metal-organic compounds
1-(Ferrocen-1-ylmethyl)-3-methylimidazol-3-ium iodide
aSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: owaga@ukzn.ac.za
The structure of the title compound, [Fe(C5H5)(C10H12N2)]I, consists of a 1-(ferrocen-1-ylmethyl)-3-methylimidazolium cation which is counter-balanced by an iodide anion. The cyclopentadienyl (Cp) rings of the ferrocene unit have a slightly skewed from an ideal eclipsed conformation by an angle of 3.5 (6)°. The interplanar angle between the Cp and the imidazole ring is 67.94 (2)°.
Related literature
For the synthesis of ferrocenyl alkyl imidazoles, see: Simenel et al. (2003); Nyamori & Bala (2008). For the synthesis of ferrocenyl imidazolium salts, see: Nyamori et al. (2010, 2012); Bala & Coville (2007). For applications of ferrocenyl imidazolium salts, see: Gao et al. (2004); Ornelas (2011); Coleman et al. (2005); Taylor & Licence (2012).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536812045400/hg5258sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812045400/hg5258Isup2.hkl
In a round bottom flask, methyl iodide (1.64 ml, 3.75 g, 26.4 mmol) was added to 1-Ferrocenylmethyl-1H-imidazole (2.00 g, 7.50 mmol) and allowed to reflux for 12 hrs, at 50 °C under innert atmosphere. The reaction mixture was then allowed to cool to room temperature and washed with anhydrous diethylether (3 x 10 ml). A yellow solid was obtained, which was further dried invacuo. Yellow crystals crystals were obtained from recrystallization in diethylether (2.78 g, 91%); m.p. 134–136 °C (lit. 130–135 °C); IR (ATR cm-1) 3430, 3042, 1567, 1549, 1429, 1150, 1040, 837, 820, 755, 620, 500, 482; 1H NMR (CDCl3) 10.13 (1H, s, NCH), 7.16 (2H, m, NCH), 5.38 (1H, q, CH), 4.43 (2H, t, C5H4), 4.32 (2H, t, C5H4), 4.29 (5H, s, C5H5), 4.06 (3H, s, NCH3); 13C NMR (CDCl3) 136.12, 123.63, 121.91, 78.83, 70.09, 69.46, 50.12, 37.15; m/z (ESI) [M+] - I 281. (100%), 199 (60%); Anal. Calc. for C15H17N2Fe+ 281.07411.
Carbon-bound H-atoms were placed in calculated positions [C—H = 0.98 Å for Me H atoms, 0.99 Å for Methylene H atoms, 0.99–1.00 for methine H atoms and 0.95 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the
in the riding model approximation.Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. |
[Fe(C5H5)(C10H12N2)]I | F(000) = 800 |
Mr = 408.06 | Dx = 1.796 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 7295 reflections |
a = 7.2745 (3) Å | θ = 4.0–74° |
b = 9.3164 (3) Å | µ = 23.96 mm−1 |
c = 22.2744 (9) Å | T = 173 K |
β = 90.927 (3)° | Block, yellow |
V = 1509.39 (10) Å3 | 0.16 × 0.12 × 0.07 mm |
Z = 4 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2745 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.042 |
ω scans | θmax = 74°, θmin = 4.0° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions of Clark & Reid (1995)] | h = −6→8 |
Tmin = 0.114, Tmax = 0.285 | k = −10→11 |
6978 measured reflections | l = −19→27 |
2972 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0682P)2 + 3.7636P] where P = (Fo2 + 2Fc2)/3 |
2972 reflections | (Δ/σ)max = 0.011 |
173 parameters | Δρmax = 2.51 e Å−3 |
0 restraints | Δρmin = −1.53 e Å−3 |
[Fe(C5H5)(C10H12N2)]I | V = 1509.39 (10) Å3 |
Mr = 408.06 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 7.2745 (3) Å | µ = 23.96 mm−1 |
b = 9.3164 (3) Å | T = 173 K |
c = 22.2744 (9) Å | 0.16 × 0.12 × 0.07 mm |
β = 90.927 (3)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2972 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions of Clark & Reid (1995)] | 2745 reflections with I > 2σ(I) |
Tmin = 0.114, Tmax = 0.285 | Rint = 0.042 |
6978 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.20 | Δρmax = 2.51 e Å−3 |
2972 reflections | Δρmin = −1.53 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3124 (13) | −0.0474 (8) | 0.7098 (3) | 0.0455 (18) | |
H1 | 0.3738 | −0.1201 | 0.6839 | 0.055* | |
C2 | 0.4011 (13) | 0.0604 (11) | 0.7444 (4) | 0.056 (2) | |
H2 | 0.5369 | 0.0768 | 0.7472 | 0.067* | |
C3 | 0.2664 (16) | 0.1406 (10) | 0.7745 (4) | 0.059 (3) | |
H3 | 0.2886 | 0.223 | 0.8025 | 0.071* | |
C4 | 0.0912 (15) | 0.0802 (9) | 0.7577 (4) | 0.058 (2) | |
H4 | −0.0314 | 0.1148 | 0.7714 | 0.07* | |
C5 | 0.1209 (13) | −0.0329 (8) | 0.7183 (4) | 0.0477 (19) | |
H5 | 0.0231 | −0.0932 | 0.6988 | 0.057* | |
C6 | 0.2546 (8) | 0.3596 (6) | 0.6585 (3) | 0.0260 (12) | |
H6 | 0.2877 | 0.4416 | 0.6855 | 0.031* | |
C7 | 0.0720 (8) | 0.3107 (7) | 0.6449 (3) | 0.0284 (12) | |
H7 | −0.0445 | 0.3519 | 0.6608 | 0.034* | |
C8 | 0.0869 (8) | 0.1903 (7) | 0.6049 (3) | 0.0276 (12) | |
H8 | −0.0176 | 0.1321 | 0.5883 | 0.033* | |
C9 | 0.2748 (8) | 0.1664 (6) | 0.5945 (3) | 0.0244 (11) | |
H9 | 0.3262 | 0.0884 | 0.5689 | 0.029* | |
C10 | 0.3810 (8) | 0.2713 (6) | 0.6275 (3) | 0.0243 (11) | |
C11 | 0.5858 (8) | 0.2808 (6) | 0.6288 (3) | 0.0254 (12) | |
H11A | 0.6262 | 0.342 | 0.6629 | 0.031* | |
H11B | 0.6384 | 0.1839 | 0.635 | 0.031* | |
C12 | 0.6907 (8) | 0.2666 (6) | 0.5229 (3) | 0.0258 (11) | |
H12 | 0.6752 | 0.1659 | 0.5186 | 0.031* | |
C13 | 0.6956 (8) | 0.4835 (7) | 0.5609 (3) | 0.0294 (13) | |
H13 | 0.6849 | 0.5608 | 0.5885 | 0.035* | |
C14 | 0.7537 (8) | 0.4932 (7) | 0.5038 (3) | 0.0278 (12) | |
H14 | 0.7892 | 0.578 | 0.4833 | 0.033* | |
C15 | 0.8032 (9) | 0.3090 (9) | 0.4206 (3) | 0.0357 (15) | |
H15A | 0.9338 | 0.2831 | 0.4207 | 0.053* | |
H15B | 0.7813 | 0.3881 | 0.3924 | 0.053* | |
H15C | 0.7293 | 0.2257 | 0.4083 | 0.053* | |
N1 | 0.6545 (7) | 0.3416 (5) | 0.5722 (2) | 0.0233 (10) | |
N2 | 0.7512 (7) | 0.3536 (6) | 0.4809 (2) | 0.0274 (10) | |
Fe1 | 0.22750 (13) | 0.15195 (10) | 0.68399 (4) | 0.0244 (2) | |
I1 | 0.69574 (5) | −0.11859 (4) | 0.579436 (17) | 0.02780 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.080 (6) | 0.023 (3) | 0.034 (3) | 0.010 (3) | 0.005 (3) | 0.010 (3) |
C2 | 0.060 (5) | 0.059 (6) | 0.047 (4) | −0.006 (4) | −0.016 (4) | 0.032 (4) |
C3 | 0.115 (8) | 0.036 (4) | 0.026 (3) | −0.014 (5) | −0.005 (4) | 0.003 (3) |
C4 | 0.086 (6) | 0.035 (4) | 0.054 (5) | −0.004 (4) | 0.037 (5) | 0.016 (4) |
C5 | 0.071 (5) | 0.023 (3) | 0.049 (4) | −0.016 (3) | 0.009 (4) | 0.008 (3) |
C6 | 0.030 (3) | 0.017 (3) | 0.031 (3) | −0.004 (2) | 0.000 (2) | 0.000 (2) |
C7 | 0.025 (3) | 0.022 (3) | 0.037 (3) | 0.001 (2) | 0.000 (2) | 0.001 (2) |
C8 | 0.027 (3) | 0.025 (3) | 0.031 (3) | −0.007 (2) | −0.001 (2) | 0.002 (2) |
C9 | 0.030 (3) | 0.015 (3) | 0.028 (3) | 0.000 (2) | 0.000 (2) | 0.000 (2) |
C10 | 0.026 (3) | 0.017 (3) | 0.030 (3) | −0.003 (2) | 0.000 (2) | 0.003 (2) |
C11 | 0.023 (3) | 0.021 (3) | 0.032 (3) | 0.004 (2) | 0.000 (2) | 0.005 (2) |
C12 | 0.024 (3) | 0.016 (3) | 0.037 (3) | 0.003 (2) | −0.001 (2) | −0.002 (2) |
C13 | 0.029 (3) | 0.014 (3) | 0.045 (4) | −0.002 (2) | −0.001 (2) | 0.001 (2) |
C14 | 0.023 (3) | 0.016 (3) | 0.045 (3) | −0.001 (2) | 0.003 (2) | 0.003 (2) |
C15 | 0.041 (4) | 0.035 (4) | 0.032 (3) | 0.001 (3) | 0.006 (3) | 0.002 (3) |
N1 | 0.023 (2) | 0.014 (2) | 0.033 (3) | 0.0008 (18) | −0.0016 (18) | 0.0024 (19) |
N2 | 0.026 (2) | 0.021 (2) | 0.035 (3) | 0.002 (2) | −0.0005 (19) | 0.004 (2) |
Fe1 | 0.0326 (5) | 0.0163 (4) | 0.0243 (4) | −0.0031 (4) | 0.0020 (3) | −0.0002 (3) |
I1 | 0.0357 (2) | 0.0139 (2) | 0.0336 (2) | 0.00001 (13) | −0.00212 (15) | 0.00010 (12) |
C1—C2 | 1.416 (13) | C8—Fe1 | 2.054 (6) |
C1—C5 | 1.415 (13) | C8—H8 | 1 |
C1—Fe1 | 2.036 (7) | C9—C10 | 1.441 (8) |
C1—H1 | 1 | C9—Fe1 | 2.033 (6) |
C2—C3 | 1.410 (15) | C9—H9 | 1 |
C2—Fe1 | 2.020 (8) | C10—C11 | 1.492 (8) |
C2—H2 | 1 | C10—Fe1 | 2.028 (6) |
C3—C4 | 1.438 (15) | C11—N1 | 1.476 (7) |
C3—Fe1 | 2.034 (8) | C11—H11A | 0.99 |
C3—H3 | 1 | C11—H11B | 0.99 |
C4—C5 | 1.390 (12) | C12—N2 | 1.319 (8) |
C4—Fe1 | 2.044 (7) | C12—N1 | 1.333 (8) |
C4—H4 | 1 | C12—H12 | 0.95 |
C5—Fe1 | 2.042 (7) | C13—C14 | 1.350 (9) |
C5—H5 | 1 | C13—N1 | 1.380 (7) |
C6—C10 | 1.420 (8) | C13—H13 | 0.95 |
C6—C7 | 1.432 (8) | C14—N2 | 1.397 (8) |
C6—Fe1 | 2.027 (6) | C14—H14 | 0.95 |
C6—H6 | 1 | C15—N2 | 1.461 (8) |
C7—C8 | 1.437 (9) | C15—H15A | 0.98 |
C7—Fe1 | 2.048 (6) | C15—H15B | 0.98 |
C7—H7 | 1 | C15—H15C | 0.98 |
C8—C9 | 1.408 (8) | ||
C2—C1—C5 | 107.5 (7) | N2—C12—N1 | 109.6 (5) |
C2—C1—Fe1 | 68.9 (4) | N2—C12—H12 | 125.2 |
C5—C1—Fe1 | 69.9 (4) | N1—C12—H12 | 125.2 |
C2—C1—H1 | 126.3 | C14—C13—N1 | 108.0 (6) |
C5—C1—H1 | 126.3 | C14—C13—H13 | 126 |
Fe1—C1—H1 | 126.3 | N1—C13—H13 | 126 |
C3—C2—C1 | 108.7 (8) | C13—C14—N2 | 106.2 (5) |
C3—C2—Fe1 | 70.2 (5) | C13—C14—H14 | 126.9 |
C1—C2—Fe1 | 70.2 (4) | N2—C14—H14 | 126.9 |
C3—C2—H2 | 125.6 | N2—C15—H15A | 109.5 |
C1—C2—H2 | 125.6 | N2—C15—H15B | 109.5 |
Fe1—C2—H2 | 125.6 | H15A—C15—H15B | 109.5 |
C2—C3—C4 | 106.8 (8) | N2—C15—H15C | 109.5 |
C2—C3—Fe1 | 69.1 (4) | H15A—C15—H15C | 109.5 |
C4—C3—Fe1 | 69.7 (5) | H15B—C15—H15C | 109.5 |
C2—C3—H3 | 126.6 | C12—N1—C13 | 107.8 (5) |
C4—C3—H3 | 126.6 | C12—N1—C11 | 125.3 (5) |
Fe1—C3—H3 | 126.6 | C13—N1—C11 | 126.9 (5) |
C5—C4—C3 | 108.4 (9) | C12—N2—C14 | 108.4 (5) |
C5—C4—Fe1 | 70.0 (4) | C12—N2—C15 | 124.8 (6) |
C3—C4—Fe1 | 69.0 (4) | C14—N2—C15 | 126.8 (6) |
C5—C4—H4 | 125.8 | C2—Fe1—C6 | 121.8 (3) |
C3—C4—H4 | 125.8 | C2—Fe1—C10 | 107.5 (3) |
Fe1—C4—H4 | 125.8 | C6—Fe1—C10 | 41.0 (2) |
C4—C5—C1 | 108.7 (8) | C2—Fe1—C9 | 124.6 (3) |
C4—C5—Fe1 | 70.2 (4) | C6—Fe1—C9 | 69.1 (2) |
C1—C5—Fe1 | 69.5 (4) | C10—Fe1—C9 | 41.6 (2) |
C4—C5—H5 | 125.7 | C2—Fe1—C3 | 40.7 (4) |
C1—C5—H5 | 125.7 | C6—Fe1—C3 | 108.4 (3) |
Fe1—C5—H5 | 125.7 | C10—Fe1—C3 | 125.0 (3) |
C10—C6—C7 | 108.6 (5) | C9—Fe1—C3 | 162.2 (4) |
C10—C6—Fe1 | 69.5 (3) | C2—Fe1—C1 | 40.9 (4) |
C7—C6—Fe1 | 70.2 (3) | C6—Fe1—C1 | 156.8 (3) |
C10—C6—H6 | 125.7 | C10—Fe1—C1 | 120.5 (3) |
C7—C6—H6 | 125.7 | C9—Fe1—C1 | 106.3 (3) |
Fe1—C6—H6 | 125.7 | C3—Fe1—C1 | 68.7 (3) |
C6—C7—C8 | 107.5 (5) | C2—Fe1—C5 | 68.4 (4) |
C6—C7—Fe1 | 68.6 (3) | C6—Fe1—C5 | 161.7 (3) |
C8—C7—Fe1 | 69.7 (4) | C10—Fe1—C5 | 155.6 (3) |
C6—C7—H7 | 126.3 | C9—Fe1—C5 | 119.6 (3) |
C8—C7—H7 | 126.3 | C3—Fe1—C5 | 68.5 (3) |
Fe1—C7—H7 | 126.3 | C1—Fe1—C5 | 40.6 (4) |
C9—C8—C7 | 108.0 (5) | C2—Fe1—C4 | 68.5 (4) |
C9—C8—Fe1 | 69.0 (3) | C6—Fe1—C4 | 126.0 (3) |
C7—C8—Fe1 | 69.3 (4) | C10—Fe1—C4 | 163.1 (3) |
C9—C8—H8 | 126 | C9—Fe1—C4 | 154.3 (4) |
C7—C8—H8 | 126 | C3—Fe1—C4 | 41.3 (4) |
Fe1—C8—H8 | 126 | C1—Fe1—C4 | 67.9 (4) |
C8—C9—C10 | 108.8 (5) | C5—Fe1—C4 | 39.8 (3) |
C8—C9—Fe1 | 70.7 (3) | C2—Fe1—C7 | 157.4 (4) |
C10—C9—Fe1 | 69.0 (3) | C6—Fe1—C7 | 41.2 (2) |
C8—C9—H9 | 125.6 | C10—Fe1—C7 | 69.3 (2) |
C10—C9—H9 | 125.6 | C9—Fe1—C7 | 68.7 (2) |
Fe1—C9—H9 | 125.6 | C3—Fe1—C7 | 121.7 (4) |
C6—C10—C9 | 107.1 (5) | C1—Fe1—C7 | 160.3 (3) |
C6—C10—C11 | 127.6 (5) | C5—Fe1—C7 | 123.9 (3) |
C9—C10—C11 | 125.2 (5) | C4—Fe1—C7 | 107.8 (3) |
C6—C10—Fe1 | 69.5 (3) | C2—Fe1—C8 | 160.5 (4) |
C9—C10—Fe1 | 69.4 (3) | C6—Fe1—C8 | 69.1 (2) |
C11—C10—Fe1 | 125.5 (4) | C10—Fe1—C8 | 69.1 (2) |
N1—C11—C10 | 111.0 (5) | C9—Fe1—C8 | 40.3 (2) |
N1—C11—H11A | 109.4 | C3—Fe1—C8 | 156.7 (4) |
C10—C11—H11A | 109.4 | C1—Fe1—C8 | 123.0 (3) |
N1—C11—H11B | 109.4 | C5—Fe1—C8 | 106.3 (3) |
C10—C11—H11B | 109.4 | C4—Fe1—C8 | 120.3 (4) |
H11A—C11—H11B | 108 | C7—Fe1—C8 | 41.0 (3) |
C5—C1—C2—C3 | 0.3 (8) | C8—C9—Fe1—C10 | −120.0 (5) |
Fe1—C1—C2—C3 | 59.8 (6) | C8—C9—Fe1—C3 | −166.8 (10) |
C5—C1—C2—Fe1 | −59.5 (5) | C10—C9—Fe1—C3 | −46.8 (11) |
C1—C2—C3—C4 | 0.0 (9) | C8—C9—Fe1—C1 | 122.2 (4) |
Fe1—C2—C3—C4 | 59.8 (6) | C10—C9—Fe1—C1 | −117.8 (4) |
C1—C2—C3—Fe1 | −59.9 (5) | C8—C9—Fe1—C5 | 80.2 (5) |
C2—C3—C4—C5 | −0.3 (9) | C10—C9—Fe1—C5 | −159.8 (4) |
Fe1—C3—C4—C5 | 59.1 (6) | C8—C9—Fe1—C4 | 49.3 (9) |
C2—C3—C4—Fe1 | −59.4 (5) | C10—C9—Fe1—C4 | 169.3 (7) |
C3—C4—C5—C1 | 0.5 (9) | C8—C9—Fe1—C7 | −37.6 (4) |
Fe1—C4—C5—C1 | 59.0 (5) | C10—C9—Fe1—C7 | 82.4 (4) |
C3—C4—C5—Fe1 | −58.5 (6) | C10—C9—Fe1—C8 | 120.0 (5) |
C2—C1—C5—C4 | −0.5 (9) | C4—C3—Fe1—C2 | −118.1 (8) |
Fe1—C1—C5—C4 | −59.4 (6) | C2—C3—Fe1—C6 | −117.8 (5) |
C2—C1—C5—Fe1 | 58.9 (5) | C4—C3—Fe1—C6 | 124.2 (5) |
C10—C6—C7—C8 | 0.0 (7) | C2—C3—Fe1—C10 | −75.4 (6) |
Fe1—C6—C7—C8 | −59.1 (4) | C4—C3—Fe1—C10 | 166.6 (5) |
C10—C6—C7—Fe1 | 59.1 (4) | C2—C3—Fe1—C9 | −39.2 (13) |
C6—C7—C8—C9 | 0.1 (7) | C4—C3—Fe1—C9 | −157.2 (9) |
Fe1—C7—C8—C9 | −58.3 (4) | C2—C3—Fe1—C1 | 37.7 (6) |
C6—C7—C8—Fe1 | 58.4 (4) | C4—C3—Fe1—C1 | −80.4 (6) |
C7—C8—C9—C10 | −0.2 (7) | C2—C3—Fe1—C5 | 81.5 (6) |
Fe1—C8—C9—C10 | −58.6 (4) | C4—C3—Fe1—C5 | −36.6 (5) |
C7—C8—C9—Fe1 | 58.5 (4) | C2—C3—Fe1—C4 | 118.1 (8) |
C7—C6—C10—C9 | −0.1 (7) | C2—C3—Fe1—C7 | −161.1 (5) |
Fe1—C6—C10—C9 | 59.4 (4) | C4—C3—Fe1—C7 | 80.8 (6) |
C7—C6—C10—C11 | −179.1 (6) | C2—C3—Fe1—C8 | 162.7 (7) |
Fe1—C6—C10—C11 | −119.6 (6) | C4—C3—Fe1—C8 | 44.6 (10) |
C7—C6—C10—Fe1 | −59.5 (4) | C5—C1—Fe1—C2 | 118.9 (7) |
C8—C9—C10—C6 | 0.2 (7) | C2—C1—Fe1—C6 | 49.5 (9) |
Fe1—C9—C10—C6 | −59.5 (4) | C5—C1—Fe1—C6 | 168.4 (6) |
C8—C9—C10—C11 | 179.2 (5) | C2—C1—Fe1—C10 | 81.5 (6) |
Fe1—C9—C10—C11 | 119.6 (6) | C5—C1—Fe1—C10 | −159.6 (4) |
C8—C9—C10—Fe1 | 59.7 (4) | C2—C1—Fe1—C9 | 124.4 (5) |
C6—C10—C11—N1 | −106.0 (7) | C5—C1—Fe1—C9 | −116.7 (5) |
C9—C10—C11—N1 | 75.1 (7) | C2—C1—Fe1—C3 | −37.6 (6) |
Fe1—C10—C11—N1 | 163.6 (4) | C5—C1—Fe1—C3 | 81.4 (6) |
N1—C13—C14—N2 | −1.3 (7) | C2—C1—Fe1—C5 | −118.9 (7) |
N2—C12—N1—C13 | −0.4 (7) | C2—C1—Fe1—C4 | −82.1 (6) |
N2—C12—N1—C11 | −179.5 (5) | C5—C1—Fe1—C4 | 36.8 (5) |
C14—C13—N1—C12 | 1.1 (7) | C2—C1—Fe1—C7 | −163.4 (8) |
C14—C13—N1—C11 | −179.9 (5) | C5—C1—Fe1—C7 | −44.5 (10) |
C10—C11—N1—C12 | −86.7 (7) | C2—C1—Fe1—C8 | 165.2 (5) |
C10—C11—N1—C13 | 94.4 (7) | C5—C1—Fe1—C8 | −75.9 (5) |
N1—C12—N2—C14 | −0.4 (7) | C4—C5—Fe1—C2 | 81.9 (7) |
N1—C12—N2—C15 | −179.5 (5) | C1—C5—Fe1—C2 | −38.0 (5) |
C13—C14—N2—C12 | 1.1 (7) | C4—C5—Fe1—C6 | −45.5 (13) |
C13—C14—N2—C15 | −179.8 (6) | C1—C5—Fe1—C6 | −165.4 (8) |
C3—C2—Fe1—C6 | 81.2 (6) | C4—C5—Fe1—C10 | 166.6 (7) |
C1—C2—Fe1—C6 | −159.3 (5) | C1—C5—Fe1—C10 | 46.7 (10) |
C3—C2—Fe1—C10 | 123.8 (5) | C4—C5—Fe1—C9 | −159.6 (6) |
C1—C2—Fe1—C10 | −116.7 (5) | C1—C5—Fe1—C9 | 80.5 (5) |
C3—C2—Fe1—C9 | 166.5 (5) | C4—C5—Fe1—C3 | 37.9 (7) |
C1—C2—Fe1—C9 | −74.1 (6) | C1—C5—Fe1—C3 | −82.0 (6) |
C1—C2—Fe1—C3 | 119.5 (8) | C4—C5—Fe1—C1 | 119.9 (8) |
C3—C2—Fe1—C1 | −119.5 (8) | C1—C5—Fe1—C4 | −119.9 (8) |
C3—C2—Fe1—C5 | −81.7 (6) | C4—C5—Fe1—C7 | −76.7 (7) |
C1—C2—Fe1—C5 | 37.8 (5) | C1—C5—Fe1—C7 | 163.4 (4) |
C3—C2—Fe1—C4 | −38.7 (6) | C4—C5—Fe1—C8 | −118.0 (6) |
C1—C2—Fe1—C4 | 80.7 (6) | C1—C5—Fe1—C8 | 122.1 (5) |
C3—C2—Fe1—C7 | 45.9 (11) | C5—C4—Fe1—C2 | −81.7 (6) |
C1—C2—Fe1—C7 | 165.4 (7) | C3—C4—Fe1—C2 | 38.2 (6) |
C3—C2—Fe1—C8 | −159.4 (8) | C5—C4—Fe1—C6 | 163.9 (5) |
C1—C2—Fe1—C8 | −39.9 (12) | C3—C4—Fe1—C6 | −76.2 (7) |
C10—C6—Fe1—C2 | 79.9 (5) | C5—C4—Fe1—C10 | −160.8 (10) |
C7—C6—Fe1—C2 | −160.3 (5) | C3—C4—Fe1—C10 | −40.9 (15) |
C7—C6—Fe1—C10 | 119.7 (5) | C5—C4—Fe1—C9 | 44.3 (11) |
C10—C6—Fe1—C9 | −38.6 (3) | C3—C4—Fe1—C9 | 164.2 (7) |
C7—C6—Fe1—C9 | 81.1 (4) | C5—C4—Fe1—C3 | −119.9 (9) |
C10—C6—Fe1—C3 | 122.7 (5) | C5—C4—Fe1—C1 | −37.5 (6) |
C7—C6—Fe1—C3 | −117.6 (5) | C3—C4—Fe1—C1 | 82.4 (6) |
C10—C6—Fe1—C1 | 44.1 (8) | C3—C4—Fe1—C5 | 119.9 (9) |
C7—C6—Fe1—C1 | 163.8 (7) | C5—C4—Fe1—C7 | 122.0 (6) |
C10—C6—Fe1—C5 | −160.5 (9) | C3—C4—Fe1—C7 | −118.1 (6) |
C7—C6—Fe1—C5 | −40.7 (11) | C5—C4—Fe1—C8 | 78.9 (6) |
C10—C6—Fe1—C4 | 165.2 (5) | C3—C4—Fe1—C8 | −161.2 (5) |
C7—C6—Fe1—C4 | −75.1 (6) | C6—C7—Fe1—C2 | 48.2 (9) |
C10—C6—Fe1—C7 | −119.7 (5) | C8—C7—Fe1—C2 | 167.4 (8) |
C10—C6—Fe1—C8 | −81.9 (4) | C8—C7—Fe1—C6 | 119.2 (5) |
C7—C6—Fe1—C8 | 37.8 (4) | C6—C7—Fe1—C10 | −37.5 (4) |
C6—C10—Fe1—C2 | −118.7 (5) | C8—C7—Fe1—C10 | 81.7 (4) |
C9—C10—Fe1—C2 | 122.8 (4) | C6—C7—Fe1—C9 | −82.2 (4) |
C11—C10—Fe1—C2 | 3.5 (6) | C8—C7—Fe1—C9 | 37.0 (3) |
C9—C10—Fe1—C6 | −118.5 (5) | C6—C7—Fe1—C3 | 81.7 (5) |
C11—C10—Fe1—C6 | 122.2 (7) | C8—C7—Fe1—C3 | −159.1 (4) |
C6—C10—Fe1—C9 | 118.5 (5) | C6—C7—Fe1—C1 | −161.0 (8) |
C11—C10—Fe1—C9 | −119.3 (6) | C8—C7—Fe1—C1 | −41.8 (10) |
C6—C10—Fe1—C3 | −77.3 (5) | C6—C7—Fe1—C5 | 165.7 (4) |
C9—C10—Fe1—C3 | 164.2 (5) | C8—C7—Fe1—C5 | −75.1 (5) |
C11—C10—Fe1—C3 | 45.0 (7) | C6—C7—Fe1—C4 | 124.8 (5) |
C6—C10—Fe1—C1 | −161.4 (4) | C8—C7—Fe1—C4 | −116.0 (4) |
C9—C10—Fe1—C1 | 80.1 (4) | C6—C7—Fe1—C8 | −119.2 (5) |
C11—C10—Fe1—C1 | −39.2 (6) | C9—C8—Fe1—C2 | −45.6 (10) |
C6—C10—Fe1—C5 | 165.2 (7) | C7—C8—Fe1—C2 | −165.5 (9) |
C9—C10—Fe1—C5 | 46.7 (9) | C9—C8—Fe1—C6 | 82.0 (4) |
C11—C10—Fe1—C5 | −72.6 (9) | C7—C8—Fe1—C6 | −38.0 (4) |
C6—C10—Fe1—C4 | −45.5 (13) | C9—C8—Fe1—C10 | 37.9 (3) |
C9—C10—Fe1—C4 | −163.9 (12) | C7—C8—Fe1—C10 | −82.0 (4) |
C11—C10—Fe1—C4 | 76.8 (13) | C7—C8—Fe1—C9 | −119.9 (5) |
C6—C10—Fe1—C7 | 37.7 (4) | C9—C8—Fe1—C3 | 169.9 (7) |
C9—C10—Fe1—C7 | −80.8 (4) | C7—C8—Fe1—C3 | 50.0 (9) |
C11—C10—Fe1—C7 | 159.9 (6) | C9—C8—Fe1—C1 | −75.7 (5) |
C6—C10—Fe1—C8 | 81.7 (4) | C7—C8—Fe1—C1 | 164.4 (4) |
C9—C10—Fe1—C8 | −36.8 (3) | C9—C8—Fe1—C5 | −116.8 (4) |
C11—C10—Fe1—C8 | −156.1 (6) | C7—C8—Fe1—C5 | 123.3 (4) |
C8—C9—Fe1—C2 | 163.1 (4) | C9—C8—Fe1—C4 | −157.7 (4) |
C10—C9—Fe1—C2 | −76.8 (5) | C7—C8—Fe1—C4 | 82.4 (5) |
C8—C9—Fe1—C6 | −81.9 (4) | C9—C8—Fe1—C7 | 119.9 (5) |
C10—C9—Fe1—C6 | 38.1 (3) |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C10H12N2)]I |
Mr | 408.06 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 7.2745 (3), 9.3164 (3), 22.2744 (9) |
β (°) | 90.927 (3) |
V (Å3) | 1509.39 (10) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 23.96 |
Crystal size (mm) | 0.16 × 0.12 × 0.07 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Agilent, 2012), based on expressions of Clark & Reid (1995)] |
Tmin, Tmax | 0.114, 0.285 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6978, 2972, 2745 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.623 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.134, 1.20 |
No. of reflections | 2972 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.51, −1.53 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).
Acknowledgements
We thank the University of KwaZulu-Natal and the National Research Foundation (NRF) for financial support. We also thank Alex Griffin from Agilent Technology XRD for the data collection and structure solution.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bala, M. D. & Coville, N. J. (2007). J. Organomet. Chem. 692, 709–730. Web of Science CrossRef CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Coleman, K. S., Turberville, S., Pascu, S. I. & Green, M. L. H. (2005). J. Organomet. Chem. 690, 653–658. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gao, Y., Twamley, B. & Shreeve, J. M. (2004). Inorg. Chem. 43, 3406–3412. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1451. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nyamori, V. O., Gumede, M. & Bala, M. D. (2010). Organomet. Chem. 695, 1126–1132. CrossRef CAS Google Scholar
Nyamori, V. O., Zulu, S. M. & Omondi, B. (2012). Acta Cryst. E68, m353. CSD CrossRef IUCr Journals Google Scholar
Ornelas, C. (2011). New J. Chem. 35, 1973–1975. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simenel, A. A., Morozova, E. A., Kuzmenko, Y. V. & Snegur, L. V. (2003). J. Organomet. Chem. 665, 13–14. Web of Science CrossRef CAS Google Scholar
Taylor, A. W. & Licence, P. (2012). ChemPhysChem, 13, 1917–1926. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The versatility of ferrocene has seen it be derivatized into a variety of compounds. Because of its stability and unique electronic and redox properties, ferrocene and its derivatives have been successfully applied with much success in various fields including medicinal chemistry (Ornelas, 2011, Simenel et al., 2003). Ferrocenyl imidazolium salts are a special class of ferrocene derivatives which have a cationic ferrocene-imidazole moiety [FcIm+] balanced by an inorganic anion X-. These compounds can be applied as ionic liquids (Taylor & Licence, 2012; Gao et al., 2004) and as precursors to ferrocenated imidazolium carbenes (Coleman et al., 2005). The title compound was synthesized via solvent-free conditions providing an economical and clean product requiring less tidious purification process similar to reactions by Bala and Coville (2007) in which one of the reagents is a liquid and acts as a solvating medium.
The average bond lengths between the iron atom (Fe1) and the centroids of the substituted Cp ring (C6–C10) and the unsubstituted Cp ring (C1–C5) are 2.0382 (6) and 2.0354(7.4). The cyclopentadienyl rings of the ferrocene moiety have a slightly staggered conformation. The staggering angle between the two rings is 3.5 (6)° which is smaller than that of Nyamori & Bala (2008), Nyamori et al., (2010) and Nyamori et al., (2012)