metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromido­tetra­kis­(2-ethyl-1H-imidazole-κN3)copper(II) bromide

aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicz Street, 80233-PL Gdańsk, Poland, and bFachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger Strasse 54, 67663 Kaiserslautern, Germany
*Correspondence e-mail: anndoleg@pg.gda.pl

(Received 16 November 2012; accepted 19 November 2012; online 24 November 2012)

The CuII ion in the title mol­ecular salt, [CuBr(C5H8N2)4]Br, is coordinated in a square-pyramidal geometry by four N atoms of imidazole ligands and one bromide anion in the apical position. In the crystal, the ions are linked by N—H⋯Br hydrogen bonds involving both the coordinating and the free bromide species as acceptors. A C—H⋯Br inter­action is also observed. Overall, a three-dimensional network results.

Related literature

For more copper(II) complexes with bromido and imidazole ligands, see: Godlewska et al. (2011[Godlewska, S., Socha, J., Baranowska, K. & Dołęga, A. (2011). Acta Cryst. E67, m1338.]); Hossaini Sadr et al. (2004[Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324-m1326.]); Li et al. (2007[Li, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536.]); Liu et al. (2007[Liu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454.]); Näther et al. (2002a[Näther, C., Wriedt, M. & Jeß, I. (2002a). Acta Cryst. E58, m63-m64.],b[Näther, C., Wriedt, M. & Jeß, I. (2002b). Acta Cryst. E58, m107-m109.]); Parker & Breneman (1995[Parker, O. J. & Breneman, G. L. (1995). Acta Cryst. C51, 1097-1099.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C5H8N2)4]Br

  • Mr = 607.90

  • Monoclinic, P 21 /n

  • a = 10.1771 (2) Å

  • b = 19.9230 (3) Å

  • c = 12.5723 (2) Å

  • β = 90.386 (2)°

  • V = 2549.08 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.06 mm−1

  • T = 150 K

  • 0.21 × 0.20 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.416, Tmax = 0.786

  • 9229 measured reflections

  • 4058 independent reflections

  • 3719 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.05

  • 4058 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N3 1.9914 (19)
Cu1—N7 1.9918 (19)
Cu1—N5 2.014 (2)
Cu1—N1 2.0250 (19)
Cu1—Br1 3.0125 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Br1i 0.88 2.56 3.405 (2) 161
N4—H4⋯Br2ii 0.88 2.46 3.336 (2) 176
N6—H6A⋯Br2 0.88 2.47 3.302 (2) 157
N8—H8⋯Br1iii 0.88 2.56 3.432 (2) 172
C17—H17⋯Br2iv 0.95 2.89 3.653 (3) 138
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is the third in a series of similar complex compounds (Godlewska et al. (2011)). The complex cation features square pyramidal geometry around Cu atom with four N atoms in the basal plane and apical bromide ligand. The deviation of N—Cu—N angles from the values of 90 and 180 degrees are very small and such is the deviation of Cu atom (0.1077 Å) from the basal plane formed by the four nitrogen atoms of imidazole ligands. The complex cations and Br2 anions form a three-dimensional network of intervowen NH···Br and CH···Br interactions that results in a "compact" packing of the interacting species and the relatively large density of the obtained crystals.

The asymmetric unit of (I) is shown in Fig. 1 and packing diagram is presented in Fig.2.

Related literature top

For more copper(II) complexes with bromido and imidazole ligands, see: Godlewska et al. (2011); Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007); Näther et al. (2002a); Näther et al. (2002b); Parker & Breneman (1995).

Experimental top

The title compound was prepared by adding a solution of 0.223 g (1 mmol) copper(II) bromide in 4 ml of methanol to a solution of 0.433 g (4.5 mmol) 2-ethylimidazole in 2 ml of methanol. After few days violet crystals were obtained by slow evaporation of solvent from the reaction mixture.

Refinement top

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.99 Å, methylene C–H = 0.98 Å, aromatic C–H = 0.95 Å and Uiso(H)=1.5Ueq(C) for methyl groups and 1.2 Ueq(C) for the rest of H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen bond indicated by the dashed line.
[Figure 2] Fig. 2. The crystal packing of (I). NH—Br hydrogen bonds indicated as blue dashed lines and CH—Br contacts as green dashed lines.
Bromidotetrakis(2-ethyl-1H-imidazole-κN3)copper(II) bromide top
Crystal data top
[CuBr(C5H8N2)4]BrF(000) = 1228
Mr = 607.90Dx = 1.584 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 6482 reflections
a = 10.1771 (2) Åθ = 3.5–62.6°
b = 19.9230 (3) ŵ = 5.06 mm1
c = 12.5723 (2) ÅT = 150 K
β = 90.386 (2)°Indifferent fragment, violet
V = 2549.08 (8) Å30.21 × 0.20 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra)
diffractometer
4058 independent reflections
Radiation source: fine-focus sealed tube3719 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 16.1399 pixels mm-1θmax = 62.7°, θmin = 4.2°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2218
Tmin = 0.416, Tmax = 0.786l = 1410
9229 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.0444P]
where P = (Fo2 + 2Fc2)/3
4058 reflections(Δ/σ)max = 0.002
284 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[CuBr(C5H8N2)4]BrV = 2549.08 (8) Å3
Mr = 607.90Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.1771 (2) ŵ = 5.06 mm1
b = 19.9230 (3) ÅT = 150 K
c = 12.5723 (2) Å0.21 × 0.20 × 0.05 mm
β = 90.386 (2)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra)
diffractometer
4058 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3719 reflections with I > 2σ(I)
Tmin = 0.416, Tmax = 0.786Rint = 0.020
9229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
4058 reflectionsΔρmin = 0.34 e Å3
284 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24721 (3)0.861967 (16)0.79905 (3)0.01634 (9)
Br10.23840 (2)0.845061 (13)1.036999 (19)0.02191 (8)
N10.08773 (19)0.80290 (10)0.77538 (16)0.0205 (4)
N20.0633 (2)0.73282 (11)0.71786 (18)0.0298 (5)
H20.10470.70350.67740.036*
C10.0142 (2)0.80070 (13)0.8483 (2)0.0257 (6)
H10.01810.82570.91260.031*
C20.1070 (3)0.75730 (14)0.8132 (2)0.0321 (6)
H2A0.18670.74600.84780.038*
C30.0542 (2)0.76125 (12)0.6966 (2)0.0235 (5)
C40.1271 (3)0.74770 (14)0.5965 (2)0.0284 (6)
H4A0.19460.78290.58710.034*
H4B0.06510.75070.53570.034*
C50.1940 (3)0.67900 (15)0.5945 (2)0.0376 (7)
H5A0.25700.67590.65360.056*
H5B0.24030.67340.52700.056*
H5C0.12760.64370.60160.056*
N30.12993 (18)0.94198 (10)0.79926 (15)0.0185 (4)
N40.0231 (2)1.01429 (10)0.75619 (17)0.0234 (5)
H40.08381.03530.71880.028*
C60.1095 (2)0.98466 (12)0.8846 (2)0.0244 (5)
H60.15470.98290.95090.029*
C70.0141 (3)1.02935 (13)0.8579 (2)0.0271 (6)
H70.02001.06420.90130.033*
C80.0490 (2)0.96163 (12)0.72257 (19)0.0192 (5)
C90.0401 (3)0.93264 (13)0.6135 (2)0.0270 (6)
H9A0.10690.89680.60620.032*
H9B0.06040.96810.56090.032*
C100.0951 (3)0.90355 (15)0.5886 (3)0.0417 (8)
H10A0.11720.86950.64180.063*
H10B0.09430.88290.51780.063*
H10C0.16080.93950.59000.063*
N50.40712 (19)0.92118 (10)0.81018 (16)0.0208 (4)
N60.5637 (2)0.99454 (12)0.78382 (19)0.0340 (6)
H6A0.60861.02770.75560.041*
C110.5028 (3)0.91305 (14)0.8881 (2)0.0323 (6)
H110.50070.88080.94370.039*
C120.5992 (3)0.95818 (17)0.8722 (2)0.0414 (8)
H120.67660.96380.91400.050*
C130.4484 (2)0.97063 (12)0.7479 (2)0.0227 (5)
C140.3819 (3)0.99879 (13)0.6518 (2)0.0268 (6)
H14A0.31410.96670.62680.032*
H14B0.44731.00390.59440.032*
C150.3173 (3)1.06667 (14)0.6727 (2)0.0355 (7)
H15A0.25711.06270.73290.053*
H15B0.26811.08080.60930.053*
H15C0.38511.10000.68930.053*
N70.36498 (18)0.78339 (10)0.77723 (16)0.0189 (4)
N80.5199 (2)0.71775 (11)0.71834 (18)0.0270 (5)
H80.58200.70130.67760.032*
C160.3837 (2)0.73151 (12)0.8490 (2)0.0245 (5)
H160.33640.72530.91320.029*
C170.4800 (3)0.69128 (13)0.8130 (2)0.0302 (6)
H170.51360.65220.84670.036*
C180.4486 (2)0.77323 (13)0.6977 (2)0.0237 (5)
C190.4629 (3)0.81532 (15)0.6011 (2)0.0340 (6)
H19A0.39520.85100.60170.041*
H19B0.44760.78720.53730.041*
C200.5988 (3)0.84754 (18)0.5942 (3)0.0557 (10)
H20A0.61800.87180.66030.084*
H20B0.60050.87900.53420.084*
H20C0.66510.81260.58350.084*
Br20.73566 (2)1.087768 (13)0.61807 (2)0.02419 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01598 (17)0.01449 (17)0.01854 (18)0.00071 (13)0.00093 (13)0.00029 (13)
Br10.02224 (14)0.02382 (14)0.01968 (14)0.00267 (10)0.00118 (10)0.00369 (10)
N10.0216 (10)0.0164 (10)0.0233 (11)0.0011 (8)0.0030 (8)0.0007 (8)
N20.0298 (12)0.0262 (12)0.0333 (13)0.0099 (10)0.0089 (10)0.0016 (10)
C10.0244 (13)0.0288 (14)0.0240 (13)0.0035 (11)0.0002 (10)0.0001 (11)
C20.0276 (14)0.0350 (15)0.0336 (15)0.0101 (12)0.0004 (12)0.0033 (13)
C30.0247 (13)0.0185 (12)0.0272 (13)0.0005 (10)0.0082 (10)0.0025 (10)
C40.0325 (14)0.0301 (14)0.0226 (13)0.0025 (12)0.0063 (11)0.0050 (11)
C50.0433 (17)0.0336 (16)0.0359 (16)0.0049 (13)0.0065 (13)0.0115 (13)
N30.0187 (10)0.0160 (10)0.0208 (10)0.0006 (8)0.0001 (8)0.0006 (8)
N40.0228 (10)0.0220 (11)0.0253 (11)0.0072 (9)0.0009 (9)0.0045 (9)
C60.0334 (14)0.0208 (13)0.0190 (13)0.0033 (11)0.0009 (10)0.0029 (10)
C70.0346 (14)0.0221 (13)0.0247 (13)0.0080 (11)0.0042 (11)0.0015 (11)
C80.0187 (12)0.0172 (12)0.0218 (12)0.0002 (10)0.0006 (10)0.0026 (10)
C90.0326 (14)0.0262 (14)0.0222 (13)0.0048 (11)0.0035 (11)0.0026 (11)
C100.0432 (17)0.0373 (17)0.0443 (18)0.0062 (14)0.0207 (14)0.0104 (14)
N50.0184 (10)0.0196 (10)0.0243 (11)0.0007 (8)0.0001 (8)0.0020 (9)
N60.0286 (12)0.0348 (13)0.0384 (14)0.0148 (10)0.0038 (10)0.0108 (11)
C110.0269 (14)0.0379 (16)0.0320 (15)0.0047 (12)0.0083 (12)0.0128 (13)
C120.0294 (15)0.055 (2)0.0393 (17)0.0153 (14)0.0138 (13)0.0157 (15)
C130.0212 (12)0.0240 (13)0.0230 (13)0.0013 (10)0.0024 (10)0.0025 (10)
C140.0288 (14)0.0273 (14)0.0243 (14)0.0023 (11)0.0034 (11)0.0047 (11)
C150.0418 (16)0.0286 (15)0.0362 (16)0.0019 (13)0.0009 (13)0.0108 (13)
N70.0191 (10)0.0164 (10)0.0213 (10)0.0017 (8)0.0003 (8)0.0000 (8)
N80.0240 (11)0.0256 (12)0.0314 (12)0.0075 (9)0.0041 (9)0.0071 (10)
C160.0290 (13)0.0213 (13)0.0231 (13)0.0039 (11)0.0010 (11)0.0014 (10)
C170.0371 (15)0.0222 (14)0.0311 (15)0.0091 (12)0.0040 (12)0.0003 (11)
C180.0215 (12)0.0237 (13)0.0259 (13)0.0007 (10)0.0013 (10)0.0062 (11)
C190.0445 (16)0.0313 (15)0.0264 (14)0.0022 (13)0.0115 (12)0.0002 (12)
C200.050 (2)0.047 (2)0.070 (2)0.0011 (16)0.0324 (18)0.0124 (18)
Br20.02263 (14)0.02361 (14)0.02629 (15)0.00013 (10)0.00150 (10)0.00541 (10)
Geometric parameters (Å, º) top
Cu1—N31.9914 (19)C10—H10B0.9800
Cu1—N71.9918 (19)C10—H10C0.9800
Cu1—N52.014 (2)N5—C131.328 (3)
Cu1—N12.0250 (19)N5—C111.386 (3)
Cu1—Br13.0125 (4)N6—C131.341 (3)
N1—C31.334 (3)N6—C121.373 (4)
N1—C11.390 (3)N6—H6A0.8800
N2—C31.351 (3)C11—C121.346 (4)
N2—C21.371 (4)C11—H110.9500
N2—H20.8800C12—H120.9500
C1—C21.352 (4)C13—C141.491 (4)
C1—H10.9500C14—C151.527 (4)
C2—H2A0.9500C14—H14A0.9900
C3—C41.490 (4)C14—H14B0.9900
C4—C51.529 (4)C15—H15A0.9800
C4—H4A0.9900C15—H15B0.9800
C4—H4B0.9900C15—H15C0.9800
C5—H5A0.9800N7—C181.333 (3)
C5—H5B0.9800N7—C161.385 (3)
C5—H5C0.9800N8—C181.347 (3)
N3—C81.323 (3)N8—C171.365 (4)
N3—C61.386 (3)N8—H80.8800
N4—C81.350 (3)C16—C171.348 (4)
N4—C71.364 (3)C16—H160.9500
N4—H40.8800C17—H170.9500
C6—C71.358 (4)C18—C191.483 (4)
C6—H60.9500C19—C201.528 (4)
C7—H70.9500C19—H19A0.9900
C8—C91.490 (4)C19—H19B0.9900
C9—C101.524 (4)C20—H20A0.9800
C9—H9A0.9900C20—H20B0.9800
C9—H9B0.9900C20—H20C0.9800
C10—H10A0.9800
N3—Cu1—N7172.13 (8)C9—C10—H10B109.5
N3—Cu1—N590.87 (8)H10A—C10—H10B109.5
N7—Cu1—N589.04 (8)C9—C10—H10C109.5
N3—Cu1—N189.17 (8)H10A—C10—H10C109.5
N7—Cu1—N190.31 (8)H10B—C10—H10C109.5
N5—Cu1—N1175.54 (8)C13—N5—C11106.2 (2)
N3—Cu1—Br193.80 (6)C13—N5—Cu1130.70 (17)
N7—Cu1—Br194.06 (6)C11—N5—Cu1122.98 (17)
N5—Cu1—Br191.48 (6)C13—N6—C12108.1 (2)
N1—Cu1—Br192.97 (6)C13—N6—H6A126.0
C3—N1—C1106.4 (2)C12—N6—H6A126.0
C3—N1—Cu1132.14 (17)C12—C11—N5109.1 (2)
C1—N1—Cu1121.50 (16)C12—C11—H11125.5
C3—N2—C2108.4 (2)N5—C11—H11125.5
C3—N2—H2125.8C11—C12—N6106.5 (2)
C2—N2—H2125.8C11—C12—H12126.8
C2—C1—N1109.1 (2)N6—C12—H12126.8
C2—C1—H1125.4N5—C13—N6110.1 (2)
N1—C1—H1125.4N5—C13—C14127.8 (2)
C1—C2—N2106.4 (2)N6—C13—C14122.0 (2)
C1—C2—H2A126.8C13—C14—C15112.8 (2)
N2—C2—H2A126.8C13—C14—H14A109.0
N1—C3—N2109.6 (2)C15—C14—H14A109.0
N1—C3—C4127.8 (2)C13—C14—H14B109.0
N2—C3—C4122.5 (2)C15—C14—H14B109.0
C3—C4—C5113.6 (2)H14A—C14—H14B107.8
C3—C4—H4A108.8C14—C15—H15A109.5
C5—C4—H4A108.8C14—C15—H15B109.5
C3—C4—H4B108.8H15A—C15—H15B109.5
C5—C4—H4B108.8C14—C15—H15C109.5
H4A—C4—H4B107.7H15A—C15—H15C109.5
C4—C5—H5A109.5H15B—C15—H15C109.5
C4—C5—H5B109.5C18—N7—C16106.9 (2)
H5A—C5—H5B109.5C18—N7—Cu1127.62 (17)
C4—C5—H5C109.5C16—N7—Cu1125.24 (16)
H5A—C5—H5C109.5C18—N8—C17108.8 (2)
H5B—C5—H5C109.5C18—N8—H8125.6
C8—N3—C6106.7 (2)C17—N8—H8125.6
C8—N3—Cu1127.30 (16)C17—C16—N7108.8 (2)
C6—N3—Cu1125.82 (16)C17—C16—H16125.6
C8—N4—C7108.5 (2)N7—C16—H16125.6
C8—N4—H4125.8C16—C17—N8106.5 (2)
C7—N4—H4125.8C16—C17—H17126.7
C7—C6—N3108.7 (2)N8—C17—H17126.7
C7—C6—H6125.6N7—C18—N8109.0 (2)
N3—C6—H6125.6N7—C18—C19126.5 (2)
C6—C7—N4106.3 (2)N8—C18—C19124.5 (2)
C6—C7—H7126.8C18—C19—C20112.2 (3)
N4—C7—H7126.8C18—C19—H19A109.2
N3—C8—N4109.8 (2)C20—C19—H19A109.2
N3—C8—C9126.1 (2)C18—C19—H19B109.2
N4—C8—C9124.0 (2)C20—C19—H19B109.2
C8—C9—C10112.7 (2)H19A—C19—H19B107.9
C8—C9—H9A109.1C19—C20—H20A109.5
C10—C9—H9A109.1C19—C20—H20B109.5
C8—C9—H9B109.1H20A—C20—H20B109.5
C10—C9—H9B109.1C19—C20—H20C109.5
H9A—C9—H9B107.8H20A—C20—H20C109.5
C9—C10—H10A109.5H20B—C20—H20C109.5
N3—Cu1—N1—C3118.9 (2)N3—Cu1—N5—C1357.2 (2)
N7—Cu1—N1—C353.2 (2)N7—Cu1—N5—C13115.0 (2)
Br1—Cu1—N1—C3147.3 (2)Br1—Cu1—N5—C13151.0 (2)
N3—Cu1—N1—C160.63 (19)N3—Cu1—N5—C11126.8 (2)
N7—Cu1—N1—C1127.22 (19)N7—Cu1—N5—C1161.0 (2)
Br1—Cu1—N1—C133.14 (18)Br1—Cu1—N5—C1133.0 (2)
C3—N1—C1—C20.7 (3)C13—N5—C11—C120.7 (3)
Cu1—N1—C1—C2179.70 (18)Cu1—N5—C11—C12177.6 (2)
N1—C1—C2—N20.5 (3)N5—C11—C12—N60.2 (4)
C3—N2—C2—C10.1 (3)C13—N6—C12—C110.5 (4)
C1—N1—C3—N20.6 (3)C11—N5—C13—N61.0 (3)
Cu1—N1—C3—N2179.83 (16)Cu1—N5—C13—N6177.53 (18)
C1—N1—C3—C4177.1 (2)C11—N5—C13—C14179.6 (3)
Cu1—N1—C3—C42.5 (4)Cu1—N5—C13—C143.0 (4)
C2—N2—C3—N10.3 (3)C12—N6—C13—N51.0 (3)
C2—N2—C3—C4177.5 (2)C12—N6—C13—C14179.6 (3)
N1—C3—C4—C5107.0 (3)N5—C13—C14—C15104.3 (3)
N2—C3—C4—C575.6 (3)N6—C13—C14—C1575.1 (3)
N5—Cu1—N3—C8117.5 (2)N5—Cu1—N7—C1862.3 (2)
N1—Cu1—N3—C858.1 (2)N1—Cu1—N7—C18113.3 (2)
Br1—Cu1—N3—C8151.00 (19)Br1—Cu1—N7—C18153.7 (2)
N5—Cu1—N3—C668.5 (2)N5—Cu1—N7—C16111.1 (2)
N1—Cu1—N3—C6115.9 (2)N1—Cu1—N7—C1673.3 (2)
Br1—Cu1—N3—C623.00 (19)Br1—Cu1—N7—C1619.70 (19)
C8—N3—C6—C70.8 (3)C18—N7—C16—C171.1 (3)
Cu1—N3—C6—C7174.24 (17)Cu1—N7—C16—C17173.44 (17)
N3—C6—C7—N40.4 (3)N7—C16—C17—N80.7 (3)
C8—N4—C7—C60.2 (3)C18—N8—C17—C160.0 (3)
C6—N3—C8—N40.9 (3)C16—N7—C18—N81.1 (3)
Cu1—N3—C8—N4174.05 (15)Cu1—N7—C18—N8173.31 (16)
C6—N3—C8—C9177.0 (2)C16—N7—C18—C19178.9 (2)
Cu1—N3—C8—C98.0 (3)Cu1—N7—C18—C196.7 (4)
C7—N4—C8—N30.7 (3)C17—N8—C18—N70.7 (3)
C7—N4—C8—C9177.3 (2)C17—N8—C18—C19179.3 (3)
N3—C8—C9—C10119.5 (3)N7—C18—C19—C20116.9 (3)
N4—C8—C9—C1062.9 (3)N8—C18—C19—C2063.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Br1i0.882.563.405 (2)161
N4—H4···Br2ii0.882.463.336 (2)176
N6—H6A···Br20.882.473.302 (2)157
N8—H8···Br1iii0.882.563.432 (2)172
C17—H17···Br2iv0.952.893.653 (3)138
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1/2, y+3/2, z1/2; (iv) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CuBr(C5H8N2)4]Br
Mr607.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)10.1771 (2), 19.9230 (3), 12.5723 (2)
β (°) 90.386 (2)
V3)2549.08 (8)
Z4
Radiation typeCu Kα
µ (mm1)5.06
Crystal size (mm)0.21 × 0.20 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire3, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.416, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
9229, 4058, 3719
Rint0.020
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.05
No. of reflections4058
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N31.9914 (19)Cu1—N12.0250 (19)
Cu1—N71.9918 (19)Cu1—Br13.0125 (4)
Cu1—N52.014 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Br1i0.882.563.405 (2)161
N4—H4···Br2ii0.882.463.336 (2)176
N6—H6A···Br20.882.473.302 (2)157
N8—H8···Br1iii0.882.563.432 (2)172
C17—H17···Br2iv0.952.893.653 (3)138
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1/2, y+3/2, z1/2; (iv) x+3/2, y1/2, z+3/2.
 

Acknowledgements

SG acknowledges the outgoing scholarship for her stay in Kaiserslautern within project No. POKL.04.01.01-00-368/09 co-financed by the European Union (the European Social Fund) and the Polish Ministry of Science and Higher Education.

References

First citationGodlewska, S., Socha, J., Baranowska, K. & Dołęga, A. (2011). Acta Cryst. E67, m1338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C., Wriedt, M. & Jeß, I. (2002a). Acta Cryst. E58, m63–m64.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C., Wriedt, M. & Jeß, I. (2002b). Acta Cryst. E58, m107–m109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationParker, O. J. & Breneman, G. L. (1995). Acta Cryst. C51, 1097–1099.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds