organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Meth­­oxy­phen­yl)-6,7-di­hydro-1H-furo[3,4-c]pyran-4(3H)-one

aDepartment of Pharmacy, General Hospital of Shenyang Military Command, Shenyang 110016, People's Republic of China, and bDepartment of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
*Correspondence e-mail: hu829Zh213@yahoo.com.cn, sgsgb@126.com

(Received 13 November 2012; accepted 16 November 2012; online 24 November 2012)

In the title compound, C14H14O4, the dihedral angle between the hydro­furan and benzene rings is 88.41 (15)°. The hydro­pyran ring adopts an envelope conformation, with the O-bound methyl­ene C atom as the flap. In the crystal, weak aromatic ππ stacking is observed [centroid–centroid separation = 3.848 (2) Å].

Related literature

For medicinal background, see: Wang et al. (2011[Wang, T. T., Liu, J., Zhong, H. Y., Chen, H., Lv, Z. L., Zhang, Y. K., Zhang, M. F., Geng, D. P., Niu, C. J., Li, Y. M. & Li, K. (2011). Bioorg. Med. Chem. Lett. 21, 3381-3383.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14O4

  • Mr = 246.25

  • Monoclinic, P 21 /n

  • a = 7.240 (3) Å

  • b = 8.635 (4) Å

  • c = 19.545 (8) Å

  • β = 97.352 (6)°

  • V = 1212.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.981

  • 4872 measured reflections

  • 2127 independent reflections

  • 1494 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.227

  • S = 1.06

  • 2127 reflections

  • 164 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For medicinal background, see: Wang et al. (2011).

Experimental top

NaH (60% in mineral oil, 24 mmol) was added to a solution of but-2-yne-1,4-diol (2.58 g, 30 mmol) in THF (50 ml) under nitrogen, and the solution was stirred for 5 min at 20 C. Diethyl 2-(4-methoxybenzylidene)malonate (5.56 g, 20 mmol) and CuI (0.38 g, 2 mmol) were then added successively. When consumption of the starting materials was observed by TLC, the reaction mixture was added 3% HCl solution until the PH value was 7. Then the mixture was extracted with CH2Cl2 (30 ml × 3). The combined organic layers were dried and solids were combined. The solid (0.973 g, 3 mmol) subsequently was reacted with 20% KOH in EtOH/THF (15/15 ml) at room temperature for 6 h. Then the reaction mixture was diluted with CH2Cl2 (30 ml) and washed with saturated Na2CO3, brine and dried with MgSO4. The mixture was purified with silica gel column chromagraphy. The Trans-form compounds could be obtained. Yield: 10%. M. p.: 407 K.

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with d (C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 groups, and with Uiso (H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the unit-cell contents for the title compound.
3-(4-Methoxyphenyl)-6,7-dihydro-1H-furo[3,4-c]pyran-4(3H) -one top
Crystal data top
C14H14O4F(000) = 520
Mr = 246.25Dx = 1.350 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 735 reflections
a = 7.240 (3) Åθ = 2.6–24.3°
b = 8.635 (4) ŵ = 0.10 mm1
c = 19.545 (8) ÅT = 293 K
β = 97.352 (6)°Prism, colorless
V = 1212.0 (9) Å30.25 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2127 independent reflections
Radiation source: fine-focus sealed tube1494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 87
Tmin = 0.976, Tmax = 0.981k = 1010
4872 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1396P)2]
where P = (Fo2 + 2Fc2)/3
2127 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.55 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H14O4V = 1212.0 (9) Å3
Mr = 246.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.240 (3) ŵ = 0.10 mm1
b = 8.635 (4) ÅT = 293 K
c = 19.545 (8) Å0.25 × 0.25 × 0.20 mm
β = 97.352 (6)°
Data collection top
Bruker SMART CCD
diffractometer
2127 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1494 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.981Rint = 0.104
4872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0746 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.06Δρmax = 0.55 e Å3
2127 reflectionsΔρmin = 0.31 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3995 (3)0.6361 (2)0.04179 (10)0.0677 (6)
O20.5812 (3)0.8161 (3)0.00885 (11)0.0771 (7)
O30.9242 (3)0.4487 (2)0.14388 (12)0.0777 (7)
O40.2905 (3)0.5087 (3)0.33985 (12)0.0800 (7)
C10.5550 (4)0.6850 (3)0.04378 (13)0.0541 (7)
C20.7206 (3)0.6116 (3)0.07879 (13)0.0542 (7)
C30.7270 (3)0.4668 (3)0.12146 (15)0.0569 (7)
H30.68410.37960.09150.068*
C41.0291 (4)0.5583 (4)0.1116 (2)0.0805 (10)
H4A1.10330.50760.08030.097*
H4B1.11160.61530.14570.097*
C50.8909 (4)0.6629 (3)0.07366 (15)0.0622 (8)
C60.9218 (4)0.8021 (4)0.03314 (19)0.0838 (10)
H6A1.02600.86050.05630.101*
H6B0.95170.77190.01200.101*
C70.7547 (6)0.8987 (5)0.0253 (3)0.1143 (15)
H7A0.75020.95550.06790.137*
H7B0.76540.97400.01080.137*
C80.6177 (3)0.4702 (3)0.18107 (14)0.0525 (7)
C90.4688 (4)0.3726 (3)0.18314 (15)0.0593 (7)
H90.44170.29970.14830.071*
C100.3579 (4)0.3798 (3)0.23563 (16)0.0646 (8)
H100.25840.31190.23600.077*
C110.3952 (4)0.4871 (3)0.28691 (15)0.0593 (7)
C120.5476 (4)0.5848 (3)0.28669 (16)0.0657 (8)
H120.57690.65560.32230.079*
C130.6550 (4)0.5765 (3)0.23382 (15)0.0613 (8)
H130.75500.64390.23350.074*
C140.1150 (5)0.4338 (5)0.33449 (19)0.0881 (11)
H14A0.04660.45500.29010.132*
H14B0.04640.47160.36990.132*
H14C0.13300.32410.33980.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0474 (11)0.0838 (13)0.0720 (13)0.0007 (9)0.0075 (9)0.0005 (10)
O20.0686 (13)0.0824 (14)0.0777 (14)0.0039 (10)0.0007 (11)0.0275 (11)
O30.0481 (11)0.0835 (13)0.1019 (17)0.0080 (9)0.0110 (11)0.0278 (12)
O40.0760 (15)0.0989 (16)0.0681 (14)0.0059 (12)0.0208 (11)0.0058 (11)
C10.0532 (16)0.0636 (15)0.0458 (14)0.0009 (12)0.0077 (11)0.0025 (12)
C20.0493 (14)0.0612 (14)0.0532 (15)0.0073 (11)0.0109 (12)0.0019 (12)
C30.0467 (14)0.0597 (14)0.0643 (16)0.0031 (11)0.0076 (12)0.0027 (13)
C40.0480 (16)0.091 (2)0.103 (2)0.0051 (14)0.0124 (16)0.0236 (19)
C50.0490 (15)0.0732 (17)0.0647 (17)0.0080 (12)0.0085 (12)0.0031 (14)
C60.067 (2)0.098 (2)0.086 (2)0.0250 (17)0.0082 (17)0.0274 (19)
C70.092 (3)0.104 (3)0.144 (4)0.017 (2)0.006 (3)0.053 (3)
C80.0444 (14)0.0499 (12)0.0615 (16)0.0012 (10)0.0007 (12)0.0103 (12)
C90.0571 (16)0.0583 (14)0.0620 (16)0.0110 (12)0.0051 (13)0.0006 (13)
C100.0543 (15)0.0695 (16)0.0691 (18)0.0151 (13)0.0048 (13)0.0096 (15)
C110.0540 (16)0.0656 (15)0.0590 (17)0.0025 (12)0.0095 (13)0.0131 (13)
C120.0650 (17)0.0652 (16)0.0653 (17)0.0068 (13)0.0018 (14)0.0034 (14)
C130.0507 (15)0.0629 (15)0.0696 (18)0.0127 (12)0.0058 (13)0.0028 (14)
C140.068 (2)0.114 (3)0.087 (2)0.0002 (18)0.0279 (18)0.022 (2)
Geometric parameters (Å, º) top
O1—C11.198 (3)C6—H6A0.9700
O2—C11.348 (3)C6—H6B0.9700
O2—C71.445 (4)C7—H7A0.9700
O3—C41.411 (4)C7—H7B0.9700
O3—C31.447 (3)C8—C91.374 (4)
O4—C111.371 (4)C8—C131.381 (4)
O4—C141.418 (4)C9—C101.383 (4)
C1—C21.448 (4)C9—H90.9300
C2—C51.326 (4)C10—C111.366 (4)
C2—C31.501 (4)C10—H100.9300
C3—C81.490 (4)C11—C121.390 (4)
C3—H30.9800C12—C131.372 (4)
C4—C51.476 (4)C12—H120.9300
C4—H4A0.9700C13—H130.9300
C4—H4B0.9700C14—H14A0.9600
C5—C61.472 (4)C14—H14B0.9600
C6—C71.461 (5)C14—H14C0.9600
C1—O2—C7118.5 (2)O2—C7—C6115.2 (3)
C4—O3—C3111.1 (2)O2—C7—H7A108.5
C11—O4—C14117.3 (3)C6—C7—H7A108.5
O1—C1—O2118.2 (2)O2—C7—H7B108.5
O1—C1—C2125.4 (3)C6—C7—H7B108.5
O2—C1—C2116.4 (2)H7A—C7—H7B107.5
C5—C2—C1122.7 (3)C9—C8—C13117.7 (3)
C5—C2—C3111.0 (2)C9—C8—C3120.6 (2)
C1—C2—C3126.3 (2)C13—C8—C3121.6 (2)
O3—C3—C8111.6 (2)C8—C9—C10121.8 (3)
O3—C3—C2102.55 (19)C8—C9—H9119.1
C8—C3—C2115.9 (2)C10—C9—H9119.1
O3—C3—H3108.9C11—C10—C9119.7 (3)
C8—C3—H3108.9C11—C10—H10120.1
C2—C3—H3108.9C9—C10—H10120.1
O3—C4—C5105.4 (2)C10—C11—O4124.7 (3)
O3—C4—H4A110.7C10—C11—C12119.4 (3)
C5—C4—H4A110.7O4—C11—C12115.9 (3)
O3—C4—H4B110.7C13—C12—C11119.8 (3)
C5—C4—H4B110.7C13—C12—H12120.1
H4A—C4—H4B108.8C11—C12—H12120.1
C2—C5—C6121.4 (3)C12—C13—C8121.5 (3)
C2—C5—C4109.5 (3)C12—C13—H13119.3
C6—C5—C4129.1 (2)C8—C13—H13119.3
C7—C6—C5110.0 (3)O4—C14—H14A109.5
C7—C6—H6A109.7O4—C14—H14B109.5
C5—C6—H6A109.7H14A—C14—H14B109.5
C7—C6—H6B109.7O4—C14—H14C109.5
C5—C6—H6B109.7H14A—C14—H14C109.5
H6A—C6—H6B108.2H14B—C14—H14C109.5

Experimental details

Crystal data
Chemical formulaC14H14O4
Mr246.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.240 (3), 8.635 (4), 19.545 (8)
β (°) 97.352 (6)
V3)1212.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.976, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4872, 2127, 1494
Rint0.104
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.227, 1.06
No. of reflections2127
No. of parameters164
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.31

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, T. T., Liu, J., Zhong, H. Y., Chen, H., Lv, Z. L., Zhang, Y. K., Zhang, M. F., Geng, D. P., Niu, C. J., Li, Y. M. & Li, K. (2011). Bioorg. Med. Chem. Lett. 21, 3381–3383.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds