metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Ferrocen-1-ylmeth­yl)-3-methyl­imidazol-3-ium iodide

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: owaga@ukzn.ac.za

(Received 4 October 2012; accepted 2 November 2012; online 10 November 2012)

The structure of the title compound, [Fe(C5H5)(C10H12N2)]I, consists of a 1-(ferrocen-1-ylmeth­yl)-3-methyl­imidazolium cation which is counter-balanced by an iodide anion. The cyclo­penta­dienyl (Cp) rings of the ferrocene unit have a slightly staggered conformation skewed from an ideal eclipsed conformation by an angle of 3.5 (6)°. The inter­planar angle between the Cp and the imidazole ring is 67.94 (2)°.

Related literature

For the synthesis of ferrocenyl alkyl imidazoles, see: Simenel et al. (2003[Simenel, A. A., Morozova, E. A., Kuzmenko, Y. V. & Snegur, L. V. (2003). J. Organomet. Chem. 665, 13-14.]); Nyamori & Bala (2008[Nyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1451.]). For the synthesis of ferrocenyl imidazolium salts, see: Nyamori et al. (2010[Nyamori, V. O., Gumede, M. & Bala, M. D. (2010). Organomet. Chem. 695, 1126-1132.], 2012[Nyamori, V. O., Zulu, S. M. & Omondi, B. (2012). Acta Cryst. E68, m353.]); Bala & Coville (2007[Bala, M. D. & Coville, N. J. (2007). J. Organomet. Chem. 692, 709-730.]). For applications of ferrocenyl imidazolium salts, see: Gao et al. (2004[Gao, Y., Twamley, B. & Shreeve, J. M. (2004). Inorg. Chem. 43, 3406-3412.]); Ornelas (2011[Ornelas, C. (2011). New J. Chem. 35, 1973-1975.]); Coleman et al. (2005[Coleman, K. S., Turberville, S., Pascu, S. I. & Green, M. L. H. (2005). J. Organomet. Chem. 690, 653-658.]); Taylor & Licence (2012[Taylor, A. W. & Licence, P. (2012). ChemPhysChem, 13, 1917-1926.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C10H12N2)]I

  • Mr = 408.06

  • Monoclinic, P 21 /c

  • a = 7.2745 (3) Å

  • b = 9.3164 (3) Å

  • c = 22.2744 (9) Å

  • β = 90.927 (3)°

  • V = 1509.39 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 23.96 mm−1

  • T = 173 K

  • 0.16 × 0.12 × 0.07 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), based on expressions of Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.114, Tmax = 0.285

  • 6978 measured reflections

  • 2972 independent reflections

  • 2745 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.20

  • 2972 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 2.51 e Å−3

  • Δρmin = −1.53 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The versatility of ferrocene has seen it be derivatized into a variety of compounds. Because of its stability and unique electronic and redox properties, ferrocene and its derivatives have been successfully applied with much success in various fields including medicinal chemistry (Ornelas, 2011, Simenel et al., 2003). Ferrocenyl imidazolium salts are a special class of ferrocene derivatives which have a cationic ferrocene-imidazole moiety [FcIm+] balanced by an inorganic anion X-. These compounds can be applied as ionic liquids (Taylor & Licence, 2012; Gao et al., 2004) and as precursors to ferrocenated imidazolium carbenes (Coleman et al., 2005). The title compound was synthesized via solvent-free conditions providing an economical and clean product requiring less tidious purification process similar to reactions by Bala and Coville (2007) in which one of the reagents is a liquid and acts as a solvating medium.

The average bond lengths between the iron atom (Fe1) and the centroids of the substituted Cp ring (C6–C10) and the unsubstituted Cp ring (C1–C5) are 2.0382 (6) and 2.0354(7.4). The cyclopentadienyl rings of the ferrocene moiety have a slightly staggered conformation. The staggering angle between the two rings is 3.5 (6)° which is smaller than that of Nyamori & Bala (2008), Nyamori et al., (2010) and Nyamori et al., (2012)

Related literature top

For the synthesis of ferrocenyl alkyl imidazoles, see: Simenel et al. (2003); Nyamori & Bala (2008). For the synthesis of ferrocenyl imidazolium salts, see: Nyamori et al. (2010, 2012); Bala & Coville (2007). For applications of ferrocenyl imidazolium salts, see: Gao et al. (2004); Ornelas, (2011); Coleman et al. (2005); Taylor et al. (2012).

Experimental top

In a round bottom flask, methyl iodide (1.64 ml, 3.75 g, 26.4 mmol) was added to 1-Ferrocenylmethyl-1H-imidazole (2.00 g, 7.50 mmol) and allowed to reflux for 12 hrs, at 50 °C under innert atmosphere. The reaction mixture was then allowed to cool to room temperature and washed with anhydrous diethylether (3 x 10 ml). A yellow solid was obtained, which was further dried invacuo. Yellow crystals crystals were obtained from recrystallization in diethylether (2.78 g, 91%); m.p. 134–136 °C (lit. 130–135 °C); IR (ATR cm-1) 3430, 3042, 1567, 1549, 1429, 1150, 1040, 837, 820, 755, 620, 500, 482; 1H NMR (CDCl3) 10.13 (1H, s, NCH), 7.16 (2H, m, NCH), 5.38 (1H, q, CH), 4.43 (2H, t, C5H4), 4.32 (2H, t, C5H4), 4.29 (5H, s, C5H5), 4.06 (3H, s, NCH3); 13C NMR (CDCl3) 136.12, 123.63, 121.91, 78.83, 70.09, 69.46, 50.12, 37.15; m/z (ESI) [M+] - I 281. (100%), 199 (60%); Anal. Calc. for C15H17N2Fe+ 281.07411.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.98 Å for Me H atoms, 0.99 Å for Methylene H atoms, 0.99–1.00 for methine H atoms and 0.95 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
1-(Ferrocen-1-ylmethyl)-3-methylimidazol-3-ium iodide top
Crystal data top
[Fe(C5H5)(C10H12N2)]IF(000) = 800
Mr = 408.06Dx = 1.796 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7295 reflections
a = 7.2745 (3) Åθ = 4.0–74°
b = 9.3164 (3) ŵ = 23.96 mm1
c = 22.2744 (9) ÅT = 173 K
β = 90.927 (3)°Block, yellow
V = 1509.39 (10) Å30.16 × 0.12 × 0.07 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2745 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
ω scansθmax = 74°, θmin = 4.0°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions of Clark & Reid (1995)]
h = 68
Tmin = 0.114, Tmax = 0.285k = 1011
6978 measured reflectionsl = 1927
2972 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0682P)2 + 3.7636P]
where P = (Fo2 + 2Fc2)/3
2972 reflections(Δ/σ)max = 0.011
173 parametersΔρmax = 2.51 e Å3
0 restraintsΔρmin = 1.53 e Å3
Crystal data top
[Fe(C5H5)(C10H12N2)]IV = 1509.39 (10) Å3
Mr = 408.06Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.2745 (3) ŵ = 23.96 mm1
b = 9.3164 (3) ÅT = 173 K
c = 22.2744 (9) Å0.16 × 0.12 × 0.07 mm
β = 90.927 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2972 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions of Clark & Reid (1995)]
2745 reflections with I > 2σ(I)
Tmin = 0.114, Tmax = 0.285Rint = 0.042
6978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.20Δρmax = 2.51 e Å3
2972 reflectionsΔρmin = 1.53 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3124 (13)0.0474 (8)0.7098 (3)0.0455 (18)
H10.37380.12010.68390.055*
C20.4011 (13)0.0604 (11)0.7444 (4)0.056 (2)
H20.53690.07680.74720.067*
C30.2664 (16)0.1406 (10)0.7745 (4)0.059 (3)
H30.28860.2230.80250.071*
C40.0912 (15)0.0802 (9)0.7577 (4)0.058 (2)
H40.03140.11480.77140.07*
C50.1209 (13)0.0329 (8)0.7183 (4)0.0477 (19)
H50.02310.09320.69880.057*
C60.2546 (8)0.3596 (6)0.6585 (3)0.0260 (12)
H60.28770.44160.68550.031*
C70.0720 (8)0.3107 (7)0.6449 (3)0.0284 (12)
H70.04450.35190.66080.034*
C80.0869 (8)0.1903 (7)0.6049 (3)0.0276 (12)
H80.01760.13210.58830.033*
C90.2748 (8)0.1664 (6)0.5945 (3)0.0244 (11)
H90.32620.08840.56890.029*
C100.3810 (8)0.2713 (6)0.6275 (3)0.0243 (11)
C110.5858 (8)0.2808 (6)0.6288 (3)0.0254 (12)
H11A0.62620.3420.66290.031*
H11B0.63840.18390.6350.031*
C120.6907 (8)0.2666 (6)0.5229 (3)0.0258 (11)
H120.67520.16590.51860.031*
C130.6956 (8)0.4835 (7)0.5609 (3)0.0294 (13)
H130.68490.56080.58850.035*
C140.7537 (8)0.4932 (7)0.5038 (3)0.0278 (12)
H140.78920.5780.48330.033*
C150.8032 (9)0.3090 (9)0.4206 (3)0.0357 (15)
H15A0.93380.28310.42070.053*
H15B0.78130.38810.39240.053*
H15C0.72930.22570.40830.053*
N10.6545 (7)0.3416 (5)0.5722 (2)0.0233 (10)
N20.7512 (7)0.3536 (6)0.4809 (2)0.0274 (10)
Fe10.22750 (13)0.15195 (10)0.68399 (4)0.0244 (2)
I10.69574 (5)0.11859 (4)0.579436 (17)0.02780 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.080 (6)0.023 (3)0.034 (3)0.010 (3)0.005 (3)0.010 (3)
C20.060 (5)0.059 (6)0.047 (4)0.006 (4)0.016 (4)0.032 (4)
C30.115 (8)0.036 (4)0.026 (3)0.014 (5)0.005 (4)0.003 (3)
C40.086 (6)0.035 (4)0.054 (5)0.004 (4)0.037 (5)0.016 (4)
C50.071 (5)0.023 (3)0.049 (4)0.016 (3)0.009 (4)0.008 (3)
C60.030 (3)0.017 (3)0.031 (3)0.004 (2)0.000 (2)0.000 (2)
C70.025 (3)0.022 (3)0.037 (3)0.001 (2)0.000 (2)0.001 (2)
C80.027 (3)0.025 (3)0.031 (3)0.007 (2)0.001 (2)0.002 (2)
C90.030 (3)0.015 (3)0.028 (3)0.000 (2)0.000 (2)0.000 (2)
C100.026 (3)0.017 (3)0.030 (3)0.003 (2)0.000 (2)0.003 (2)
C110.023 (3)0.021 (3)0.032 (3)0.004 (2)0.000 (2)0.005 (2)
C120.024 (3)0.016 (3)0.037 (3)0.003 (2)0.001 (2)0.002 (2)
C130.029 (3)0.014 (3)0.045 (4)0.002 (2)0.001 (2)0.001 (2)
C140.023 (3)0.016 (3)0.045 (3)0.001 (2)0.003 (2)0.003 (2)
C150.041 (4)0.035 (4)0.032 (3)0.001 (3)0.006 (3)0.002 (3)
N10.023 (2)0.014 (2)0.033 (3)0.0008 (18)0.0016 (18)0.0024 (19)
N20.026 (2)0.021 (2)0.035 (3)0.002 (2)0.0005 (19)0.004 (2)
Fe10.0326 (5)0.0163 (4)0.0243 (4)0.0031 (4)0.0020 (3)0.0002 (3)
I10.0357 (2)0.0139 (2)0.0336 (2)0.00001 (13)0.00212 (15)0.00010 (12)
Geometric parameters (Å, º) top
C1—C21.416 (13)C8—Fe12.054 (6)
C1—C51.415 (13)C8—H81
C1—Fe12.036 (7)C9—C101.441 (8)
C1—H11C9—Fe12.033 (6)
C2—C31.410 (15)C9—H91
C2—Fe12.020 (8)C10—C111.492 (8)
C2—H21C10—Fe12.028 (6)
C3—C41.438 (15)C11—N11.476 (7)
C3—Fe12.034 (8)C11—H11A0.99
C3—H31C11—H11B0.99
C4—C51.390 (12)C12—N21.319 (8)
C4—Fe12.044 (7)C12—N11.333 (8)
C4—H41C12—H120.95
C5—Fe12.042 (7)C13—C141.350 (9)
C5—H51C13—N11.380 (7)
C6—C101.420 (8)C13—H130.95
C6—C71.432 (8)C14—N21.397 (8)
C6—Fe12.027 (6)C14—H140.95
C6—H61C15—N21.461 (8)
C7—C81.437 (9)C15—H15A0.98
C7—Fe12.048 (6)C15—H15B0.98
C7—H71C15—H15C0.98
C8—C91.408 (8)
C2—C1—C5107.5 (7)N2—C12—N1109.6 (5)
C2—C1—Fe168.9 (4)N2—C12—H12125.2
C5—C1—Fe169.9 (4)N1—C12—H12125.2
C2—C1—H1126.3C14—C13—N1108.0 (6)
C5—C1—H1126.3C14—C13—H13126
Fe1—C1—H1126.3N1—C13—H13126
C3—C2—C1108.7 (8)C13—C14—N2106.2 (5)
C3—C2—Fe170.2 (5)C13—C14—H14126.9
C1—C2—Fe170.2 (4)N2—C14—H14126.9
C3—C2—H2125.6N2—C15—H15A109.5
C1—C2—H2125.6N2—C15—H15B109.5
Fe1—C2—H2125.6H15A—C15—H15B109.5
C2—C3—C4106.8 (8)N2—C15—H15C109.5
C2—C3—Fe169.1 (4)H15A—C15—H15C109.5
C4—C3—Fe169.7 (5)H15B—C15—H15C109.5
C2—C3—H3126.6C12—N1—C13107.8 (5)
C4—C3—H3126.6C12—N1—C11125.3 (5)
Fe1—C3—H3126.6C13—N1—C11126.9 (5)
C5—C4—C3108.4 (9)C12—N2—C14108.4 (5)
C5—C4—Fe170.0 (4)C12—N2—C15124.8 (6)
C3—C4—Fe169.0 (4)C14—N2—C15126.8 (6)
C5—C4—H4125.8C2—Fe1—C6121.8 (3)
C3—C4—H4125.8C2—Fe1—C10107.5 (3)
Fe1—C4—H4125.8C6—Fe1—C1041.0 (2)
C4—C5—C1108.7 (8)C2—Fe1—C9124.6 (3)
C4—C5—Fe170.2 (4)C6—Fe1—C969.1 (2)
C1—C5—Fe169.5 (4)C10—Fe1—C941.6 (2)
C4—C5—H5125.7C2—Fe1—C340.7 (4)
C1—C5—H5125.7C6—Fe1—C3108.4 (3)
Fe1—C5—H5125.7C10—Fe1—C3125.0 (3)
C10—C6—C7108.6 (5)C9—Fe1—C3162.2 (4)
C10—C6—Fe169.5 (3)C2—Fe1—C140.9 (4)
C7—C6—Fe170.2 (3)C6—Fe1—C1156.8 (3)
C10—C6—H6125.7C10—Fe1—C1120.5 (3)
C7—C6—H6125.7C9—Fe1—C1106.3 (3)
Fe1—C6—H6125.7C3—Fe1—C168.7 (3)
C6—C7—C8107.5 (5)C2—Fe1—C568.4 (4)
C6—C7—Fe168.6 (3)C6—Fe1—C5161.7 (3)
C8—C7—Fe169.7 (4)C10—Fe1—C5155.6 (3)
C6—C7—H7126.3C9—Fe1—C5119.6 (3)
C8—C7—H7126.3C3—Fe1—C568.5 (3)
Fe1—C7—H7126.3C1—Fe1—C540.6 (4)
C9—C8—C7108.0 (5)C2—Fe1—C468.5 (4)
C9—C8—Fe169.0 (3)C6—Fe1—C4126.0 (3)
C7—C8—Fe169.3 (4)C10—Fe1—C4163.1 (3)
C9—C8—H8126C9—Fe1—C4154.3 (4)
C7—C8—H8126C3—Fe1—C441.3 (4)
Fe1—C8—H8126C1—Fe1—C467.9 (4)
C8—C9—C10108.8 (5)C5—Fe1—C439.8 (3)
C8—C9—Fe170.7 (3)C2—Fe1—C7157.4 (4)
C10—C9—Fe169.0 (3)C6—Fe1—C741.2 (2)
C8—C9—H9125.6C10—Fe1—C769.3 (2)
C10—C9—H9125.6C9—Fe1—C768.7 (2)
Fe1—C9—H9125.6C3—Fe1—C7121.7 (4)
C6—C10—C9107.1 (5)C1—Fe1—C7160.3 (3)
C6—C10—C11127.6 (5)C5—Fe1—C7123.9 (3)
C9—C10—C11125.2 (5)C4—Fe1—C7107.8 (3)
C6—C10—Fe169.5 (3)C2—Fe1—C8160.5 (4)
C9—C10—Fe169.4 (3)C6—Fe1—C869.1 (2)
C11—C10—Fe1125.5 (4)C10—Fe1—C869.1 (2)
N1—C11—C10111.0 (5)C9—Fe1—C840.3 (2)
N1—C11—H11A109.4C3—Fe1—C8156.7 (4)
C10—C11—H11A109.4C1—Fe1—C8123.0 (3)
N1—C11—H11B109.4C5—Fe1—C8106.3 (3)
C10—C11—H11B109.4C4—Fe1—C8120.3 (4)
H11A—C11—H11B108C7—Fe1—C841.0 (3)
C5—C1—C2—C30.3 (8)C8—C9—Fe1—C10120.0 (5)
Fe1—C1—C2—C359.8 (6)C8—C9—Fe1—C3166.8 (10)
C5—C1—C2—Fe159.5 (5)C10—C9—Fe1—C346.8 (11)
C1—C2—C3—C40.0 (9)C8—C9—Fe1—C1122.2 (4)
Fe1—C2—C3—C459.8 (6)C10—C9—Fe1—C1117.8 (4)
C1—C2—C3—Fe159.9 (5)C8—C9—Fe1—C580.2 (5)
C2—C3—C4—C50.3 (9)C10—C9—Fe1—C5159.8 (4)
Fe1—C3—C4—C559.1 (6)C8—C9—Fe1—C449.3 (9)
C2—C3—C4—Fe159.4 (5)C10—C9—Fe1—C4169.3 (7)
C3—C4—C5—C10.5 (9)C8—C9—Fe1—C737.6 (4)
Fe1—C4—C5—C159.0 (5)C10—C9—Fe1—C782.4 (4)
C3—C4—C5—Fe158.5 (6)C10—C9—Fe1—C8120.0 (5)
C2—C1—C5—C40.5 (9)C4—C3—Fe1—C2118.1 (8)
Fe1—C1—C5—C459.4 (6)C2—C3—Fe1—C6117.8 (5)
C2—C1—C5—Fe158.9 (5)C4—C3—Fe1—C6124.2 (5)
C10—C6—C7—C80.0 (7)C2—C3—Fe1—C1075.4 (6)
Fe1—C6—C7—C859.1 (4)C4—C3—Fe1—C10166.6 (5)
C10—C6—C7—Fe159.1 (4)C2—C3—Fe1—C939.2 (13)
C6—C7—C8—C90.1 (7)C4—C3—Fe1—C9157.2 (9)
Fe1—C7—C8—C958.3 (4)C2—C3—Fe1—C137.7 (6)
C6—C7—C8—Fe158.4 (4)C4—C3—Fe1—C180.4 (6)
C7—C8—C9—C100.2 (7)C2—C3—Fe1—C581.5 (6)
Fe1—C8—C9—C1058.6 (4)C4—C3—Fe1—C536.6 (5)
C7—C8—C9—Fe158.5 (4)C2—C3—Fe1—C4118.1 (8)
C7—C6—C10—C90.1 (7)C2—C3—Fe1—C7161.1 (5)
Fe1—C6—C10—C959.4 (4)C4—C3—Fe1—C780.8 (6)
C7—C6—C10—C11179.1 (6)C2—C3—Fe1—C8162.7 (7)
Fe1—C6—C10—C11119.6 (6)C4—C3—Fe1—C844.6 (10)
C7—C6—C10—Fe159.5 (4)C5—C1—Fe1—C2118.9 (7)
C8—C9—C10—C60.2 (7)C2—C1—Fe1—C649.5 (9)
Fe1—C9—C10—C659.5 (4)C5—C1—Fe1—C6168.4 (6)
C8—C9—C10—C11179.2 (5)C2—C1—Fe1—C1081.5 (6)
Fe1—C9—C10—C11119.6 (6)C5—C1—Fe1—C10159.6 (4)
C8—C9—C10—Fe159.7 (4)C2—C1—Fe1—C9124.4 (5)
C6—C10—C11—N1106.0 (7)C5—C1—Fe1—C9116.7 (5)
C9—C10—C11—N175.1 (7)C2—C1—Fe1—C337.6 (6)
Fe1—C10—C11—N1163.6 (4)C5—C1—Fe1—C381.4 (6)
N1—C13—C14—N21.3 (7)C2—C1—Fe1—C5118.9 (7)
N2—C12—N1—C130.4 (7)C2—C1—Fe1—C482.1 (6)
N2—C12—N1—C11179.5 (5)C5—C1—Fe1—C436.8 (5)
C14—C13—N1—C121.1 (7)C2—C1—Fe1—C7163.4 (8)
C14—C13—N1—C11179.9 (5)C5—C1—Fe1—C744.5 (10)
C10—C11—N1—C1286.7 (7)C2—C1—Fe1—C8165.2 (5)
C10—C11—N1—C1394.4 (7)C5—C1—Fe1—C875.9 (5)
N1—C12—N2—C140.4 (7)C4—C5—Fe1—C281.9 (7)
N1—C12—N2—C15179.5 (5)C1—C5—Fe1—C238.0 (5)
C13—C14—N2—C121.1 (7)C4—C5—Fe1—C645.5 (13)
C13—C14—N2—C15179.8 (6)C1—C5—Fe1—C6165.4 (8)
C3—C2—Fe1—C681.2 (6)C4—C5—Fe1—C10166.6 (7)
C1—C2—Fe1—C6159.3 (5)C1—C5—Fe1—C1046.7 (10)
C3—C2—Fe1—C10123.8 (5)C4—C5—Fe1—C9159.6 (6)
C1—C2—Fe1—C10116.7 (5)C1—C5—Fe1—C980.5 (5)
C3—C2—Fe1—C9166.5 (5)C4—C5—Fe1—C337.9 (7)
C1—C2—Fe1—C974.1 (6)C1—C5—Fe1—C382.0 (6)
C1—C2—Fe1—C3119.5 (8)C4—C5—Fe1—C1119.9 (8)
C3—C2—Fe1—C1119.5 (8)C1—C5—Fe1—C4119.9 (8)
C3—C2—Fe1—C581.7 (6)C4—C5—Fe1—C776.7 (7)
C1—C2—Fe1—C537.8 (5)C1—C5—Fe1—C7163.4 (4)
C3—C2—Fe1—C438.7 (6)C4—C5—Fe1—C8118.0 (6)
C1—C2—Fe1—C480.7 (6)C1—C5—Fe1—C8122.1 (5)
C3—C2—Fe1—C745.9 (11)C5—C4—Fe1—C281.7 (6)
C1—C2—Fe1—C7165.4 (7)C3—C4—Fe1—C238.2 (6)
C3—C2—Fe1—C8159.4 (8)C5—C4—Fe1—C6163.9 (5)
C1—C2—Fe1—C839.9 (12)C3—C4—Fe1—C676.2 (7)
C10—C6—Fe1—C279.9 (5)C5—C4—Fe1—C10160.8 (10)
C7—C6—Fe1—C2160.3 (5)C3—C4—Fe1—C1040.9 (15)
C7—C6—Fe1—C10119.7 (5)C5—C4—Fe1—C944.3 (11)
C10—C6—Fe1—C938.6 (3)C3—C4—Fe1—C9164.2 (7)
C7—C6—Fe1—C981.1 (4)C5—C4—Fe1—C3119.9 (9)
C10—C6—Fe1—C3122.7 (5)C5—C4—Fe1—C137.5 (6)
C7—C6—Fe1—C3117.6 (5)C3—C4—Fe1—C182.4 (6)
C10—C6—Fe1—C144.1 (8)C3—C4—Fe1—C5119.9 (9)
C7—C6—Fe1—C1163.8 (7)C5—C4—Fe1—C7122.0 (6)
C10—C6—Fe1—C5160.5 (9)C3—C4—Fe1—C7118.1 (6)
C7—C6—Fe1—C540.7 (11)C5—C4—Fe1—C878.9 (6)
C10—C6—Fe1—C4165.2 (5)C3—C4—Fe1—C8161.2 (5)
C7—C6—Fe1—C475.1 (6)C6—C7—Fe1—C248.2 (9)
C10—C6—Fe1—C7119.7 (5)C8—C7—Fe1—C2167.4 (8)
C10—C6—Fe1—C881.9 (4)C8—C7—Fe1—C6119.2 (5)
C7—C6—Fe1—C837.8 (4)C6—C7—Fe1—C1037.5 (4)
C6—C10—Fe1—C2118.7 (5)C8—C7—Fe1—C1081.7 (4)
C9—C10—Fe1—C2122.8 (4)C6—C7—Fe1—C982.2 (4)
C11—C10—Fe1—C23.5 (6)C8—C7—Fe1—C937.0 (3)
C9—C10—Fe1—C6118.5 (5)C6—C7—Fe1—C381.7 (5)
C11—C10—Fe1—C6122.2 (7)C8—C7—Fe1—C3159.1 (4)
C6—C10—Fe1—C9118.5 (5)C6—C7—Fe1—C1161.0 (8)
C11—C10—Fe1—C9119.3 (6)C8—C7—Fe1—C141.8 (10)
C6—C10—Fe1—C377.3 (5)C6—C7—Fe1—C5165.7 (4)
C9—C10—Fe1—C3164.2 (5)C8—C7—Fe1—C575.1 (5)
C11—C10—Fe1—C345.0 (7)C6—C7—Fe1—C4124.8 (5)
C6—C10—Fe1—C1161.4 (4)C8—C7—Fe1—C4116.0 (4)
C9—C10—Fe1—C180.1 (4)C6—C7—Fe1—C8119.2 (5)
C11—C10—Fe1—C139.2 (6)C9—C8—Fe1—C245.6 (10)
C6—C10—Fe1—C5165.2 (7)C7—C8—Fe1—C2165.5 (9)
C9—C10—Fe1—C546.7 (9)C9—C8—Fe1—C682.0 (4)
C11—C10—Fe1—C572.6 (9)C7—C8—Fe1—C638.0 (4)
C6—C10—Fe1—C445.5 (13)C9—C8—Fe1—C1037.9 (3)
C9—C10—Fe1—C4163.9 (12)C7—C8—Fe1—C1082.0 (4)
C11—C10—Fe1—C476.8 (13)C7—C8—Fe1—C9119.9 (5)
C6—C10—Fe1—C737.7 (4)C9—C8—Fe1—C3169.9 (7)
C9—C10—Fe1—C780.8 (4)C7—C8—Fe1—C350.0 (9)
C11—C10—Fe1—C7159.9 (6)C9—C8—Fe1—C175.7 (5)
C6—C10—Fe1—C881.7 (4)C7—C8—Fe1—C1164.4 (4)
C9—C10—Fe1—C836.8 (3)C9—C8—Fe1—C5116.8 (4)
C11—C10—Fe1—C8156.1 (6)C7—C8—Fe1—C5123.3 (4)
C8—C9—Fe1—C2163.1 (4)C9—C8—Fe1—C4157.7 (4)
C10—C9—Fe1—C276.8 (5)C7—C8—Fe1—C482.4 (5)
C8—C9—Fe1—C681.9 (4)C9—C8—Fe1—C7119.9 (5)
C10—C9—Fe1—C638.1 (3)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C10H12N2)]I
Mr408.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.2745 (3), 9.3164 (3), 22.2744 (9)
β (°) 90.927 (3)
V3)1509.39 (10)
Z4
Radiation typeCu Kα
µ (mm1)23.96
Crystal size (mm)0.16 × 0.12 × 0.07
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012), based on expressions of Clark & Reid (1995)]
Tmin, Tmax0.114, 0.285
No. of measured, independent and
observed [I > 2σ(I)] reflections
6978, 2972, 2745
Rint0.042
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.20
No. of reflections2972
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.51, 1.53

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

We thank the University of KwaZulu-Natal and the National Research Foundation (NRF) for financial support. We also thank Alex Griffin from Agilent Technology XRD for the data collection and structure solution.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBala, M. D. & Coville, N. J. (2007). J. Organomet. Chem. 692, 709–730.  Web of Science CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationColeman, K. S., Turberville, S., Pascu, S. I. & Green, M. L. H. (2005). J. Organomet. Chem. 690, 653–658.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, Y., Twamley, B. & Shreeve, J. M. (2004). Inorg. Chem. 43, 3406–3412.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNyamori, V. O., Gumede, M. & Bala, M. D. (2010). Organomet. Chem. 695, 1126–1132.  CrossRef CAS Google Scholar
First citationNyamori, V. O., Zulu, S. M. & Omondi, B. (2012). Acta Cryst. E68, m353.  CSD CrossRef IUCr Journals Google Scholar
First citationOrnelas, C. (2011). New J. Chem. 35, 1973–1975.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimenel, A. A., Morozova, E. A., Kuzmenko, Y. V. & Snegur, L. V. (2003). J. Organomet. Chem. 665, 13–14.  Web of Science CrossRef CAS Google Scholar
First citationTaylor, A. W. & Licence, P. (2012). ChemPhysChem, 13, 1917–1926.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds