organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Chloro­benzyl­­idene)-4-hy­dr­oxy­benzohydrazide

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bPCSIR Labortories Complex, Karachi, Shahrah-e-Dr. Salmuzzaman Siddiqui, Karachi 75280, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 22 November 2012; accepted 25 November 2012; online 30 November 2012)

The mol­ecule of the title compound, C14H11ClN2O2 adopts an E conformation of the azomethine double bond and the dihedral angle between the benzene rings is 38.96 (13)°. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O (with the ketone O atom as acceptor) and C—H⋯O (with the hy­droxy O atom as acceptor) hydrogen bonds, forming a three-dimensional network.

Related literature

For a related structure and background to the chemistry of the N-acyl­hydrazone unit, see: Taha et al. (2012[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846.]). For a related structure, see: Hao (2009[Hao, Y.-M. (2009). Acta Cryst. E65, o2098.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2

  • Mr = 274.70

  • Orthorhombic, P n a 21

  • a = 9.0900 (8) Å

  • b = 9.9396 (9) Å

  • c = 13.8615 (12) Å

  • V = 1252.40 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.27 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.970

  • 6999 measured reflections

  • 2274 independent reflections

  • 1980 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.081

  • S = 1.02

  • 2274 reflections

  • 180 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1060 Friedel pairs

  • Flack parameter: 0.12 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.84 (2) 2.20 (2) 3.026 (3) 169 (3)
O2—H2B⋯O1ii 0.79 (3) 2.01 (3) 2.739 (3) 154 (3)
C4—H4A⋯O2iii 0.93 2.55 3.216 (3) 128
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x+2, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of the N-acylhydrazone moiety (Taha et al., 2012), we now describe the structure of the title compound, which is similar to that of the previously published N'-(2-Chlorobenzylidene)-4-hydroxybenzohydrazide (Hao, 2009) with the difference that 2-chlorobenzne ring is replaced by 3-chlorophenyl ring (C1–C6). In the crystal, N2—H2A···O1, O2—H2B···O1,and C4—H4A···O2 hydrogen bonds link the moleucles into a three-dimensional-network (Table 2 and Fig. 2).

Related literature top

For a related structure and background to the chemistry of the N-acylhydrazone unit, see: Taha et al. (2012). For a related structure, see: Hao (2009).

Experimental top

The title compound was synthesized by refluxing a mixture of 3-chlorobenzaldehyde (2 mmol, 0.23 ml), methanol (20 ml) and 3 drops of acetic acid. 4-hydroxybenzohydrazide (2 mmol, 0.304 g) was added into above mentioned mixture at ambient temperature and refluxed for 3 h with vigorous stirring. Progress of the reaction mixture was monitored by thin layer chromatography. After the completion of the reaction (TLC Analysis), the solvent of the reaction mixture was slowly evaporated at room temperature by keeping it in an open atmosphere in order to obtained colourless blocks (0.44 g, 80.3% yield).

Refinement top

H atoms on phenyl ring and methine carbon were positioned 0.93 Å (CH) and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(CH). The H atoms on the nitrogen (N–H= 0.79 (3) Å) and oxygen (O–H= 0.89 (2) Å) atoms were located in difference fourier maps and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound I. Only hydrogen atoms involved in hydrogen bonding are shown.
N'-(3-Chlorobenzylidene)-4-hydroxybenzohydrazide top
Crystal data top
C14H11ClN2O2Dx = 1.457 Mg m3
Mr = 274.70Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1415 reflections
a = 9.0900 (8) Åθ = 2.5–23.8°
b = 9.9396 (9) ŵ = 0.30 mm1
c = 13.8615 (12) ÅT = 293 K
V = 1252.40 (19) Å3Block, colorles
Z = 40.27 × 0.11 × 0.10 mm
F(000) = 568
Data collection top
Bruker SMART APEX CCD
diffractometer
2274 independent reflections
Radiation source: fine-focus sealed tube1980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scanθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.923, Tmax = 0.970k = 1012
6999 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0383P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2274 reflectionsΔρmax = 0.21 e Å3
180 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1060 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (9)
Crystal data top
C14H11ClN2O2V = 1252.40 (19) Å3
Mr = 274.70Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.0900 (8) ŵ = 0.30 mm1
b = 9.9396 (9) ÅT = 293 K
c = 13.8615 (12) Å0.27 × 0.11 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2274 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1980 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.970Rint = 0.037
6999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081Δρmax = 0.21 e Å3
S = 1.02Δρmin = 0.20 e Å3
2274 reflectionsAbsolute structure: Flack (1983), 1060 Friedel pairs
180 parametersAbsolute structure parameter: 0.12 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75369 (7)0.98855 (8)0.02100 (8)0.0540 (2)
O11.15017 (17)0.62769 (17)0.54009 (13)0.0374 (4)
O20.8459 (2)0.6183 (2)0.95100 (14)0.0518 (6)
H2B0.874 (4)0.549 (3)0.971 (2)0.059 (11)*
N11.0036 (2)0.7862 (2)0.41778 (15)0.0339 (5)
N20.9609 (2)0.7697 (2)0.51292 (16)0.0340 (5)
H2A0.878 (3)0.799 (2)0.529 (2)0.032 (7)*
C10.8540 (3)0.9246 (3)0.19819 (17)0.0353 (6)
H1B0.76330.95460.22060.042*
C20.8869 (3)0.9307 (3)0.10113 (19)0.0359 (6)
C31.0208 (3)0.8895 (3)0.06536 (19)0.0391 (7)
H3A1.04070.89310.00040.047*
C41.1252 (3)0.8426 (3)0.1302 (2)0.0437 (7)
H4A1.21750.81690.10780.052*
C51.0943 (3)0.8336 (3)0.2265 (2)0.0405 (7)
H5A1.16540.80080.26860.049*
C60.9579 (3)0.8729 (2)0.26244 (17)0.0317 (6)
C70.9198 (3)0.8545 (2)0.36386 (18)0.0354 (6)
H7A0.83440.89270.38870.043*
C81.0415 (3)0.6900 (2)0.57049 (19)0.0307 (6)
C90.9925 (2)0.6764 (2)0.67131 (18)0.0301 (6)
C101.0357 (3)0.5631 (3)0.72305 (19)0.0349 (6)
H10A1.09710.50030.69380.042*
C110.9897 (3)0.5416 (3)0.81628 (18)0.0357 (6)
H11A1.01960.46510.84960.043*
C120.8986 (3)0.6348 (3)0.85996 (18)0.0364 (6)
C130.8576 (3)0.7497 (3)0.81142 (19)0.0446 (7)
H13A0.79910.81370.84190.053*
C140.9029 (3)0.7698 (3)0.71824 (18)0.0400 (6)
H14A0.87350.84710.68570.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0529 (4)0.0712 (5)0.0378 (4)0.0143 (4)0.0044 (4)0.0075 (4)
O10.0349 (9)0.0442 (10)0.0330 (11)0.0057 (8)0.0062 (8)0.0020 (8)
O20.0712 (14)0.0554 (15)0.0289 (12)0.0118 (11)0.0139 (10)0.0100 (11)
N10.0393 (12)0.0384 (12)0.0240 (12)0.0034 (10)0.0052 (9)0.0007 (9)
N20.0333 (11)0.0452 (13)0.0237 (12)0.0008 (10)0.0092 (11)0.0022 (11)
C10.0346 (13)0.0401 (15)0.0311 (16)0.0029 (12)0.0072 (11)0.0000 (11)
C20.0440 (15)0.0345 (15)0.0292 (15)0.0000 (11)0.0006 (12)0.0019 (11)
C30.0500 (16)0.0418 (16)0.0255 (15)0.0020 (13)0.0134 (12)0.0053 (12)
C40.0408 (15)0.0499 (18)0.0403 (19)0.0084 (13)0.0128 (13)0.0071 (14)
C50.0395 (14)0.0500 (17)0.0321 (16)0.0065 (13)0.0040 (12)0.0058 (13)
C60.0386 (14)0.0308 (14)0.0257 (15)0.0007 (11)0.0042 (11)0.0033 (12)
C70.0364 (14)0.0384 (16)0.0315 (16)0.0025 (12)0.0065 (12)0.0004 (13)
C80.0299 (12)0.0322 (14)0.0299 (15)0.0051 (11)0.0001 (10)0.0018 (11)
C90.0295 (13)0.0356 (15)0.0252 (15)0.0020 (11)0.0003 (10)0.0020 (11)
C100.0355 (13)0.0359 (15)0.0332 (16)0.0057 (12)0.0009 (12)0.0021 (12)
C110.0401 (14)0.0357 (16)0.0313 (16)0.0039 (12)0.0037 (12)0.0073 (12)
C120.0380 (14)0.0457 (17)0.0253 (15)0.0034 (12)0.0009 (12)0.0010 (13)
C130.0578 (17)0.0432 (16)0.0327 (16)0.0138 (13)0.0094 (13)0.0026 (14)
C140.0520 (16)0.0368 (15)0.0311 (16)0.0105 (13)0.0046 (12)0.0051 (12)
Geometric parameters (Å, º) top
Cl1—C21.741 (3)C5—C61.392 (3)
O1—C81.240 (3)C5—H5A0.9300
O2—C121.359 (3)C6—C71.460 (3)
O2—H2B0.79 (3)C7—H7A0.9300
N1—C71.265 (3)C8—C91.473 (3)
N1—N21.384 (3)C9—C101.392 (3)
N2—C81.342 (3)C9—C141.396 (3)
N2—H2A0.84 (2)C10—C111.375 (3)
C1—C21.380 (3)C10—H10A0.9300
C1—C61.396 (3)C11—C121.382 (4)
C1—H1B0.9300C11—H11A0.9300
C2—C31.376 (3)C12—C131.377 (4)
C3—C41.388 (4)C13—C141.370 (4)
C3—H3A0.9300C13—H13A0.9300
C4—C51.368 (4)C14—H14A0.9300
C4—H4A0.9300
C12—O2—H2B109 (2)N1—C7—H7A120.2
C7—N1—N2117.2 (2)C6—C7—H7A120.2
C8—N2—N1118.9 (2)O1—C8—N2121.9 (2)
C8—N2—H2A122.6 (19)O1—C8—C9121.2 (2)
N1—N2—H2A117.6 (19)N2—C8—C9117.0 (2)
C2—C1—C6119.4 (2)C10—C9—C14117.6 (2)
C2—C1—H1B120.3C10—C9—C8118.6 (2)
C6—C1—H1B120.3C14—C9—C8123.9 (2)
C3—C2—C1122.0 (2)C11—C10—C9121.6 (2)
C3—C2—Cl1118.9 (2)C11—C10—H10A119.2
C1—C2—Cl1119.1 (2)C9—C10—H10A119.2
C2—C3—C4118.1 (2)C10—C11—C12119.3 (2)
C2—C3—H3A120.9C10—C11—H11A120.3
C4—C3—H3A120.9C12—C11—H11A120.3
C5—C4—C3120.9 (2)O2—C12—C13117.2 (2)
C5—C4—H4A119.6O2—C12—C11122.5 (2)
C3—C4—H4A119.6C13—C12—C11120.3 (2)
C4—C5—C6120.9 (3)C14—C13—C12120.0 (2)
C4—C5—H5A119.5C14—C13—H13A120.0
C6—C5—H5A119.5C12—C13—H13A120.0
C5—C6—C1118.5 (2)C13—C14—C9121.1 (2)
C5—C6—C7121.4 (2)C13—C14—H14A119.4
C1—C6—C7120.0 (2)C9—C14—H14A119.4
N1—C7—C6119.6 (2)
C7—N1—N2—C8175.3 (2)N1—N2—C8—C9179.5 (2)
C6—C1—C2—C31.2 (4)O1—C8—C9—C1021.1 (3)
C6—C1—C2—Cl1177.28 (19)N2—C8—C9—C10157.1 (2)
C1—C2—C3—C41.0 (4)O1—C8—C9—C14159.9 (2)
Cl1—C2—C3—C4179.4 (2)N2—C8—C9—C1421.9 (3)
C2—C3—C4—C52.0 (4)C14—C9—C10—C111.4 (4)
C3—C4—C5—C60.8 (4)C8—C9—C10—C11177.6 (2)
C4—C5—C6—C11.4 (4)C9—C10—C11—C120.1 (4)
C4—C5—C6—C7175.4 (3)C10—C11—C12—O2178.3 (2)
C2—C1—C6—C52.3 (4)C10—C11—C12—C131.7 (4)
C2—C1—C6—C7174.4 (2)O2—C12—C13—C14177.8 (3)
N2—N1—C7—C6178.8 (2)C11—C12—C13—C142.3 (4)
C5—C6—C7—N19.2 (4)C12—C13—C14—C91.0 (4)
C1—C6—C7—N1167.4 (2)C10—C9—C14—C130.8 (4)
N1—N2—C8—O12.3 (3)C8—C9—C14—C13178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.84 (2)2.20 (2)3.026 (3)169 (3)
O2—H2B···O1ii0.79 (3)2.01 (3)2.739 (3)154 (3)
C4—H4A···O2iii0.932.553.216 (3)128
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+2, y+1, z+1/2; (iii) x+1/2, y+3/2, z1.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2
Mr274.70
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)9.0900 (8), 9.9396 (9), 13.8615 (12)
V3)1252.40 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.27 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.923, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
6999, 2274, 1980
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.081, 1.02
No. of reflections2274
No. of parameters180
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20
Absolute structureFlack (1983), 1060 Friedel pairs
Absolute structure parameter0.12 (9)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.84 (2)2.20 (2)3.026 (3)169 (3)
O2—H2B···O1ii0.79 (3)2.01 (3)2.739 (3)154 (3)
C4—H4A···O2iii0.932.553.216 (3)128
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+2, y+1, z+1/2; (iii) x+1/2, y+3/2, z1.
 

Acknowledgements

The authors are thankful to the Higher Education Commission (HEC) Pakistan (project No. 20–2073) and Pakistan Academy of Sciences (PAS) for their financial support.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHao, Y.-M. (2009). Acta Cryst. E65, o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds