metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-O)copper(II) propane-1,3-diol monosolvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 12 November 2012; accepted 20 November 2012; online 28 November 2012)

In the title compound, [Cu(SO4)(C12H8N2)2]·C3H8O2, the CuII ion is bonded to two chelating 1,10-phenanthroline (phen) ligands and one O atom from a monodentate sulfate ligand in a distorted square-based pyramidal arrangement, with the O atom in a basal site. The two chelating N2C2 groups subtend a dihedral angle of 71.10 (15)°. In the crystal, the solvent mol­ecule forms two O—H⋯O hydrogen bonds to its adjacent complex mol­ecule. The chosen crystal was found to be a racemic twin; the presence of pseudosymmetry in the structure suggests the higher symmetry space group C2/c, but attempts to refine the structure in this space group resulted in an unsatisfactory model and high R and wR values.

Related literature

For the ethane-1,2-diol solvate of the title complex, see: Zhong (2011a[Zhong, K.-L. (2011a). Acta Cryst. E67, m1215-m1216.]) and for the propane-1,2-diol solvate of the title complex, see: Zhong (2011b[Zhong, K.-L. (2011b). Z. Kristallogr. New Cryst. Struct. 226, 286-288.]). For related structures of five-coordinate copper complexes and background references, see: Murphy & Hathaway (2003[Murphy, B. & Hathaway, B. (2003). Coord. Chem. Rev. 243, 237-262.]); Potočňák et al. (2008[Potočňák, I., Špilovský, M. & Trávníček, Z. (2008). Acta Cryst. C64, m161-m163.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C12H8N2)2]·C3H8O2

  • Mr = 596.10

  • Monoclinic, C c

  • a = 17.523 (4) Å

  • b = 12.562 (3) Å

  • c = 13.438 (3) Å

  • β = 123.44 (3)°

  • V = 2468.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 223 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.750, Tmax = 1.000

  • 6895 measured reflections

  • 4049 independent reflections

  • 3892 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.07

  • 4049 reflections

  • 354 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1224 Friedel pairs

  • Flack parameter: 0.56 (1)

Table 1
Selected bond lengths (Å)

Cu1—O1 1.956 (3)
Cu1—N1 2.001 (3)
Cu1—N3 2.009 (3)
Cu1—N2 2.071 (3)
Cu1—N4 2.175 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O3 0.82 1.99 2.788 (4) 166
O6—H6B⋯O4 0.82 2.01 2.817 (5) 166

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Understanding the shape of coordination polyhedral in the case of five-coordination in the coordination chemistry has been caused much attention in the past few years (Murphy & Hathaway, 2003; Potočňák et al., 2008). The title compound, (I), was unexpectedly obtained via a alcohol-solvothermal reaction and its crystal structure is now described.

The title complex is isostructural to the previously reported [CuSO4(C12H8N2)2].C2H6O2, (II), (Zhong, 2011a) and Cu-Phen complex with propane-1,2-diol monosolvate, (III), (Zhong, 2011b). In the title compound, X-ray diffraction experiment revealed that the CuII metal ion is five-coordinated in a distorted square-pyramidal manner by four N atoms(N1, N2, N3 and N4) from two chelating phen ligands and an O atoms(O1) from a monodentate sulfate ligand, the N1, N2, N3 and N4 atoms comprise a square, and the O1 atom site the apex of a square pyramid surrounding each metal atom. The Cu—O bond distance [1.956 (3) Å], the Cu—N bond distance [2.001 (3) - 2.175 (4) Å], and the N—Cu—N bite angle [80.09 (14) - 81.16 (14)°] are in good agreement with that observed in (II) and (III) (Table 1). The two chelating N2C2 groups are oriented at 71.10 (15)°, this is almost equal to that reported in (II) [71.1 (2)°] and smaller than that found in (III) [84.9 (4)°]. In the crystal, the neutral monomeric complex [CuSO4(C12H8N2)2] and solvent propane-1,3-diol components of (I) are connected by a pair of intermolecular O—H···O hydrogen bonding with the uncoordinated O atoms of the sulfate group(Table 2 & Fig. 1).

Related literature top

For the ethane-1,2-diol solvate of the title complex, see: Zhong (2011a) and for the propane-1,2-diol solvate of the title complex, see: Zhong (2011b). For related structures of five-coordinate copper complexes and background references, see: Murphy & Hathaway (2003); Potočňák et al. (2008).

Experimental top

0.2 mmol phen, 0.1 mmol melamine, 0.1 mmol CuSO4.5H2O, 2.0 ml propane-1,3-diol and 1.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 453 K for 96 h, whereupon blue block-shaped crystals of (I) were obtained.

Refinement top

The presence of pseudo-symmetry in the structure suggests a higher symmetry space group C2/c. But attempts to refine the structure in the space group C2/c resulted in an unsatisfactory model and high R and wR values. Hence the requirement to solve in Cc. The reported Flack parameter was refined as s full least-squares and obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of propane-1,3-diol were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.97 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing displacement ellipsoids drawn at the 35% probability level. Hydrogen bonds O—H···O are shown as dashed lines.
Bis(1,10-phenanthroline-κ2N,N')(sulfato-O)copper(II) propane-1,3-diol monosolvate top
Crystal data top
[Cu(SO4)(C12H8N2)2]·C3H8O2F(000) = 1228
Mr = 596.10Dx = 1.604 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6081 reflections
a = 17.523 (4) Åθ = 3.1–27.5°
b = 12.562 (3) ŵ = 1.02 mm1
c = 13.438 (3) ÅT = 223 K
β = 123.44 (3)°Block, blue
V = 2468.4 (13) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
4049 independent reflections
Radiation source: fine-focus sealed tube3892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scanh = 2220
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1515
Tmin = 0.750, Tmax = 1.000l = 1715
6895 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.9364P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.002
S = 1.07Δρmax = 0.70 e Å3
4049 reflectionsΔρmin = 0.82 e Å3
354 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0074 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1224 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.56 (1)
Crystal data top
[Cu(SO4)(C12H8N2)2]·C3H8O2V = 2468.4 (13) Å3
Mr = 596.10Z = 4
Monoclinic, CcMo Kα radiation
a = 17.523 (4) ŵ = 1.02 mm1
b = 12.562 (3) ÅT = 223 K
c = 13.438 (3) Å0.30 × 0.20 × 0.20 mm
β = 123.44 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
4049 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3892 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 1.000Rint = 0.017
6895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.70 e Å3
S = 1.07Δρmin = 0.82 e Å3
4049 reflectionsAbsolute structure: Flack (1983), 1224 Friedel pairs
354 parametersAbsolute structure parameter: 0.56 (1)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27326 (3)0.20114 (3)0.12409 (3)0.01905 (12)
S10.26222 (7)0.04682 (6)0.13203 (9)0.0231 (2)
O10.24083 (19)0.0554 (2)0.0634 (2)0.0302 (6)
O20.27343 (19)0.0240 (2)0.2470 (2)0.0320 (6)
O30.1834 (2)0.1175 (2)0.0615 (3)0.0289 (6)
O40.3462 (2)0.0955 (3)0.1531 (3)0.0384 (8)
O50.2035 (3)0.3097 (2)0.1774 (3)0.0356 (8)
H5B0.19930.24830.15430.053*
O60.3321 (3)0.2976 (2)0.0534 (3)0.0402 (9)
H6B0.33380.23480.07130.060*
N10.3609 (2)0.2146 (2)0.0734 (3)0.0182 (7)
N20.3697 (2)0.2982 (2)0.2604 (3)0.0187 (7)
N30.1833 (2)0.2196 (2)0.1711 (3)0.0211 (7)
N40.1724 (3)0.3012 (2)0.0218 (3)0.0200 (7)
C10.3546 (3)0.1723 (3)0.0219 (3)0.0231 (8)
H1A0.30880.12250.06640.028*
C20.4122 (3)0.1985 (3)0.0580 (4)0.0238 (9)
H2A0.40480.16740.12560.029*
C30.4815 (3)0.2722 (3)0.0085 (4)0.0246 (8)
H3A0.52070.29130.01480.030*
C40.4922 (3)0.3180 (3)0.1117 (4)0.0220 (8)
C50.5640 (3)0.3893 (3)0.1891 (4)0.0246 (8)
H5A0.60670.40910.17190.030*
C60.5707 (3)0.4287 (3)0.2877 (4)0.0242 (9)
H6A0.61780.47550.33720.029*
C70.5067 (3)0.3993 (3)0.3165 (3)0.0213 (7)
C80.5099 (3)0.4370 (3)0.4191 (4)0.0239 (8)
H8A0.55590.48330.47220.029*
C90.4455 (3)0.4046 (4)0.4383 (4)0.0292 (9)
H9A0.44730.42870.50500.035*
C100.3765 (3)0.3353 (3)0.3588 (3)0.0232 (8)
H10A0.33330.31380.37450.028*
C110.4352 (3)0.3301 (3)0.2419 (3)0.0180 (7)
C120.4292 (3)0.2867 (3)0.1391 (4)0.0172 (8)
C130.1905 (3)0.1780 (4)0.2671 (4)0.0253 (8)
H13A0.23690.12930.31360.030*
C140.1285 (4)0.2067 (3)0.2998 (5)0.0282 (10)
H14A0.13550.17840.36840.034*
C150.0597 (3)0.2749 (3)0.2311 (4)0.0265 (9)
H15A0.01870.29320.25170.032*
C160.0500 (3)0.3184 (3)0.1289 (4)0.0221 (8)
C170.0231 (3)0.3899 (3)0.0491 (4)0.0273 (9)
H17A0.06530.41100.06640.033*
C180.0307 (3)0.4266 (3)0.0513 (4)0.0275 (9)
H18A0.07960.47050.10300.033*
C190.0350 (3)0.3991 (3)0.0794 (4)0.0217 (7)
C200.0297 (3)0.4362 (3)0.1815 (4)0.0295 (9)
H20A0.01730.48160.23460.035*
C210.0948 (3)0.4043 (3)0.2017 (4)0.0274 (9)
H21A0.09180.42700.26970.033*
C220.1665 (3)0.3369 (3)0.1190 (4)0.0250 (8)
H22A0.21100.31690.13280.030*
C230.1081 (3)0.3307 (3)0.0015 (3)0.0194 (7)
C240.1152 (3)0.2895 (3)0.1030 (4)0.0197 (8)
C250.1907 (4)0.3797 (4)0.0891 (5)0.0443 (12)
H25A0.16840.34020.01600.053*
H25B0.14430.43140.07390.053*
C260.2772 (4)0.4380 (3)0.1223 (6)0.0428 (10)
H26A0.29530.48460.18940.051*
H26B0.26480.48220.05570.051*
C270.3551 (4)0.3643 (4)0.1545 (5)0.0478 (13)
H27A0.36830.31990.22120.057*
H27B0.40950.40550.17840.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01945 (19)0.01898 (19)0.02378 (19)0.00159 (19)0.01512 (15)0.0013 (2)
S10.0213 (5)0.0179 (3)0.0240 (4)0.0008 (4)0.0087 (3)0.0011 (4)
O10.0415 (16)0.0209 (12)0.0289 (13)0.0051 (11)0.0199 (12)0.0000 (10)
O20.0374 (15)0.0364 (15)0.0205 (12)0.0032 (12)0.0149 (12)0.0005 (11)
O30.0291 (15)0.0270 (14)0.0299 (14)0.0041 (11)0.0158 (13)0.0025 (11)
O40.0218 (15)0.0423 (16)0.056 (2)0.0006 (12)0.0247 (15)0.0109 (15)
O50.051 (2)0.0288 (15)0.0388 (18)0.0008 (13)0.0325 (17)0.0025 (13)
O60.062 (2)0.0354 (19)0.043 (2)0.0029 (14)0.0413 (19)0.0006 (13)
N10.0179 (17)0.0201 (16)0.0172 (16)0.0027 (12)0.0100 (15)0.0017 (12)
N20.0177 (17)0.0196 (17)0.0179 (16)0.0009 (11)0.0093 (15)0.0022 (11)
N30.0235 (19)0.0175 (15)0.0267 (19)0.0016 (13)0.0167 (17)0.0002 (13)
N40.0241 (19)0.0194 (18)0.0202 (17)0.0009 (12)0.0145 (16)0.0022 (12)
C10.023 (2)0.0238 (18)0.0231 (19)0.0027 (17)0.0132 (17)0.0066 (17)
C20.026 (2)0.024 (2)0.026 (2)0.0010 (14)0.017 (2)0.0043 (15)
C30.025 (2)0.031 (2)0.024 (2)0.0026 (17)0.0172 (18)0.0021 (17)
C40.0194 (19)0.0232 (18)0.0225 (19)0.0006 (16)0.0110 (17)0.0036 (16)
C50.020 (2)0.028 (2)0.0269 (19)0.0011 (15)0.0138 (17)0.0037 (17)
C60.021 (2)0.022 (2)0.0263 (19)0.0022 (14)0.0110 (17)0.0021 (15)
C70.0219 (19)0.0216 (18)0.0185 (17)0.0003 (15)0.0099 (16)0.0002 (15)
C80.025 (2)0.021 (2)0.0211 (17)0.0031 (15)0.0095 (17)0.0036 (15)
C90.033 (2)0.033 (2)0.0174 (18)0.0021 (18)0.0112 (19)0.0055 (16)
C100.027 (2)0.026 (2)0.0230 (19)0.0014 (16)0.0177 (18)0.0017 (16)
C110.0199 (18)0.0166 (16)0.0190 (17)0.0003 (14)0.0116 (16)0.0001 (15)
C120.0178 (19)0.0170 (18)0.0169 (18)0.0017 (13)0.0096 (16)0.0014 (13)
C130.030 (2)0.0236 (18)0.029 (2)0.0012 (17)0.021 (2)0.0020 (18)
C140.035 (3)0.032 (2)0.029 (2)0.0057 (16)0.025 (2)0.0029 (15)
C150.029 (2)0.028 (2)0.033 (2)0.0009 (17)0.024 (2)0.0052 (18)
C160.025 (2)0.0209 (17)0.028 (2)0.0048 (16)0.0192 (18)0.0066 (17)
C170.022 (2)0.026 (2)0.037 (2)0.0046 (16)0.0182 (19)0.0045 (18)
C180.021 (2)0.025 (2)0.027 (2)0.0065 (14)0.0081 (18)0.0025 (16)
C190.0194 (19)0.0185 (18)0.0235 (18)0.0019 (15)0.0094 (16)0.0047 (15)
C200.027 (2)0.028 (2)0.023 (2)0.0028 (16)0.0075 (18)0.0029 (17)
C210.034 (2)0.026 (2)0.0211 (19)0.0008 (17)0.0148 (19)0.0039 (16)
C220.031 (2)0.024 (2)0.0231 (19)0.0028 (17)0.0175 (18)0.0023 (16)
C230.0188 (18)0.0181 (17)0.0190 (17)0.0019 (15)0.0090 (16)0.0049 (15)
C240.018 (2)0.0178 (18)0.024 (2)0.0015 (13)0.0115 (18)0.0029 (14)
C250.052 (3)0.037 (3)0.049 (3)0.014 (2)0.031 (3)0.002 (2)
C260.059 (3)0.0205 (15)0.053 (2)0.014 (2)0.034 (2)0.009 (3)
C270.043 (3)0.052 (3)0.046 (3)0.011 (2)0.022 (3)0.006 (2)
Geometric parameters (Å, º) top
Cu1—O11.956 (3)C8—C91.350 (6)
Cu1—N12.001 (3)C8—H8A0.9300
Cu1—N32.009 (3)C9—C101.392 (6)
Cu1—N22.071 (3)C9—H9A0.9300
Cu1—N42.175 (4)C10—H10A0.9300
S1—O31.466 (3)C11—C121.433 (6)
S1—O41.469 (3)C13—C141.425 (6)
S1—O21.475 (3)C13—H13A0.9300
S1—O11.503 (3)C14—C151.347 (7)
O5—C251.392 (6)C14—H14A0.9300
O5—H5B0.8200C15—C161.399 (6)
O6—C271.451 (6)C15—H15A0.9300
O6—H6B0.8200C16—C241.413 (6)
N1—C11.333 (5)C16—C171.443 (6)
N1—C121.367 (5)C17—C181.360 (6)
N2—C101.343 (5)C17—H17A0.9300
N2—C111.363 (5)C18—C191.438 (6)
N3—C131.331 (6)C18—H18A0.9300
N3—C241.352 (6)C19—C201.403 (6)
N4—C221.331 (5)C19—C231.413 (6)
N4—C231.349 (5)C20—C211.371 (6)
C1—C21.380 (6)C20—H20A0.9300
C1—H1A0.9300C21—C221.411 (6)
C2—C31.390 (6)C21—H21A0.9300
C2—H2A0.9300C22—H22A0.9300
C3—C41.416 (6)C23—C241.436 (6)
C3—H3A0.9300C25—C261.513 (7)
C4—C121.398 (6)C25—H25A0.9700
C4—C51.423 (6)C25—H25B0.9700
C5—C61.358 (6)C26—C271.503 (8)
C5—H5A0.9300C26—H26A0.9700
C6—C71.422 (6)C26—H26B0.9700
C6—H6A0.9300C27—H27A0.9700
C7—C111.395 (6)C27—H27B0.9700
C7—C81.429 (5)
O1—Cu1—N192.19 (12)N2—C11—C7124.4 (3)
O1—Cu1—N398.11 (12)N2—C11—C12116.3 (3)
N1—Cu1—N3168.47 (9)C7—C11—C12119.3 (3)
O1—Cu1—N2145.89 (12)N1—C12—C4123.6 (4)
N1—Cu1—N281.16 (14)N1—C12—C11116.6 (4)
N3—Cu1—N293.02 (14)C4—C12—C11119.8 (4)
O1—Cu1—N4105.07 (12)N3—C13—C14121.2 (4)
N1—Cu1—N492.28 (13)N3—C13—H13A119.4
N3—Cu1—N480.09 (14)C14—C13—H13A119.4
N2—Cu1—N4108.58 (9)C15—C14—C13119.7 (4)
O3—S1—O4110.99 (16)C15—C14—H14A120.1
O3—S1—O2109.25 (16)C13—C14—H14A120.1
O4—S1—O2109.75 (19)C14—C15—C16120.0 (4)
O3—S1—O1107.05 (16)C14—C15—H15A120.0
O4—S1—O1111.03 (18)C16—C15—H15A120.0
O2—S1—O1108.70 (15)C15—C16—C24117.7 (4)
S1—O1—Cu1128.81 (16)C15—C16—C17123.4 (4)
C25—O5—H5B109.5C24—C16—C17118.9 (4)
C27—O6—H6B109.5C18—C17—C16120.7 (4)
C1—N1—C12117.7 (4)C18—C17—H17A119.6
C1—N1—Cu1128.3 (3)C16—C17—H17A119.6
C12—N1—Cu1113.5 (3)C17—C18—C19121.5 (4)
C10—N2—C11116.8 (3)C17—C18—H18A119.2
C10—N2—Cu1131.4 (3)C19—C18—H18A119.2
C11—N2—Cu1111.7 (3)C20—C19—C23118.1 (4)
C13—N3—C24119.2 (4)C20—C19—C18123.1 (4)
C13—N3—Cu1126.0 (3)C23—C19—C18118.8 (4)
C24—N3—Cu1114.5 (3)C21—C20—C19118.8 (4)
C22—N4—C23119.0 (4)C21—C20—H20A120.6
C22—N4—Cu1131.6 (3)C19—C20—H20A120.6
C23—N4—Cu1109.3 (3)C20—C21—C22119.8 (4)
N1—C1—C2123.6 (4)C20—C21—H21A120.1
N1—C1—H1A118.2C22—C21—H21A120.1
C2—C1—H1A118.2N4—C22—C21121.9 (4)
C1—C2—C3118.8 (4)N4—C22—H22A119.1
C1—C2—H2A120.6C21—C22—H22A119.1
C3—C2—H2A120.6N4—C23—C19122.2 (3)
C2—C3—C4119.8 (4)N4—C23—C24117.8 (3)
C2—C3—H3A120.1C19—C23—C24119.9 (3)
C4—C3—H3A120.1N3—C24—C16122.1 (4)
C12—C4—C3116.5 (4)N3—C24—C23117.7 (4)
C12—C4—C5119.6 (4)C16—C24—C23120.1 (4)
C3—C4—C5123.9 (4)O5—C25—C26113.0 (5)
C6—C5—C4120.5 (4)O5—C25—H25A109.0
C6—C5—H5A119.7C26—C25—H25A109.0
C4—C5—H5A119.7O5—C25—H25B109.0
C5—C6—C7121.0 (4)C26—C25—H25B109.0
C5—C6—H6A119.5H25A—C25—H25B107.8
C7—C6—H6A119.5C27—C26—C25112.9 (3)
C11—C7—C6119.7 (3)C27—C26—H26A109.0
C11—C7—C8116.3 (4)C25—C26—H26A109.0
C6—C7—C8124.0 (4)C27—C26—H26B109.0
C9—C8—C7119.4 (4)C25—C26—H26B109.0
C9—C8—H8A120.3H26A—C26—H26B107.8
C7—C8—H8A120.3O6—C27—C26110.3 (5)
C8—C9—C10120.4 (4)O6—C27—H27A109.6
C8—C9—H9A119.8C26—C27—H27A109.6
C10—C9—H9A119.8O6—C27—H27B109.6
N2—C10—C9122.7 (4)C26—C27—H27B109.6
N2—C10—H10A118.7H27A—C27—H27B108.1
C9—C10—H10A118.7
O3—S1—O1—Cu1144.4 (2)C10—N2—C11—C12177.6 (3)
O4—S1—O1—Cu194.3 (2)Cu1—N2—C11—C123.8 (4)
O2—S1—O1—Cu126.5 (3)C6—C7—C11—N2179.0 (3)
N1—Cu1—O1—S1110.9 (2)C8—C7—C11—N20.7 (6)
N3—Cu1—O1—S174.3 (2)C6—C7—C11—C122.1 (6)
N2—Cu1—O1—S133.5 (4)C8—C7—C11—C12178.2 (4)
N4—Cu1—O1—S1156.1 (2)C1—N1—C12—C40.1 (6)
O1—Cu1—N1—C134.3 (3)Cu1—N1—C12—C4172.7 (3)
N3—Cu1—N1—C1119.1 (8)C1—N1—C12—C11179.3 (4)
N2—Cu1—N1—C1179.4 (4)Cu1—N1—C12—C118.1 (4)
N4—Cu1—N1—C170.9 (3)C3—C4—C12—N11.2 (6)
O1—Cu1—N1—C12154.1 (3)C5—C4—C12—N1176.6 (4)
N3—Cu1—N1—C1252.5 (11)C3—C4—C12—C11179.6 (4)
N2—Cu1—N1—C127.7 (3)C5—C4—C12—C112.6 (6)
N4—Cu1—N1—C12100.7 (3)N2—C11—C12—N12.7 (5)
O1—Cu1—N2—C1094.7 (4)C7—C11—C12—N1176.2 (4)
N1—Cu1—N2—C10175.5 (4)N2—C11—C12—C4178.0 (4)
N3—Cu1—N2—C1014.5 (4)C7—C11—C12—C43.0 (6)
N4—Cu1—N2—C1095.1 (3)C24—N3—C13—C140.7 (6)
O1—Cu1—N2—C1187.0 (3)Cu1—N3—C13—C14172.2 (3)
N1—Cu1—N2—C116.2 (2)N3—C13—C14—C151.8 (6)
N3—Cu1—N2—C11163.8 (3)C13—C14—C15—C160.8 (6)
N4—Cu1—N2—C1183.2 (3)C14—C15—C16—C241.1 (6)
O1—Cu1—N3—C1375.9 (3)C14—C15—C16—C17178.4 (4)
N1—Cu1—N3—C13131.1 (8)C15—C16—C17—C18177.6 (4)
N2—Cu1—N3—C1371.8 (3)C24—C16—C17—C181.8 (6)
N4—Cu1—N3—C13179.8 (4)C16—C17—C18—C192.3 (6)
O1—Cu1—N3—C24110.9 (3)C17—C18—C19—C20179.4 (4)
N1—Cu1—N3—C2442.2 (11)C17—C18—C19—C231.2 (6)
N2—Cu1—N3—C24101.4 (3)C23—C19—C20—C210.4 (6)
N4—Cu1—N3—C246.9 (3)C18—C19—C20—C21179.0 (4)
O1—Cu1—N4—C2280.9 (4)C19—C20—C21—C221.2 (7)
N1—Cu1—N4—C2212.0 (4)C23—N4—C22—C210.3 (6)
N3—Cu1—N4—C22176.7 (4)Cu1—N4—C22—C21178.4 (3)
N2—Cu1—N4—C2293.4 (4)C20—C21—C22—N41.2 (7)
O1—Cu1—N4—C23100.9 (2)C22—N4—C23—C190.6 (6)
N1—Cu1—N4—C23166.2 (2)Cu1—N4—C23—C19177.9 (3)
N3—Cu1—N4—C235.1 (2)C22—N4—C23—C24178.9 (3)
N2—Cu1—N4—C2384.8 (3)Cu1—N4—C23—C242.6 (4)
C12—N1—C1—C20.8 (6)C20—C19—C23—N40.5 (6)
Cu1—N1—C1—C2170.5 (3)C18—C19—C23—N4180.0 (3)
N1—C1—C2—C30.6 (6)C20—C19—C23—C24179.0 (4)
C1—C2—C3—C40.6 (6)C18—C19—C23—C240.5 (6)
C2—C3—C4—C121.4 (6)C13—N3—C24—C161.3 (6)
C2—C3—C4—C5176.3 (4)Cu1—N3—C24—C16175.0 (3)
C12—C4—C5—C61.3 (6)C13—N3—C24—C23178.4 (4)
C3—C4—C5—C6178.9 (4)Cu1—N3—C24—C237.8 (4)
C4—C5—C6—C70.4 (6)C15—C16—C24—N32.2 (6)
C5—C6—C7—C110.8 (6)C17—C16—C24—N3177.3 (4)
C5—C6—C7—C8179.5 (4)C15—C16—C24—C23179.3 (4)
C11—C7—C8—C90.0 (6)C17—C16—C24—C230.2 (6)
C6—C7—C8—C9179.7 (4)N4—C23—C24—N33.2 (5)
C7—C8—C9—C100.1 (6)C19—C23—C24—N3176.3 (4)
C11—N2—C10—C91.2 (6)N4—C23—C24—C16179.6 (4)
Cu1—N2—C10—C9177.1 (3)C19—C23—C24—C160.9 (6)
C8—C9—C10—N20.5 (7)O5—C25—C26—C2755.4 (6)
C10—N2—C11—C71.3 (6)C25—C26—C27—O661.9 (6)
Cu1—N2—C11—C7177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O30.821.992.788 (4)166
O6—H6B···O40.822.012.817 (5)166

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C12H8N2)2]·C3H8O2
Mr596.10
Crystal system, space groupMonoclinic, Cc
Temperature (K)223
a, b, c (Å)17.523 (4), 12.562 (3), 13.438 (3)
β (°) 123.44 (3)
V3)2468.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.750, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6895, 4049, 3892
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.07
No. of reflections4049
No. of parameters354
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.82
Absolute structureFlack (1983), 1224 Friedel pairs
Absolute structure parameter0.56 (1)

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.956 (3)Cu1—N22.071 (3)
Cu1—N12.001 (3)Cu1—N42.175 (4)
Cu1—N32.009 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O30.821.992.788 (4)166
O6—H6B···O40.822.012.817 (5)166
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010–17).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationMurphy, B. & Hathaway, B. (2003). Coord. Chem. Rev. 243, 237-262.  Web of Science CrossRef CAS Google Scholar
First citationPotočňák, I., Špilovský, M. & Trávníček, Z. (2008). Acta Cryst. C64, m161–m163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, K.-L. (2011a). Acta Cryst. E67, m1215–m1216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2011b). Z. Kristallogr. New Cryst. Struct. 226, 286–288.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds