6553 (3)0.0391 (14)
C9A0.6763 (3)0.0017 (17)0.6631 (4)0.0466 (15)
C10A0.7161 (3)0.1089 (17)0.7347 (4)0.0531 (18)
H10A0.71430.07090.77220.064*
C11A0.7544 (2)0.2607 (15)0.7476 (4)0.0445 (15)
H11A0.75370.30560.70810.053*
C12A0.7978 (2)0.3670 (14)0.8162 (4)0.0404 (14)
C13A0.8033 (3)0.3032 (18)0.8802 (4)0.0549 (18)
H13A0.77850.19640.87790.066*
C14A0.8448 (3)0.3956 (19)0.9463 (4)0.0544 (18)
H14A0.84720.35290.98730.065*
C15A0.8820 (3)0.5488 (17)0.9512 (4)0.0535 (17)
H15A0.90970.60880.99570.064*
C16A0.8787 (3)0.6158 (15)0.8903 (4)0.0495 (16)
H16A0.90430.71550.89340.059*
C17A0.8364 (2)0.5300 (14)0.8248 (3)0.0405 (14)
Br1B0.84144 (3)1.0016 (2)1.09708 (4)0.0628 (2)
Br2B0.47871 (3)0.1788 (2)0.68156 (4)0.0673 (2)
S3B0.75065 (6)0.6749 (4)0.96145 (9)0.0487 (4)
O4B0.6618 (2)0.3491 (14)0.8424 (3)0.0657 (14)
C5B0.7785 (2)0.8334 (15)1.0463 (3)0.0461 (16)
C6B0.7510 (3)0.8115 (17)1.0687 (4)0.0541 (17)
H6B0.76010.88871.11260.065*
C7B0.7066 (2)0.6571 (17)1.0175 (3)0.0492 (16)
H7B0.68320.61891.02480.059*
C8B0.7003 (2)0.5683 (15)0.9569 (3)0.0418 (15)
C9B0.6608 (3)0.4037 (18)0.8926 (4)0.0468 (14)
C10B0.6193 (2)0.2910 (17)0.8921 (3)0.0478 (16)
H10B0.62170.31470.93360.057*
C11B0.5802 (3)0.1621 (17)0.8367 (4)0.0484 (16)
H11B0.57890.14390.79590.058*
C12B0.5375 (2)0.0406 (16)0.8307 (3)0.0421 (15)
C13B0.5440 (3)0.0730 (18)0.8926 (4)0.0573 (18)
H13B0.57480.07150.93570.069*
C14B0.5053 (3)0.187 (2)0.8903 (4)0.066 (2)
H14B0.51020.25680.93200.080*
C15B0.4599 (3)0.198 (2)0.8271 (5)0.064 (2)
H15B0.43390.27480.82580.077*
C16B0.4530 (3)0.0956 (18)0.7660 (4)0.0573 (19)
H16B0.42230.10650.72270.069*
C17B0.4913 (3)0.0237 (16)0.7683 (4)0.0484 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0393 (4)0.0547 (3)0.0606 (5)0.0062 (3)0.0277 (4)0.0033 (4)
Br2A0.0560 (5)0.0566 (4)0.0650 (5)0.0045 (3)0.0424 (4)0.0061 (4)
S3A0.0474 (10)0.0591 (10)0.0469 (9)0.0091 (8)0.0315 (9)0.0035 (8)
O4A0.060 (4)0.114 (5)0.066 (4)0.028 (3)0.045 (3)0.009 (3)
C5A0.035 (3)0.034 (3)0.055 (4)0.004 (3)0.026 (3)0.005 (3)
C6A0.047 (4)0.057 (4)0.043 (4)0.009 (3)0.031 (3)0.004 (3)
C7A0.049 (4)0.052 (4)0.048 (4)0.010 (3)0.029 (4)0.004 (3)
C8A0.042 (4)0.034 (3)0.048 (4)0.003 (3)0.030 (3)0.002 (3)
C9A0.046 (4)0.052 (4)0.051 (4)0.002 (3)0.034 (4)0.000 (3)
C10A0.054 (5)0.053 (4)0.069 (5)0.006 (3)0.045 (4)0.003 (4)
C11A0.037 (4)0.049 (3)0.054 (4)0.001 (3)0.030 (3)0.004 (3)
C12A0.035 (3)0.037 (3)0.051 (4)0.000 (3)0.027 (3)0.004 (3)
C13A0.054 (5)0.058 (4)0.074 (5)0.004 (4)0.050 (4)0.000 (4)
C14A0.053 (5)0.062 (4)0.045 (4)0.007 (4)0.028 (4)0.003 (3)
C15A0.046 (4)0.055 (4)0.056 (4)0.001 (3)0.029 (4)0.000 (3)
C16A0.040 (4)0.044 (4)0.061 (4)0.000 (3)0.028 (4)0.001 (3)
C17A0.048 (4)0.031 (3)0.050 (4)0.002 (3)0.033 (4)0.000 (3)
Br1B0.0518 (5)0.0594 (4)0.0590 (5)0.0080 (4)0.0235 (4)0.0050 (4)
Br2B0.0649 (6)0.0759 (5)0.0509 (4)0.0063 (4)0.0293 (4)0.0050 (4)
S3B0.0485 (10)0.0561 (10)0.0487 (9)0.0001 (8)0.0330 (9)0.0004 (8)
O4B0.064 (4)0.090 (4)0.050 (3)0.016 (3)0.037 (3)0.014 (3)
C5B0.049 (4)0.034 (3)0.048 (4)0.005 (3)0.025 (4)0.004 (3)
C6B0.057 (5)0.058 (4)0.049 (4)0.004 (4)0.033 (4)0.008 (3)
C7B0.042 (4)0.064 (4)0.048 (4)0.003 (3)0.030 (4)0.002 (3)
C8B0.050 (4)0.039 (3)0.043 (4)0.003 (3)0.032 (3)0.003 (3)
C9B0.045 (4)0.049 (3)0.042 (3)0.001 (3)0.024 (3)0.000 (3)
C10B0.040 (4)0.060 (4)0.037 (3)0.000 (3)0.019 (3)0.005 (3)
C11B0.050 (4)0.056 (4)0.045 (4)0.002 (3)0.032 (4)0.000 (3)
C12B0.035 (4)0.044 (4)0.040 (3)0.001 (3)0.019 (3)0.006 (3)
C13B0.058 (5)0.061 (4)0.062 (5)0.010 (4)0.041 (4)0.003 (4)
C14B0.072 (6)0.077 (6)0.056 (5)0.008 (5)0.042 (5)0.009 (4)
C15B0.059 (5)0.068 (5)0.076 (6)0.003 (4)0.046 (5)0.004 (4)
C16B0.046 (5)0.061 (5)0.056 (4)0.008 (3)0.026 (4)0.011 (4)
C17B0.059 (5)0.043 (4)0.055 (4)0.005 (3)0.040 (4)0.007 (3)
Geometric parameters (Å, º) top
Br1A—C5A1.880 (6)Br1B—C5B1.870 (7)
Br2A—C17A1.913 (6)Br2B—C17B1.909 (7)
S3A—C5A1.694 (6)S3B—C5B1.729 (7)
S3A—C8A1.723 (7)S3B—C8B1.731 (7)
O4A—C9A1.197 (8)O4B—C9B1.217 (9)
C5A—C6A1.346 (9)C5B—C6B1.333 (10)
C6A—C7A1.407 (9)C6B—C7B1.403 (10)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.354 (9)C7B—C8B1.350 (9)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C9A1.481 (9)C8B—C9B1.449 (10)
C9A—C10A1.461 (10)C9B—C10B1.496 (11)
C10A—C11A1.316 (9)C10B—C11B1.293 (9)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.458 (9)C11B—C12B1.478 (10)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C17A1.385 (9)C12B—C17B1.376 (9)
C12A—C13A1.416 (10)C12B—C13B1.402 (10)
C13A—C14A1.388 (11)C13B—C14B1.382 (11)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.364 (10)C14B—C15B1.368 (11)
C14A—H14A0.9300C14B—H14B0.9300
C15A—C16A1.388 (10)C15B—C16B1.367 (10)
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.387 (9)C16B—C17B1.376 (10)
C16A—H16A0.9300C16B—H16B0.9300
C5A—S3A—C8A90.4 (3)C5B—S3B—C8B90.4 (3)
C6A—C5A—S3A113.4 (5)C6B—C5B—S3B113.1 (5)
C6A—C5A—Br1A126.2 (5)C6B—C5B—Br1B127.1 (5)
S3A—C5A—Br1A120.4 (4)S3B—C5B—Br1B119.8 (4)
C5A—C6A—C7A112.0 (6)C5B—C6B—C7B111.4 (6)
C5A—C6A—H6A124.0C5B—C6B—H6B124.3
C7A—C6A—H6A124.0C7B—C6B—H6B124.3
C8A—C7A—C6A112.2 (6)C8B—C7B—C6B114.8 (6)
C8A—C7A—H7A123.9C8B—C7B—H7B122.6
C6A—C7A—H7A123.9C6B—C7B—H7B122.6
C7A—C8A—C9A130.8 (6)C7B—C8B—C9B132.2 (7)
C7A—C8A—S3A112.0 (5)C7B—C8B—S3B110.4 (5)
C9A—C8A—S3A117.3 (5)C9B—C8B—S3B117.4 (5)
O4A—C9A—C10A123.1 (7)O4B—C9B—C8B122.2 (7)
O4A—C9A—C8A120.8 (7)O4B—C9B—C10B121.4 (7)
C10A—C9A—C8A116.1 (6)C8B—C9B—C10B116.4 (6)
C11A—C10A—C9A121.9 (7)C11B—C10B—C9B123.1 (6)
C11A—C10A—H10A119.0C11B—C10B—H10B118.5
C9A—C10A—H10A119.0C9B—C10B—H10B118.5
C10A—C11A—C12A128.0 (7)C10B—C11B—C12B127.4 (6)
C10A—C11A—H11A116.0C10B—C11B—H11B116.3
C12A—C11A—H11A116.0C12B—C11B—H11B116.3
C17A—C12A—C13A115.1 (6)C17B—C12B—C13B116.6 (6)
C17A—C12A—C11A124.1 (6)C17B—C12B—C11B124.9 (6)
C13A—C12A—C11A120.8 (6)C13B—C12B—C11B118.4 (6)
C14A—C13A—C12A121.8 (7)C14B—C13B—C12B120.9 (7)
C14A—C13A—H13A119.1C14B—C13B—H13B119.5
C12A—C13A—H13A119.1C12B—C13B—H13B119.5
C15A—C14A—C13A120.3 (7)C15B—C14B—C13B120.6 (7)
C15A—C14A—H14A119.9C15B—C14B—H14B119.7
C13A—C14A—H14A119.9C13B—C14B—H14B119.7
C14A—C15A—C16A120.5 (7)C16B—C15B—C14B119.4 (7)
C14A—C15A—H15A119.8C16B—C15B—H15B120.3
C16A—C15A—H15A119.8C14B—C15B—H15B120.3
C17A—C16A—C15A118.2 (7)C15B—C16B—C17B120.2 (7)
C17A—C16A—H16A120.9C15B—C16B—H16B119.9
C15A—C16A—H16A120.9C17B—C16B—H16B119.9
C12A—C17A—C16A124.1 (6)C12B—C17B—C16B122.3 (6)
C12A—C17A—Br2A120.4 (5)C12B—C17B—Br2B119.7 (5)
C16A—C17A—Br2A115.5 (5)C16B—C17B—Br2B118.0 (6)
C8A—S3A—C5A—C6A0.3 (5)C8B—S3B—C5B—C6B1.0 (5)
C8A—S3A—C5A—Br1A179.1 (4)C8B—S3B—C5B—Br1B177.5 (4)
S3A—C5A—C6A—C7A1.0 (8)S3B—C5B—C6B—C7B1.3 (8)
Br1A—C5A—C6A—C7A179.7 (5)Br1B—C5B—C6B—C7B177.1 (5)
C5A—C6A—C7A—C8A1.4 (9)C5B—C6B—C7B—C8B1.0 (9)
C6A—C7A—C8A—C9A178.8 (6)C6B—C7B—C8B—C9B179.3 (7)
C6A—C7A—C8A—S3A1.2 (8)C6B—C7B—C8B—S3B0.2 (8)
C5A—S3A—C8A—C7A0.5 (5)C5B—S3B—C8B—C7B0.4 (5)
C5A—S3A—C8A—C9A179.4 (5)C5B—S3B—C8B—C9B178.8 (5)
C7A—C8A—C9A—O4A176.7 (8)C7B—C8B—C9B—O4B178.9 (8)
S3A—C8A—C9A—O4A3.2 (9)S3B—C8B—C9B—O4B2.1 (10)
C7A—C8A—C9A—C10A1.3 (11)C7B—C8B—C9B—C10B3.5 (11)
S3A—C8A—C9A—C10A178.7 (5)S3B—C8B—C9B—C10B175.5 (5)
O4A—C9A—C10A—C11A2.6 (11)O4B—C9B—C10B—C11B7.4 (12)
C8A—C9A—C10A—C11A175.4 (6)C8B—C9B—C10B—C11B175.0 (7)
C9A—C10A—C11A—C12A176.2 (6)C9B—C10B—C11B—C12B179.4 (7)
C10A—C11A—C12A—C17A179.1 (7)C10B—C11B—C12B—C17B154.3 (7)
C10A—C11A—C12A—C13A1.7 (10)C10B—C11B—C12B—C13B27.0 (11)
C17A—C12A—C13A—C14A0.6 (10)C17B—C12B—C13B—C14B1.6 (10)
C11A—C12A—C13A—C14A178.6 (6)C11B—C12B—C13B—C14B179.5 (7)
C12A—C13A—C14A—C15A0.8 (11)C12B—C13B—C14B—C15B1.4 (12)
C13A—C14A—C15A—C16A0.4 (11)C13B—C14B—C15B—C16B0.1 (13)
C14A—C15A—C16A—C17A1.5 (10)C14B—C15B—C16B—C17B1.3 (12)
C13A—C12A—C17A—C16A2.6 (9)C13B—C12B—C17B—C16B0.5 (10)
C11A—C12A—C17A—C16A176.5 (6)C11B—C12B—C17B—C16B179.2 (7)
C13A—C12A—C17A—Br2A178.0 (5)C13B—C12B—C17B—Br2B179.1 (5)
C11A—C12A—C17A—Br2A2.9 (8)C11B—C12B—C17B—Br2B2.2 (9)
C15A—C16A—C17A—C12A3.1 (9)C15B—C16B—C17B—C12B1.0 (11)
C15A—C16A—C17A—Br2A177.4 (5)C15B—C16B—C17B—Br2B177.6 (6)

Experimental details

Crystal data
Chemical formulaC13H8Br2OS
Mr372.07
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)34.524 (8), 3.9994 (9), 23.428 (5)
β (°) 126.804 (3)
V3)2590.1 (10)
Z8
Radiation typeMo Kα
µ (mm1)6.40
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.228, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13574, 5988, 4266
Rint0.051
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.109, 0.97
No. of reflections5988
No. of parameters308
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.44
Absolute structureFlack (1983), 2846 Friedel pairs
Absolute structure parameter0.000 (13)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank Professor T. N. Guru Row, SSCU, IISc, Bangalore, for the data collection. SBV thanks the Acharya Nagarjuna University, Guntur, Andhrapradesh, India, for the support of a part-time PhD in Pharmacy.

References

First citationAlex, G., Srinivasan, S., Krishnasamy, V., Suresh, R. V., Iyer, R. & Iyer, P. R. (1993). Acta Cryst. C49, 70–72.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Z. & Su, G. (1993). Acta Cryst. C49, 1075–1077.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiang, Y.-S., Mu, S., Wang, J.-Y. & Liu, D.-K. (2011). Acta Cryst. E67, o830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPascard, C. (1995). Acta Cryst. D51, 407–417.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, A. H., Robert, B. M., Richard, A. F., Hege, S. B., Leah, L. F., Thomas, W. P. & Jay, L. B. (2004). J. Med. Chem. 47, 1750–1759.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds