organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Amino­pyrimidin-5-yl)-4-methyl-N-(4-methyl­phenyl­sulfon­yl)benzene­sulfonamide

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: abut@sun.ac.za

(Received 15 October 2012; accepted 9 November 2012; online 17 November 2012)

In the title compound, C18H18N4O4S2, the mean planes passing through the tosyl benzene rings form dihedral angles of 48.42 (9) and 15.1 (1)° with the amino­pyrimidine ring. In the crystal, mol­ecules associate via N—H⋯N and N—H⋯O hydrogen bonds, forming extended hydrogen-bonded sheets that lie parallel to the bc plane. The N—H⋯N hydrogen bonds propagate along the b-axis direction, while the N—H⋯O hydrogen bonds propagate along the c-axis direction.

Related literature

For the synthesis of related sulfonamides, see: Schetty (1969[Schetty, G. (1969). Helv. Chim. Acta, 52, 1796-1802.]); Taher & Smith (2012[Taher, A. & Smith, V. J. (2012). Acta Cryst. E68, o1136.]). For applications of ring-closing metathesis (RCM) on sulfonamide-protected allyl-containing substrates, see: Yadav et al. (2011[Yadav, D. B., Morgans, G. L., Aderibigbe, B. A., Madeley, L. G., Fernandes, M. A., Michael, J. P., de Koning, C. B. & van Otterlo, W. A. L. (2011). Tetrahedron, 67, 2991-2997.]); Panayides et al. (2007a[Panayides, J.-L., Pathak, R., de Koning, C. B. & van Otterlo, W. A. L. (2007a). Eur. J. Org. Chem. pp. 4953-4961.],b[Panayides, J.-L., Pathak, R., Panagiotopoulos, H., Davids, H., Fernandes, M. A., de Koning, C. B. & van Otterlo, W. A. L. (2007b). Tetrahedron, 63, 4737-4747.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N4O4S2

  • Mr = 418.48

  • Monoclinic, C 2/c

  • a = 36.559 (9) Å

  • b = 6.9044 (18) Å

  • c = 15.524 (4) Å

  • β = 103.852 (3)°

  • V = 3804.6 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 103 K

  • 0.13 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.969

  • 11288 measured reflections

  • 4459 independent reflections

  • 3156 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.116

  • S = 1.04

  • 4459 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.88 2.16 3.036 (3) 178
N3—H3B⋯N1ii 0.88 2.30 2.986 (3) 135
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth. Des. 3, 3-8.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The para-toluene sulfonyl group (Ts) is frequently used as a protecting group for amines, particularly when monoalkylation of the amine is desired as the sulfonamide can then be cleaved in a subsequent step. The van Otterlo research group have successfully utilized the Ts group during their syntheses of annulated heterocycles using ring-closing metathesis (RCM) and isomerization strategies (see for example: Panayides et al., 2007a, 2007b; Yadav et al., 2011). In this present research the main aim was to synthesize pyrimidine-annulated heterocycles in which a 4,5-disulfonamide-protected 4,5-diaminopyrimidine was required. Surprisingly, instead of the desired 4,5-diTs compound the isomeric 5,5-disulfonamide-protected 4,5-diaminopyrimidine was obtained. It should be pointed out that according to literature it is uncommon for this type of ditosylation to occur on one amine in the presence of another amine group [see for instance Schetty (1969) and Taher et al. (2012)].

Related literature top

For the synthesis of related sulfonamides, see: Schetty (1969); Taher & Smith (2012). For applications of ring-closing metathesis (RCM) on sulfonamide-protected allyl-containing substrates, see: Yadav et al. (2011); Panayides et al. (2007a,b).

Experimental top

To an ice-cooled solution of 4,5-diaminopyrimidine (0.100 g, 0.908 mmol) in pyridine (10 ml), was slowly added 4-methylbenzene-1-sulfonyl chloride (0.380 g, 2.00 mmol). The mixture was then stirred at 273.15 K for 2 h. After completion of the reaction, as monitored by TLC, ice-cooled water (10 ml) was added to the reaction mixture. A white solid precipitate was formed which was collected by filteration and washed with dilute HCl (15 ml, 1 M) and plenty of water, after which it was dried in an oven (373.15 K). The residue was recrystallized from MeOH/CH2Cl2 to afford the product N-(4-aminopyrimidin-5-yl)-4-methyl-N-tosylbenzenesulfonamide as a colourless crystalline material (0.357 g, 94%).

Refinement top

H atoms were positioned geometrically [N—H = 0.88 Å; C—H = 0.95–0.98 Å; with Uiso(H) = 1.2–1.5Ueq(N,C)] and constrained to ride on their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering scheme - the displacement ellipsoids are shown at the 50 percent probability.
[Figure 2] Fig. 2. The hydrogen bonded sheet viewed along a and which runs parallel to the bc plane.
[Figure 3] Fig. 3. The hydrogen bond motif parallel to the bc plane.
N-(4-Aminopyrimidin-5-yl)-4-methyl-N-(4- methylphenylsulfonyl)benzenesulfonamide top
Crystal data top
C18H18N4O4S2F(000) = 1744
Mr = 418.48Dx = 1.461 Mg m3
Monoclinic, C2/cMelting point: 211 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 36.559 (9) ÅCell parameters from 2317 reflections
b = 6.9044 (18) Åθ = 2.3–27.0°
c = 15.524 (4) ŵ = 0.31 mm1
β = 103.852 (3)°T = 103 K
V = 3804.6 (17) Å3Prismatic, colourless
Z = 80.13 × 0.13 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4459 independent reflections
Radiation source: fine-focus sealed tube, SMART APEX3156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 28.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4847
Tmin = 0.962, Tmax = 0.969k = 58
11288 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.5062P]
where P = (Fo2 + 2Fc2)/3
4459 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C18H18N4O4S2V = 3804.6 (17) Å3
Mr = 418.48Z = 8
Monoclinic, C2/cMo Kα radiation
a = 36.559 (9) ŵ = 0.31 mm1
b = 6.9044 (18) ÅT = 103 K
c = 15.524 (4) Å0.13 × 0.13 × 0.10 mm
β = 103.852 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4459 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3156 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.969Rint = 0.041
11288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.40 e Å3
4459 reflectionsΔρmin = 0.58 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.089895 (16)0.32905 (8)0.29158 (4)0.01860 (15)
S20.169329 (16)0.42295 (8)0.38027 (4)0.01945 (15)
O10.10267 (4)0.4335 (2)0.22487 (10)0.0232 (4)
O20.07469 (5)0.1386 (2)0.27300 (10)0.0237 (4)
O30.19243 (4)0.3605 (2)0.46334 (10)0.0249 (4)
O40.16212 (5)0.6242 (2)0.36298 (11)0.0260 (4)
C40.12489 (6)0.1827 (3)0.44923 (14)0.0165 (5)
C10.11889 (6)0.2557 (3)0.52950 (14)0.0169 (5)
C120.18620 (6)0.3219 (3)0.29353 (14)0.0186 (5)
N30.11439 (5)0.4438 (3)0.54561 (12)0.0206 (4)
H3A0.11040.48020.59690.025*
H3B0.11550.53100.50490.025*
N40.12770 (5)0.3096 (3)0.37743 (11)0.0176 (4)
N10.12518 (6)0.1406 (3)0.50446 (13)0.0223 (4)
C50.05758 (6)0.4700 (3)0.33053 (14)0.0180 (5)
N20.11685 (5)0.1306 (3)0.59516 (12)0.0205 (4)
C20.11992 (7)0.0559 (3)0.57827 (15)0.0225 (5)
H20.11820.14170.62500.027*
C160.20041 (6)0.3556 (4)0.15198 (16)0.0244 (5)
H160.20140.43280.10190.029*
C170.18700 (6)0.4358 (4)0.22029 (15)0.0215 (5)
H170.17850.56620.21710.026*
C150.21246 (6)0.1637 (4)0.15541 (16)0.0253 (5)
C30.12811 (6)0.0140 (3)0.44085 (15)0.0201 (5)
H30.13260.06320.38720.024*
C100.06049 (7)0.6690 (4)0.32818 (18)0.0288 (6)
H100.08060.72860.30890.035*
C80.00387 (7)0.6964 (4)0.38297 (16)0.0270 (6)
C140.21133 (7)0.0535 (4)0.22965 (17)0.0269 (6)
H140.21950.07740.23270.032*
C60.02854 (7)0.3822 (4)0.35961 (16)0.0253 (5)
H60.02700.24500.36180.030*
C130.19845 (7)0.1310 (4)0.29931 (16)0.0243 (5)
H130.19800.05500.35000.029*
C70.00199 (7)0.4962 (4)0.38528 (16)0.0252 (5)
H70.01800.43620.40490.030*
C90.03359 (8)0.7801 (4)0.3544 (2)0.0400 (7)
H90.03540.91730.35300.048*
C180.22614 (8)0.0793 (5)0.07884 (18)0.0386 (7)
H18C0.25180.12470.08180.058*
H18A0.20940.12100.02270.058*
H18B0.22600.06230.08240.058*
C110.02630 (8)0.8178 (4)0.4063 (2)0.0414 (7)
H11A0.02050.95510.40110.062*0.50
H11B0.02760.78980.46740.062*0.50
H11C0.05060.78780.36580.062*0.50
H11D0.04530.73330.42180.062*0.50
H11E0.03820.89870.35540.062*0.50
H11F0.01520.90070.45710.062*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0218 (3)0.0156 (3)0.0187 (3)0.0002 (2)0.0055 (2)0.0004 (2)
S20.0223 (3)0.0153 (3)0.0224 (3)0.0022 (2)0.0086 (2)0.0016 (2)
O10.0266 (9)0.0251 (9)0.0195 (8)0.0010 (7)0.0088 (7)0.0048 (7)
O20.0286 (9)0.0155 (9)0.0260 (9)0.0020 (7)0.0048 (7)0.0040 (7)
O30.0234 (9)0.0292 (10)0.0221 (8)0.0024 (7)0.0051 (7)0.0005 (7)
O40.0338 (10)0.0132 (8)0.0352 (9)0.0024 (7)0.0163 (8)0.0023 (7)
C40.0196 (11)0.0143 (11)0.0168 (10)0.0000 (9)0.0067 (9)0.0035 (9)
C10.0139 (10)0.0157 (11)0.0207 (11)0.0004 (9)0.0033 (9)0.0005 (9)
C120.0182 (11)0.0169 (12)0.0210 (11)0.0024 (9)0.0054 (9)0.0012 (9)
N30.0313 (11)0.0127 (10)0.0196 (9)0.0014 (8)0.0100 (8)0.0006 (8)
N40.0199 (10)0.0157 (10)0.0182 (9)0.0003 (8)0.0064 (8)0.0017 (8)
N10.0280 (11)0.0151 (10)0.0255 (10)0.0034 (8)0.0098 (9)0.0028 (8)
C50.0164 (11)0.0180 (12)0.0188 (11)0.0013 (9)0.0028 (9)0.0005 (9)
N20.0238 (10)0.0153 (10)0.0233 (10)0.0012 (8)0.0071 (8)0.0026 (8)
C20.0265 (13)0.0178 (12)0.0242 (12)0.0033 (10)0.0081 (10)0.0046 (10)
C160.0192 (12)0.0326 (14)0.0217 (12)0.0015 (10)0.0055 (10)0.0009 (10)
C170.0194 (12)0.0204 (12)0.0253 (12)0.0009 (10)0.0067 (10)0.0008 (10)
C150.0163 (11)0.0343 (15)0.0252 (12)0.0001 (11)0.0048 (10)0.0075 (11)
C30.0234 (12)0.0177 (12)0.0209 (11)0.0011 (10)0.0084 (10)0.0003 (9)
C100.0248 (13)0.0190 (13)0.0458 (15)0.0006 (10)0.0145 (12)0.0026 (11)
C80.0241 (13)0.0261 (14)0.0316 (13)0.0073 (11)0.0082 (11)0.0027 (11)
C140.0233 (13)0.0216 (13)0.0362 (14)0.0042 (10)0.0080 (11)0.0040 (11)
C60.0304 (14)0.0163 (12)0.0315 (13)0.0025 (10)0.0120 (11)0.0014 (10)
C130.0245 (13)0.0225 (13)0.0271 (12)0.0037 (10)0.0083 (11)0.0023 (10)
C70.0214 (12)0.0279 (14)0.0285 (13)0.0011 (10)0.0102 (10)0.0004 (11)
C90.0406 (17)0.0145 (13)0.072 (2)0.0056 (12)0.0268 (16)0.0037 (13)
C180.0290 (15)0.057 (2)0.0314 (14)0.0093 (14)0.0101 (12)0.0127 (14)
C110.0361 (16)0.0362 (17)0.0574 (19)0.0130 (13)0.0223 (15)0.0070 (14)
Geometric parameters (Å, º) top
S1—O11.4291 (16)C17—H170.9500
S1—O21.4299 (17)C15—C141.390 (3)
S1—N41.6800 (19)C15—C181.512 (3)
S1—C51.747 (2)C3—H30.9500
S2—O41.4275 (17)C10—C91.383 (3)
S2—O31.4284 (17)C10—H100.9500
S2—N41.703 (2)C8—C71.385 (3)
S2—C121.755 (2)C8—C91.393 (4)
C4—C31.372 (3)C8—C111.497 (3)
C4—C11.409 (3)C14—C131.386 (3)
C4—N41.441 (3)C14—H140.9500
C1—N31.340 (3)C6—C71.381 (3)
C1—N21.352 (3)C6—H60.9500
C12—C131.388 (3)C13—H130.9500
C12—C171.388 (3)C7—H70.9500
N3—H3A0.8800C9—H90.9500
N3—H3B0.8800C18—H18C0.9800
N1—C21.340 (3)C18—H18A0.9800
N1—C31.342 (3)C18—H18B0.9800
C5—C101.379 (3)C11—H11A0.9800
C5—C61.389 (3)C11—H11B0.9800
N2—C21.324 (3)C11—H11C0.9800
C2—H20.9500C11—H11D0.9800
C16—C171.386 (3)C11—H11E0.9800
C16—C151.393 (3)C11—H11F0.9800
C16—H160.9500
O1—S1—O2119.77 (10)C5—C10—H10120.7
O1—S1—N4105.41 (9)C9—C10—H10120.7
O2—S1—N4107.02 (10)C7—C8—C9118.0 (2)
O1—S1—C5109.58 (10)C7—C8—C11120.5 (2)
O2—S1—C5108.65 (11)C9—C8—C11121.4 (2)
N4—S1—C5105.43 (10)C13—C14—C15121.2 (2)
O4—S2—O3120.40 (10)C13—C14—H14119.4
O4—S2—N4108.59 (10)C15—C14—H14119.4
O3—S2—N4102.50 (9)C7—C6—C5119.3 (2)
O4—S2—C12109.01 (11)C7—C6—H6120.3
O3—S2—C12109.41 (10)C5—C6—H6120.3
N4—S2—C12105.89 (10)C14—C13—C12118.7 (2)
C3—C4—C1118.2 (2)C14—C13—H13120.6
C3—C4—N4120.34 (19)C12—C13—H13120.6
C1—C4—N4121.43 (19)C6—C7—C8121.3 (2)
N3—C1—N2116.58 (19)C6—C7—H7119.4
N3—C1—C4124.3 (2)C8—C7—H7119.4
N2—C1—C4119.1 (2)C10—C9—C8121.8 (2)
C13—C12—C17121.4 (2)C10—C9—H9119.1
C13—C12—S2119.69 (18)C8—C9—H9119.1
C17—C12—S2118.92 (18)C15—C18—H18C109.5
C1—N3—H3A120.0C15—C18—H18A109.5
C1—N3—H3B120.0H18C—C18—H18A109.5
H3A—N3—H3B120.0C15—C18—H18B109.5
C4—N4—S1117.70 (15)H18C—C18—H18B109.5
C4—N4—S2119.23 (15)H18A—C18—H18B109.5
S1—N4—S2122.98 (11)C8—C11—H11A109.5
C2—N1—C3113.4 (2)C8—C11—H11B109.5
C10—C5—C6120.9 (2)H11A—C11—H11B109.5
C10—C5—S1118.89 (18)C8—C11—H11C109.5
C6—C5—S1120.14 (18)H11A—C11—H11C109.5
C2—N2—C1116.72 (19)H11B—C11—H11C109.5
N2—C2—N1129.0 (2)C8—C11—H11D109.5
N2—C2—H2115.5H11A—C11—H11D141.1
N1—C2—H2115.5H11B—C11—H11D56.3
C17—C16—C15121.1 (2)H11C—C11—H11D56.3
C17—C16—H16119.4C8—C11—H11E109.5
C15—C16—H16119.4H11A—C11—H11E56.3
C16—C17—C12118.8 (2)H11B—C11—H11E141.1
C16—C17—H17120.6H11C—C11—H11E56.3
C12—C17—H17120.6H11D—C11—H11E109.5
C14—C15—C16118.7 (2)C8—C11—H11F109.5
C14—C15—C18121.4 (2)H11A—C11—H11F56.3
C16—C15—C18119.8 (2)H11B—C11—H11F56.3
N1—C3—C4123.4 (2)H11C—C11—H11F141.1
N1—C3—H3118.3H11D—C11—H11F109.5
C4—C3—H3118.3H11E—C11—H11F109.5
C5—C10—C9118.7 (2)
C3—C4—C1—N3178.4 (2)O2—S1—C5—C616.1 (2)
N4—C4—C1—N31.7 (3)N4—S1—C5—C698.4 (2)
C3—C4—C1—N20.5 (3)N3—C1—N2—C2177.6 (2)
N4—C4—C1—N2179.33 (19)C4—C1—N2—C21.4 (3)
O4—S2—C12—C13174.23 (18)C1—N2—C2—N10.6 (4)
O3—S2—C12—C1340.7 (2)C3—N1—C2—N21.0 (4)
N4—S2—C12—C1369.1 (2)C15—C16—C17—C120.9 (3)
O4—S2—C12—C175.7 (2)C13—C12—C17—C160.1 (3)
O3—S2—C12—C17139.28 (18)S2—C12—C17—C16179.89 (17)
N4—S2—C12—C17110.92 (19)C17—C16—C15—C140.9 (3)
C3—C4—N4—S178.1 (2)C17—C16—C15—C18178.7 (2)
C1—C4—N4—S1102.1 (2)C2—N1—C3—C41.9 (3)
C3—C4—N4—S298.7 (2)C1—C4—C3—N11.2 (3)
C1—C4—N4—S281.1 (2)N4—C4—C3—N1178.9 (2)
O1—S1—N4—C4169.87 (15)C6—C5—C10—C90.8 (4)
O2—S1—N4—C441.33 (18)S1—C5—C10—C9176.4 (2)
C5—S1—N4—C474.23 (18)C16—C15—C14—C130.1 (4)
O1—S1—N4—S26.80 (15)C18—C15—C14—C13179.4 (2)
O2—S1—N4—S2135.34 (13)C10—C5—C6—C70.9 (4)
C5—S1—N4—S2109.10 (14)S1—C5—C6—C7176.23 (18)
O4—S2—N4—C4130.54 (16)C15—C14—C13—C120.6 (4)
O3—S2—N4—C42.12 (18)C17—C12—C13—C140.7 (3)
C12—S2—N4—C4112.52 (17)S2—C12—C13—C14179.38 (18)
O4—S2—N4—S152.84 (15)C5—C6—C7—C80.3 (4)
O3—S2—N4—S1178.74 (12)C9—C8—C7—C60.4 (4)
C12—S2—N4—S164.10 (15)C11—C8—C7—C6176.7 (2)
O1—S1—C5—C1028.6 (2)C5—C10—C9—C80.0 (4)
O2—S1—C5—C10161.14 (19)C7—C8—C9—C100.6 (4)
N4—S1—C5—C1084.4 (2)C11—C8—C9—C10176.5 (3)
O1—S1—C5—C6148.63 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.882.163.036 (3)178
N3—H3B···N1ii0.882.302.986 (3)135
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H18N4O4S2
Mr418.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)103
a, b, c (Å)36.559 (9), 6.9044 (18), 15.524 (4)
β (°) 103.852 (3)
V3)3804.6 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.13 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
11288, 4459, 3156
Rint0.041
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.116, 1.04
No. of reflections4459
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.58

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.882.163.036 (3)178
N3—H3B···N1ii0.882.302.986 (3)135
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

AT thanks the National Research Foundation (NRF), Pretoria, for providing an Innovation Fellowship and Professor W. A. L. van Otterlo for his research oversight. Stellenbosch University's Science Faculty is also acknowledged for providing the laboratory space and addition financial research support.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth. Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPanayides, J.-L., Pathak, R., de Koning, C. B. & van Otterlo, W. A. L. (2007a). Eur. J. Org. Chem. pp. 4953–4961.  Web of Science CrossRef Google Scholar
First citationPanayides, J.-L., Pathak, R., Panagiotopoulos, H., Davids, H., Fernandes, M. A., de Koning, C. B. & van Otterlo, W. A. L. (2007b). Tetrahedron, 63, 4737–4747.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchetty, G. (1969). Helv. Chim. Acta, 52, 1796–1802.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaher, A. & Smith, V. J. (2012). Acta Cryst. E68, o1136.  CSD CrossRef IUCr Journals Google Scholar
First citationYadav, D. B., Morgans, G. L., Aderibigbe, B. A., Madeley, L. G., Fernandes, M. A., Michael, J. P., de Koning, C. B. & van Otterlo, W. A. L. (2011). Tetrahedron, 67, 2991–2997.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds