organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Glabridin

aDepartment of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University and Nanotec-PSU Center of Excellence for Drug Delivery Systems, Hat-Yai, Songkhla 90112, Thailand, and bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: vimon.t@psu.ac.th

(Received 11 November 2012; accepted 27 November 2012; online 30 November 2012)

In the title compound, C20H20O4 {systematic name: 4-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[2,3-f]chromen-3-yl]benz­ene-1,3-diol}, the hydro­pyran ring linked to the pendant benzene ring adopts an envelope conformation, with the methyne C atom forming the flap. In the crystal, the –OH group at the 3-position of the benzene ring forms an O—H⋯O hydrogen bond to a chromene O-atom acceptor, whereas the –OH group at the 1-position forms an O—H⋯π inter­action with a neighboring benzene ring. The O—H⋯O hydrogen bonds form [001] chains and the O—H⋯π bonds cross-link the chains into (101) sheets. The absolute structure was assumed to be the same as that deduced from previous studies for the natural product.

Related literature

For background to the pharmacological activity of the title compound, see: Fukai et al. (2000[Fukai, T., Sakagami, H., Toguchi, M., Takayama, F., Iwakura, I., Atsumi, T., Ueha, T., Nakashima, H. & Nomura, T. (2000). Anticancer Res. 20, 2525-2536.]); Messier & Grenier; (2011[Messier, C. & Grenier, D. (2011). Mycoses, 54, 801-806.]); Thiyagarajan et al. (2011[Thiyagarajan, P., Chandrasekaran, C. V., Deepak, H. B. & Agarwal, A. (2011). Inflammopharmacology, 19, 235-241.]); Ahn et al. (2012[Ahn, J., Lee, H., Jang, J., Kim, S. & Ha, T. (2012). Food Chem Toxicol. 51, 439-445.]); Choi (2005[Choi, E. M. (2005). Biochem. Pharmacol. 70, 363-368.]). For the assignment of the absolute structure, see: Kim et al. (2009[Kim, M., Kim, S.-N., Kim, Y.-U. & Han, J. (2009). Bull. Kor. Chem. Soc. 30, 415-418.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20O4

  • Mr = 324.36

  • Orthorhombic, P 21 21 21

  • a = 6.4301 (4) Å

  • b = 12.0307 (7) Å

  • c = 21.0690 (13) Å

  • V = 1629.87 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.14 × 0.07 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.994

  • 15459 measured reflections

  • 2866 independent reflections

  • 2551 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.095

  • S = 1.16

  • 2866 reflections

  • 225 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.82 (2) 2.02 (2) 2.841 (3) 177 (3)
O3—H3ACg4ii 0.80 (2) 2.51 (2) 3.213 (2) 148 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{5\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

4-[(3R)-8,8-Dimethyl-3,4-dihydro-2H-pyrano[2,3-f]chromen-3-yl]benzene-1,3-diol (Glabridin) is a pyranoisoflavan isolated from licorice. It has various pharmacological activities such as cytotoxic activity (Fukai et al., 2000), antimicrobial activity (Messier & Grenier, 2011), anti-inflammation (Thiyagarajan et al., 2011), anti-obesity effect (Ahn et al., 2012) and prevention for osteoporosis and inflammatory bone diseases (Choi, 2005). For the assignment of its absolute structure, see: Kim et al. (2009).

The molecular structure of the title compound is shown in Fig. 1. The packing features O—H···O intermolecular hydrogen bonding between hydroxyl group at 3 position of benzene ring with the donor-acceptor distance of 2.841 (3) Å. (O4—H4A···O1i; i: -x + 3/2, -y + 2, z - 1/2) forming a zigzag chains running parallel to the [001] direction. Besides, the O—H···π interactions with O···centroid distances of 3.213 (2) Å are observed between hydroxyl group at the 1 position of benzene ring and the nearby benzene ring of adjacent molecule, O3—H3A···Cg4ii (Cg4 is the centroid of C13—C14—C15—C16—C17—C18 and the symmetry code ii is -x, y + 5/2, -z + 1/2), linking among the zigzag chains generating two-dimensional layer parallel to (101) plane. The crystal packing of interaction is depicted in Fig. 2.

Related literature top

For background to the pharmacological activity of the title compound, see: Fukai et al. (2000); Messier & Grenier; (2011); Thiyagarajan et al. (2011); Ahn et al. (2012); Choi (2005). For the assignment of the absolute structure, see: Kim et al. (2009).

Experimental top

The title compound was obtained from Nanjing Zelang Medical Technology Co. Ltd. Colourless blocks were obtained by dissolving the compound in methanol followed by a slow evaporation of the solvent.

Refinement top

Amonalous dispersion was found to be negligible and the absolute structure is indeterminate. Friedel pairs were merged before the final refinement. H atoms on carbon atoms were positioned geometrically and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C-sp2) with C—H = 0.93 Å and 1.5Ueq(C-sp3) with the distances ranging from 0.96 to 0.98 Å, respectively. The H atoms on the oxygen atoms were located in a difference Fourier map and restrained with Uiso(H) = 1.2Ueq(OH). (O—H = 0.80 (2) and 0.82 (2) Å).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.
[Figure 2] Fig. 2. The packing of the intermolecular interactions of the title compound is plotted down a axis.
4-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[2,3-f]chromen- 3-yl]benzene-1,3-diol top
Crystal data top
C20H20O4F(000) = 688
Mr = 324.36Dx = 1.322 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2104 reflections
a = 6.4301 (4) Åθ = 3.3–21.0°
b = 12.0307 (7) ŵ = 0.09 mm1
c = 21.0690 (13) ÅT = 293 K
V = 1629.87 (17) Å3Block, colourless
Z = 40.22 × 0.14 × 0.07 mm
Data collection top
Bruker APEX CCD
diffractometer
2866 independent reflections
Radiation source: fine-focus sealed tube2551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Frames, each covering 0.3 ° in ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 77
Tmin = 0.984, Tmax = 0.994k = 1414
15459 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.2296P]
where P = (Fo2 + 2Fc2)/3
2866 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.15 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C20H20O4V = 1629.87 (17) Å3
Mr = 324.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4301 (4) ŵ = 0.09 mm1
b = 12.0307 (7) ÅT = 293 K
c = 21.0690 (13) Å0.22 × 0.14 × 0.07 mm
Data collection top
Bruker APEX CCD
diffractometer
2866 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2551 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.994Rint = 0.045
15459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.15 e Å3
2866 reflectionsΔρmin = 0.17 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7767 (3)0.66156 (13)0.23880 (7)0.0443 (4)
O21.0695 (3)0.80853 (13)0.05050 (7)0.0477 (5)
C10.9085 (4)0.56254 (19)0.23598 (11)0.0417 (6)
C21.1009 (4)0.5878 (2)0.19907 (11)0.0458 (6)
H21.22210.54860.20800.055*
C31.1042 (4)0.6644 (2)0.15409 (11)0.0424 (6)
H31.22430.67540.13030.051*
C40.9211 (4)0.73112 (18)0.14167 (10)0.0326 (5)
C50.7586 (4)0.72632 (18)0.18500 (10)0.0370 (6)
C60.5850 (4)0.7914 (2)0.17877 (12)0.0479 (6)
H60.47830.78760.20850.057*
C70.5712 (4)0.8631 (2)0.12745 (12)0.0466 (6)
H70.45300.90700.12300.056*
C80.7277 (4)0.87146 (18)0.08254 (11)0.0366 (5)
C90.9013 (4)0.80460 (18)0.09051 (10)0.0340 (5)
C101.0643 (4)0.88701 (19)0.00121 (10)0.0431 (6)
H10A1.00190.85170.03800.052*
H10B1.20550.90760.01230.052*
C110.9426 (4)0.99118 (18)0.01485 (10)0.0357 (5)
H111.00171.02170.05400.043*
C120.7201 (4)0.95505 (19)0.02970 (12)0.0435 (6)
H12A0.63761.01880.04240.052*
H12B0.65670.92230.00760.052*
C130.9633 (4)1.07917 (18)0.03561 (10)0.0353 (5)
C141.1391 (4)1.14759 (18)0.03656 (10)0.0364 (6)
C151.1636 (4)1.23098 (19)0.08114 (11)0.0378 (5)
H151.28111.27600.08020.045*
C161.0135 (4)1.24727 (18)0.12703 (10)0.0372 (6)
C170.8386 (4)1.1812 (2)0.12775 (11)0.0449 (6)
H170.73661.19180.15850.054*
C180.8159 (4)1.09882 (19)0.08240 (11)0.0425 (6)
H180.69701.05490.08330.051*
C190.9574 (5)0.5352 (3)0.30460 (12)0.0639 (8)
H19A1.03680.59460.32300.096*
H19B1.03630.46750.30650.096*
H19C0.83000.52610.32780.096*
C200.7812 (6)0.4713 (2)0.20419 (15)0.0721 (9)
H20A0.65550.45930.22780.108*
H20B0.86080.40380.20310.108*
H20C0.74720.49340.16170.108*
O31.2858 (3)1.12753 (14)0.00917 (9)0.0536 (5)
H3A1.362 (4)1.1797 (18)0.0133 (14)0.064*
O41.0477 (3)1.33015 (16)0.16975 (8)0.0551 (5)
H4A0.957 (4)1.334 (2)0.1969 (11)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0529 (11)0.0443 (9)0.0356 (9)0.0025 (8)0.0083 (8)0.0037 (8)
O20.0485 (11)0.0493 (10)0.0452 (9)0.0166 (9)0.0169 (9)0.0160 (8)
C10.0460 (15)0.0360 (13)0.0431 (13)0.0006 (11)0.0002 (13)0.0026 (11)
C20.0429 (16)0.0503 (15)0.0443 (14)0.0106 (13)0.0013 (12)0.0064 (12)
C30.0391 (14)0.0493 (14)0.0389 (13)0.0042 (12)0.0071 (12)0.0038 (12)
C40.0349 (12)0.0318 (11)0.0312 (11)0.0027 (10)0.0009 (11)0.0031 (10)
C50.0418 (14)0.0341 (12)0.0351 (12)0.0048 (11)0.0001 (11)0.0035 (10)
C60.0435 (15)0.0524 (15)0.0479 (14)0.0039 (13)0.0142 (13)0.0032 (12)
C70.0337 (14)0.0463 (14)0.0598 (15)0.0073 (12)0.0054 (13)0.0070 (13)
C80.0328 (13)0.0336 (12)0.0433 (13)0.0014 (11)0.0025 (12)0.0027 (11)
C90.0347 (13)0.0339 (11)0.0335 (12)0.0036 (10)0.0048 (11)0.0061 (10)
C100.0521 (15)0.0446 (13)0.0326 (12)0.0064 (12)0.0058 (12)0.0053 (11)
C110.0381 (13)0.0372 (12)0.0319 (12)0.0005 (11)0.0050 (11)0.0018 (10)
C120.0403 (15)0.0419 (13)0.0482 (14)0.0067 (12)0.0014 (12)0.0038 (12)
C130.0405 (14)0.0350 (12)0.0304 (12)0.0018 (11)0.0035 (11)0.0038 (10)
C140.0383 (14)0.0353 (12)0.0355 (12)0.0014 (11)0.0093 (11)0.0044 (11)
C150.0370 (14)0.0352 (12)0.0413 (12)0.0063 (11)0.0006 (11)0.0031 (11)
C160.0463 (15)0.0352 (12)0.0302 (12)0.0006 (12)0.0021 (11)0.0016 (10)
C170.0506 (16)0.0469 (14)0.0372 (13)0.0027 (13)0.0152 (12)0.0017 (12)
C180.0447 (15)0.0426 (13)0.0402 (13)0.0106 (12)0.0083 (13)0.0005 (12)
C190.067 (2)0.076 (2)0.0484 (16)0.0029 (18)0.0022 (16)0.0185 (15)
C200.086 (2)0.0478 (16)0.082 (2)0.0106 (18)0.008 (2)0.0059 (16)
O30.0471 (11)0.0522 (11)0.0616 (11)0.0086 (9)0.0261 (10)0.0097 (10)
O40.0654 (13)0.0539 (11)0.0462 (10)0.0134 (11)0.0119 (9)0.0168 (9)
Geometric parameters (Å, º) top
O1—C51.380 (3)C11—C121.528 (3)
O1—C11.463 (3)C11—H110.9800
O2—C91.372 (3)C12—H12A0.9700
O2—C101.442 (2)C12—H12B0.9700
C1—C21.493 (4)C13—C181.388 (3)
C1—C191.516 (3)C13—C141.398 (3)
C1—C201.524 (4)C14—O31.369 (3)
C2—C31.321 (3)C14—C151.383 (3)
C2—H20.9300C15—C161.380 (3)
C3—C41.449 (3)C15—H150.9300
C3—H30.9300C16—O41.361 (3)
C4—C51.389 (3)C16—C171.377 (3)
C4—C91.400 (3)C17—C181.384 (3)
C5—C61.370 (3)C17—H170.9300
C6—C71.386 (3)C18—H180.9300
C6—H60.9300C19—H19A0.9600
C7—C81.385 (3)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C8—C91.386 (3)C20—H20A0.9600
C8—C121.501 (3)C20—H20B0.9600
C10—C111.516 (3)C20—H20C0.9600
C10—H10A0.9700O3—H3A0.802 (17)
C10—H10B0.9700O4—H4A0.820 (17)
C11—C131.506 (3)
C5—O1—C1118.37 (17)C13—C11—H11107.3
C9—O2—C10117.92 (18)C10—C11—H11107.3
O1—C1—C2109.58 (18)C12—C11—H11107.3
O1—C1—C19105.0 (2)C8—C12—C11108.17 (19)
C2—C1—C19111.7 (2)C8—C12—H12A110.1
O1—C1—C20107.1 (2)C11—C12—H12A110.1
C2—C1—C20111.3 (2)C8—C12—H12B110.1
C19—C1—C20112.0 (2)C11—C12—H12B110.1
C3—C2—C1121.9 (2)H12A—C12—H12B108.4
C3—C2—H2119.0C18—C13—C14116.2 (2)
C1—C2—H2119.0C18—C13—C11124.1 (2)
C2—C3—C4120.2 (2)C14—C13—C11119.7 (2)
C2—C3—H3119.9O3—C14—C15121.8 (2)
C4—C3—H3119.9O3—C14—C13116.3 (2)
C5—C4—C9117.7 (2)C15—C14—C13121.9 (2)
C5—C4—C3118.02 (19)C16—C15—C14119.9 (2)
C9—C4—C3124.2 (2)C16—C15—H15120.0
C6—C5—O1118.1 (2)C14—C15—H15120.0
C6—C5—C4121.8 (2)O4—C16—C17123.2 (2)
O1—C5—C4120.0 (2)O4—C16—C15117.0 (2)
C5—C6—C7118.9 (2)C17—C16—C15119.8 (2)
C5—C6—H6120.6C16—C17—C18119.5 (2)
C7—C6—H6120.6C16—C17—H17120.3
C8—C7—C6122.1 (2)C18—C17—H17120.3
C8—C7—H7118.9C17—C18—C13122.7 (2)
C6—C7—H7118.9C17—C18—H18118.7
C7—C8—C9117.4 (2)C13—C18—H18118.7
C7—C8—C12122.1 (2)C1—C19—H19A109.5
C9—C8—C12120.3 (2)C1—C19—H19B109.5
O2—C9—C8122.7 (2)H19A—C19—H19B109.5
O2—C9—C4115.1 (2)C1—C19—H19C109.5
C8—C9—C4122.2 (2)H19A—C19—H19C109.5
O2—C10—C11112.64 (17)H19B—C19—H19C109.5
O2—C10—H10A109.1C1—C20—H20A109.5
C11—C10—H10A109.1C1—C20—H20B109.5
O2—C10—H10B109.1H20A—C20—H20B109.5
C11—C10—H10B109.1C1—C20—H20C109.5
H10A—C10—H10B107.8H20A—C20—H20C109.5
C13—C11—C10112.19 (18)H20B—C20—H20C109.5
C13—C11—C12115.3 (2)C14—O3—H3A111 (2)
C10—C11—C12107.10 (19)C16—O4—H4A113 (2)
C5—O1—C1—C240.3 (3)C3—C4—C9—O21.3 (3)
C5—O1—C1—C19160.4 (2)C5—C4—C9—C80.3 (3)
C5—O1—C1—C2080.5 (3)C3—C4—C9—C8176.3 (2)
O1—C1—C2—C328.0 (3)C9—O2—C10—C1131.4 (3)
C19—C1—C2—C3143.8 (3)O2—C10—C11—C13171.8 (2)
C20—C1—C2—C390.2 (3)O2—C10—C11—C1260.7 (3)
C1—C2—C3—C43.5 (4)C7—C8—C12—C11147.1 (2)
C2—C3—C4—C511.3 (3)C9—C8—C12—C1128.3 (3)
C2—C3—C4—C9172.2 (2)C13—C11—C12—C8177.54 (18)
C1—O1—C5—C6156.1 (2)C10—C11—C12—C856.8 (2)
C1—O1—C5—C429.1 (3)C10—C11—C13—C1899.2 (3)
C9—C4—C5—C60.6 (3)C12—C11—C13—C1823.7 (3)
C3—C4—C5—C6176.2 (2)C10—C11—C13—C1481.4 (3)
C9—C4—C5—O1175.14 (19)C12—C11—C13—C14155.7 (2)
C3—C4—C5—O11.7 (3)C18—C13—C14—O3179.3 (2)
O1—C5—C6—C7175.3 (2)C11—C13—C14—O31.2 (3)
C4—C5—C6—C70.6 (4)C18—C13—C14—C150.7 (3)
C5—C6—C7—C80.4 (4)C11—C13—C14—C15178.7 (2)
C6—C7—C8—C90.2 (4)O3—C14—C15—C16179.0 (2)
C6—C7—C8—C12175.3 (2)C13—C14—C15—C161.1 (3)
C10—O2—C9—C80.9 (3)C14—C15—C16—O4179.5 (2)
C10—O2—C9—C4176.63 (19)C14—C15—C16—C170.8 (3)
C7—C8—C9—O2177.5 (2)O4—C16—C17—C18179.9 (2)
C12—C8—C9—O21.9 (3)C15—C16—C17—C180.2 (3)
C7—C8—C9—C40.2 (3)C16—C17—C18—C130.2 (4)
C12—C8—C9—C4175.5 (2)C14—C13—C18—C170.1 (3)
C5—C4—C9—O2177.88 (19)C11—C13—C18—C17179.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.82 (2)2.02 (2)2.841 (3)177 (3)
O3—H3A···Cg4ii0.80 (2)2.51 (2)3.213 (2)148 (3)
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H20O4
Mr324.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.4301 (4), 12.0307 (7), 21.0690 (13)
V3)1629.87 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.14 × 0.07
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.984, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
15459, 2866, 2551
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.095, 1.16
No. of reflections2866
No. of parameters225
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.82 (2)2.02 (2)2.841 (3)177 (3)
O3—H3A···Cg4ii0.80 (2)2.51 (2)3.213 (2)148 (3)
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x, y+5/2, z+1/2.
 

Acknowledgements

Financial support by the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through Center of Excellence Network program is gratefully acknowledged.

References

First citationAhn, J., Lee, H., Jang, J., Kim, S. & Ha, T. (2012). Food Chem Toxicol. 51, 439–445.  CrossRef PubMed Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, E. M. (2005). Biochem. Pharmacol. 70, 363–368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFukai, T., Sakagami, H., Toguchi, M., Takayama, F., Iwakura, I., Atsumi, T., Ueha, T., Nakashima, H. & Nomura, T. (2000). Anticancer Res. 20, 2525–2536.  Web of Science PubMed CAS Google Scholar
First citationKim, M., Kim, S.-N., Kim, Y.-U. & Han, J. (2009). Bull. Kor. Chem. Soc. 30, 415–418.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMessier, C. & Grenier, D. (2011). Mycoses, 54, 801–806.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiyagarajan, P., Chandrasekaran, C. V., Deepak, H. B. & Agarwal, A. (2011). Inflammopharmacology, 19, 235–241.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds