metal-organic compounds
cis-Dichloridobis(N,N,N′,N′-tetramethylethane-1,2-diamine)platinum(II)
aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan
*Correspondence e-mail: mnachemist@hotmail.com, sthbukhari@yahoo.co.uk
In the title complex, [PtCl2(C6H16N2)], the PtII atom adopts a distorted cis-PtN2Cl2 square-planar coordination geometry. The five-membered chelate ring adopts a twisted conformation. In the crystal, weak C—H⋯Cl hydrogen bonds link the molecules into (001) sheets.
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).
Supporting information
10.1107/S1600536812048295/hb7001sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812048295/hb7001Isup2.hkl
In a round bottom flask took 50 ml of distilled water, 0.5 ml conc. HCL, 0.036 ml of tetramethylethylenediamine (tmeda) (0.24 mmol) and K2PtCl4 (0.24 mmol). Refluxed the mixture for about 2 hrs. The solution was changed to pale yellow, it was allowed to cool to room temperature then kept in refrigerator overnight. Pale yellow needles were formed which were filtered, washed with ethanol then with diethylether and dried on vacuum line.
All the C—H H-atoms were positioned with idealized geometry with C—H = 0.97 Å for methylene, & C—H = 0.96 Å for methyl groups. H-atoms were refined as riding with Uiso(H) = kUeq(C, N), where k = 1.2 for methylene and k = 1.5 for methyl H-atoms.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).[PtCl2(C6H16N2)] | F(000) = 712 |
Mr = 382.20 | Dx = 2.397 Mg m−3 |
Monoclinic, Ia | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: I -2ya | Cell parameters from 6609 reflections |
a = 11.8893 (2) Å | θ = 4.0–74.3° |
b = 6.0207 (1) Å | µ = 28.99 mm−1 |
c = 15.8036 (3) Å | T = 296 K |
β = 110.549 (2)° | Cut needle, yellow |
V = 1059.27 (3) Å3 | 0.22 × 0.21 × 0.07 mm |
Z = 4 |
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD) diffractometer | 2091 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2067 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.047 |
ω scans | θmax = 74.5°, θmin = 8.0° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | h = −14→14 |
Tmin = 0.149, Tmax = 1.000 | k = −6→7 |
6899 measured reflections | l = −19→19 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.1007P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.116 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 1.83 e Å−3 |
2091 reflections | Δρmin = −2.02 e Å−3 |
105 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.00105 (13) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1005 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.02 (2) |
[PtCl2(C6H16N2)] | V = 1059.27 (3) Å3 |
Mr = 382.20 | Z = 4 |
Monoclinic, Ia | Cu Kα radiation |
a = 11.8893 (2) Å | µ = 28.99 mm−1 |
b = 6.0207 (1) Å | T = 296 K |
c = 15.8036 (3) Å | 0.22 × 0.21 × 0.07 mm |
β = 110.549 (2)° |
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD) diffractometer | 2091 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2067 reflections with I > 2σ(I) |
Tmin = 0.149, Tmax = 1.000 | Rint = 0.047 |
6899 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.116 | Δρmax = 1.83 e Å−3 |
S = 1.03 | Δρmin = −2.02 e Å−3 |
2091 reflections | Absolute structure: Flack (1983), 1005 Friedel pairs |
105 parameters | Absolute structure parameter: −0.02 (2) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.5018 (3) | 0.74348 (4) | 0.3050 (2) | 0.0267 (2) | |
Cl1 | 0.4170 (2) | 0.9830 (3) | 0.37829 (16) | 0.0534 (5) | |
Cl2 | 0.3628 (2) | 0.8443 (5) | 0.16737 (16) | 0.0595 (6) | |
N1 | 0.6301 (5) | 0.6421 (11) | 0.4255 (3) | 0.0315 (11) | |
N2 | 0.5876 (5) | 0.5269 (10) | 0.2453 (3) | 0.0354 (12) | |
C1 | 0.5722 (6) | 0.5088 (14) | 0.4782 (4) | 0.0471 (19) | |
H1A | 0.6327 | 0.4523 | 0.5318 | 0.071* | |
H1B | 0.5291 | 0.3870 | 0.4420 | 0.071* | |
H1C | 0.5174 | 0.6009 | 0.4949 | 0.071* | |
C2 | 0.6976 (8) | 0.828 (2) | 0.4835 (5) | 0.0472 (18) | |
H2A | 0.6438 | 0.9147 | 0.5034 | 0.071* | |
H2B | 0.7320 | 0.9203 | 0.4494 | 0.071* | |
H2C | 0.7604 | 0.7687 | 0.5351 | 0.071* | |
C3 | 0.7209 (7) | 0.5022 (14) | 0.4027 (4) | 0.0481 (18) | |
H3A | 0.7820 | 0.5970 | 0.3941 | 0.058* | |
H3B | 0.7599 | 0.4007 | 0.4519 | 0.058* | |
C4 | 0.6581 (7) | 0.3734 (14) | 0.3176 (5) | 0.0483 (16) | |
H4A | 0.7168 | 0.2957 | 0.2988 | 0.058* | |
H4B | 0.6051 | 0.2640 | 0.3288 | 0.058* | |
C5 | 0.6643 (9) | 0.6529 (18) | 0.2053 (6) | 0.058 (2) | |
H5A | 0.7253 | 0.7315 | 0.2522 | 0.087* | |
H5B | 0.6157 | 0.7570 | 0.1618 | 0.087* | |
H5C | 0.7014 | 0.5516 | 0.1762 | 0.087* | |
C6 | 0.5055 (10) | 0.3861 (19) | 0.1728 (7) | 0.073 (3) | |
H6A | 0.5513 | 0.2764 | 0.1549 | 0.109* | |
H6B | 0.4627 | 0.4771 | 0.1218 | 0.109* | |
H6C | 0.4493 | 0.3136 | 0.1948 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.0225 (3) | 0.0267 (3) | 0.0262 (3) | −0.0006 (2) | 0.00272 (17) | 0.00193 (19) |
Cl1 | 0.0403 (8) | 0.0435 (11) | 0.0769 (11) | 0.0024 (7) | 0.0214 (8) | −0.0180 (9) |
Cl2 | 0.0491 (9) | 0.0623 (17) | 0.0450 (8) | 0.0031 (10) | −0.0111 (6) | 0.0197 (10) |
N1 | 0.027 (2) | 0.042 (4) | 0.020 (2) | −0.002 (2) | 0.001 (2) | 0.002 (2) |
N2 | 0.036 (2) | 0.039 (3) | 0.033 (2) | 0.005 (2) | 0.014 (2) | −0.001 (2) |
C1 | 0.045 (4) | 0.056 (5) | 0.033 (3) | −0.009 (3) | 0.005 (3) | 0.013 (3) |
C2 | 0.044 (4) | 0.056 (6) | 0.033 (4) | −0.025 (4) | 0.003 (3) | −0.013 (4) |
C3 | 0.038 (3) | 0.061 (5) | 0.036 (3) | 0.019 (3) | 0.002 (3) | 0.003 (3) |
C4 | 0.046 (4) | 0.046 (4) | 0.050 (4) | 0.018 (3) | 0.014 (3) | 0.005 (3) |
C5 | 0.068 (5) | 0.064 (7) | 0.057 (4) | 0.005 (5) | 0.040 (4) | 0.010 (4) |
C6 | 0.079 (6) | 0.069 (7) | 0.065 (5) | 0.000 (5) | 0.019 (4) | −0.037 (5) |
Pt1—N1 | 2.071 (7) | C2—H2B | 0.9600 |
Pt1—N2 | 2.076 (6) | C2—H2C | 0.9600 |
Pt1—Cl1 | 2.292 (4) | C3—C4 | 1.504 (11) |
Pt1—Cl2 | 2.304 (5) | C3—H3A | 0.9700 |
N1—C1 | 1.488 (7) | C3—H3B | 0.9700 |
N1—C2 | 1.490 (10) | C4—H4A | 0.9700 |
N1—C3 | 1.510 (8) | C4—H4B | 0.9700 |
N2—C4 | 1.480 (9) | C5—H5A | 0.9600 |
N2—C5 | 1.486 (9) | C5—H5B | 0.9600 |
N2—C6 | 1.483 (10) | C5—H5C | 0.9600 |
C1—H1A | 0.9600 | C6—H6A | 0.9600 |
C1—H1B | 0.9600 | C6—H6B | 0.9600 |
C1—H1C | 0.9600 | C6—H6C | 0.9600 |
C2—H2A | 0.9600 | ||
N1—Pt1—N2 | 84.9 (3) | N1—C2—H2C | 109.5 |
N1—Pt1—Cl1 | 91.9 (2) | H2A—C2—H2C | 109.5 |
N2—Pt1—Cl1 | 176.7 (3) | H2B—C2—H2C | 109.5 |
N1—Pt1—Cl2 | 177.2 (2) | C4—C3—N1 | 109.2 (5) |
N2—Pt1—Cl2 | 92.3 (2) | C4—C3—H3A | 109.8 |
Cl1—Pt1—Cl2 | 90.83 (16) | N1—C3—H3A | 109.8 |
C1—N1—C2 | 108.4 (5) | C4—C3—H3B | 109.8 |
C1—N1—C3 | 110.1 (6) | N1—C3—H3B | 109.8 |
C2—N1—C3 | 106.9 (6) | H3A—C3—H3B | 108.3 |
C1—N1—Pt1 | 109.7 (4) | N2—C4—C3 | 109.7 (6) |
C2—N1—Pt1 | 114.1 (6) | N2—C4—H4A | 109.7 |
C3—N1—Pt1 | 107.6 (3) | C3—C4—H4A | 109.7 |
C4—N2—C5 | 112.4 (6) | N2—C4—H4B | 109.7 |
C4—N2—C6 | 106.3 (7) | C3—C4—H4B | 109.7 |
C5—N2—C6 | 107.4 (6) | H4A—C4—H4B | 108.2 |
C4—N2—Pt1 | 106.0 (4) | N2—C5—H5A | 109.5 |
C5—N2—Pt1 | 110.2 (5) | N2—C5—H5B | 109.5 |
C6—N2—Pt1 | 114.5 (5) | H5A—C5—H5B | 109.5 |
N1—C1—H1A | 109.5 | N2—C5—H5C | 109.5 |
N1—C1—H1B | 109.5 | H5A—C5—H5C | 109.5 |
H1A—C1—H1B | 109.5 | H5B—C5—H5C | 109.5 |
N1—C1—H1C | 109.5 | N2—C6—H6A | 109.5 |
H1A—C1—H1C | 109.5 | N2—C6—H6B | 109.5 |
H1B—C1—H1C | 109.5 | H6A—C6—H6B | 109.5 |
N1—C2—H2A | 109.5 | N2—C6—H6C | 109.5 |
N1—C2—H2B | 109.5 | H6A—C6—H6C | 109.5 |
H2A—C2—H2B | 109.5 | H6B—C6—H6C | 109.5 |
N2—Pt1—N1—C1 | −111.5 (5) | Cl1—Pt1—N2—C5 | −82 (4) |
Cl1—Pt1—N1—C1 | 69.7 (5) | Cl2—Pt1—N2—C5 | 77.3 (5) |
Cl2—Pt1—N1—C1 | −108 (5) | N1—Pt1—N2—C6 | 135.9 (7) |
N2—Pt1—N1—C2 | 126.6 (4) | Cl1—Pt1—N2—C6 | 157 (4) |
Cl1—Pt1—N1—C2 | −52.2 (4) | Cl2—Pt1—N2—C6 | −43.9 (7) |
Cl2—Pt1—N1—C2 | 130 (5) | C1—N1—C3—C4 | 85.3 (7) |
N2—Pt1—N1—C3 | 8.3 (5) | C2—N1—C3—C4 | −157.2 (7) |
Cl1—Pt1—N1—C3 | −170.5 (5) | Pt1—N1—C3—C4 | −34.3 (8) |
Cl2—Pt1—N1—C3 | 11 (5) | C5—N2—C4—C3 | 76.8 (8) |
N1—Pt1—N2—C4 | 19.1 (5) | C6—N2—C4—C3 | −165.9 (6) |
Cl1—Pt1—N2—C4 | 40 (4) | Pt1—N2—C4—C3 | −43.7 (7) |
Cl2—Pt1—N2—C4 | −160.7 (5) | N1—C3—C4—N2 | 53.2 (8) |
N1—Pt1—N2—C5 | −102.8 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···Cl1i | 0.96 | 2.79 | 3.724 (8) | 166 |
C4—H4A···Cl1ii | 0.97 | 2.82 | 3.596 (7) | 137 |
Symmetry codes: (i) x, y−1, z; (ii) x+1/2, −y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [PtCl2(C6H16N2)] |
Mr | 382.20 |
Crystal system, space group | Monoclinic, Ia |
Temperature (K) | 296 |
a, b, c (Å) | 11.8893 (2), 6.0207 (1), 15.8036 (3) |
β (°) | 110.549 (2) |
V (Å3) | 1059.27 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 28.99 |
Crystal size (mm) | 0.22 × 0.21 × 0.07 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas, CCD) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.149, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6899, 2091, 2067 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.116, 1.03 |
No. of reflections | 2091 |
No. of parameters | 105 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.83, −2.02 |
Absolute structure | Flack (1983), 1005 Friedel pairs |
Absolute structure parameter | −0.02 (2) |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···Cl1i | 0.96 | 2.79 | 3.724 (8) | 166 |
C4—H4A···Cl1ii | 0.97 | 2.82 | 3.596 (7) | 137 |
Symmetry codes: (i) x, y−1, z; (ii) x+1/2, −y+1, z. |
Acknowledgements
The authors thank the deanship of scientific research at King Abdulaziz University for the support of this research via Research Group Track of grant No. (3-102/428).
References
Abellán-López, A., Chicote-Olalla, M. T. & Bautista-Cerezo, D. (2012). Acta Cryst. E68, m1129. CSD CrossRef IUCr Journals Google Scholar
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Boyle, R. C., Mague, J. T. & Fink, M. J. (2004). Acta Cryst. E60, m40–m41. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is structurally related with already reported structures of complexes of the type of [MX2(N–N)] (N–N = chelating nitrongen donor ligand) like cis-diiodido(N,N,N',N' -tetramethylethylenediamine-k2N,N')palladium(II) (Abellán-López, et al. 2012) (II) and cis-dichloro(N,N,N'N'-tetramethyl-1,2-diaminoethane) palladium(II) (Boyle et al. 2004) (III).
In the structure of molecule I shown in Fig. 1, geometry around the Platinum atom is distorted square planer as N1-Pt1-N2 angle is 84.95 (3)° and Pt to its four co-ordinated atoms distances are [Pt-N = 2.071 (7) Å] and [Pt-Cl = 2.30 (5) Å]. The coordinated ligand atoms and Pt(II) are coplanar with r.m.s. deviation of 0.0119 Å. The planes of the two N(CH3)2 fragments are twisted at an angle of 12.53(1.05)°. The five membered ring formed by coordination of ligand atoms and metal is nonplaner with r.m.s. deviation of 0.1947 (4)Å and both the halogen atoms (Cl1 & Cl2) are displaced from the least square plane defined by (Pt1/N1/C3/C4/N2) by -0.2216 (1) Å & 0.0425 (1) Å respectively. In the crystal, C—H···Cl interactions link the molecules into (001) sheets (Table 2, Fig. 2).