organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3269-o3270

Di­ethyl 2,6-di­methyl-4-[5-(4-methyl­phen­yl)-1H-pyrazol-4-yl]-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aNational Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bKuvempu University, Department of P.G. Studies and Research in Biotechnology and Bioinformatics, Jnanasahyadri–Karnataka, Shankaraghatta 577 451, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 25 October 2012; accepted 29 October 2012; online 3 November 2012)

In the title compound, C23H27N3O4, the dihydro­pyridine ring adopts a 1,4B conformation. Intra­molecular C—H⋯O contacts occur. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds and C—H⋯N contacts connect the mol­ecules into strands along the a-axis direction.

Related literature

For background to the biological and pharmaceutical importance of dihydro­pyridine compounds, see: Stout & Meyers (1982[Stout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223-243.]); Vijesh et al. (2011[Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T., Nishitha, A. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591-5597.]); Boecker & Guengerich (1986[Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27N3O4

  • Mr = 409.48

  • Triclinic, [P \overline 1]

  • a = 8.5905 (2) Å

  • b = 10.8253 (3) Å

  • c = 11.3702 (3) Å

  • α = 91.021 (1)°

  • β = 97.922 (1)°

  • γ = 93.445 (1)°

  • V = 1045.02 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.36 × 0.31 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.986

  • 18073 measured reflections

  • 4983 independent reflections

  • 4313 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.05

  • 4983 reflections

  • 284 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11B⋯N21i 0.890 (17) 2.200 (17) 3.0352 (14) 156.2 (14)
N22—H22⋯O3ii 0.892 (17) 2.066 (17) 2.9580 (13) 178.6 (15)
C2—H2B⋯N21iii 0.98 2.52 3.4223 (16) 153
C36—H36⋯O1 0.95 2.30 3.2428 (17) 173
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 1,4-dihydropyridine scaffold (DHP) represents a heterocyclic unit of remarkable pharmacological activity (Stout & Meyers, 1982) and is found to exhibit various biological activities (Vijesh et al., 2011). Several DHP-inspired compounds are already used clinically as calcium channel blockers for the treatment of cardiovascular diseases, such as Nifedipine and Nitrendipine – used for the treatment of hypertension and angina pectoris –, Nisoldipine – a potent vasodilator – and Nimodipine – selective agent for targeting cerebral vasculature – to name but a few (Boecker & Guengerich, 1986). A number of DHP derivatives are discussed as potential drugs for the treatment of congestive heart failure (Vo et al., 1995). Motivated by the promising pharmaceutical activities of 1,4-dihydropyridines, the title compound was synthesized to study its crystal structure.

The molecule is a pyrazole derivative featuring a phenyl as well as a dihydropyridine-derived substituent. While the small puckering amplitude precludes a conformational analysis of the five-membered heterocycle, the dihyropyridine ring adopts a 1,4B (N11,C11B) conformation (Cremer & Pople, 1975; Boeyens, 1978). The least-squares planes defined by the intracyclic atoms of the phenyl group as well as the five-membered heterocycle, respectively, enclose an angle of 33.03 (7) °. The plane defined by the atoms of the dihydropyridine core is almost planar (r.m.s. of all fitted atoms = 0.1726 Å), with the flap carbon atom and the nitrogen atom deviating most from the plane by 0.270 (1) Å and 0.199 (1) Å, respectively (Fig. 1).

In the crystal, classical intermolecular hydrogen bonds of the N–H···N as well as the N–H···O type are present. Furthermore, C–H···N contacts and C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the corresponding atoms are observed. The C–H···N contacts are supported by one of the hydrogen atoms of a methyl group directly bonded to the dihydropyridine ring and one of the nitrogen atoms of the pyrazole moiety. The intramolecular C–H···O contact is apparent between one of the hydrogen atoms of the phenyl group in ortho position to the pyrazole ring and one of the sp2 hybridized oxygen atoms. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, the C–H···N contacts as well as the N–H···O-type hydrogen bonds form antidromic chains of molecules that are extended to strands along the crystallographic a axis by the N–H···N-type hydrogen bonds. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is C11(8)R22(16) on the unary level. The C–H supported contacts necessitate a S(9)C11(8) descriptor on the same level. The shortest intercentroid distance between two aromatic systems was measured at 4.7738 (8) Å (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For background to the biological and pharmaceutical importance of dihydropyridine compounds, see: Stout & Meyers (1982); Vijesh et al. (2011); Boecker & Guengerich (1986); Vo et al. (1995). For puckering analysis, see: Cremer & Pople (1975); Boeyens (1978). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

3-(4-methylphenyl)-1H-pyrazole-4-carbaldehyde(0.187 g, 1.0 mmol), ethylacetoacetate (0.26 g, 2.0 mmol) and ammonium acetate (0.092 g, 1.2 mmol) in ethanol (7 ml) were refluxed in an oil bath for 5 h. After completion of the reaction, the mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from ethanol:water (v:v = 1:1), yield: 0.33 g (80.68%).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms, C–H 0.99 Å for methylene groups and C–H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 1 0]. For reasons of clarity, only a selection of contacts is shown. Blue dashed lines indicate classical hydrogen bonds of the N–H···O type, green dashed lines denote C–H···N contacts. Symmetry operators: ix - 1, y, z; ii x + 1, y, z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
Diethyl 2,6-dimethyl-4-[5-(4-methylphenyl)-1H-pyrazol-4-yl]- 1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C23H27N3O4Z = 2
Mr = 409.48F(000) = 436
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Melting point = 471–473 K
a = 8.5905 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8253 (3) ÅCell parameters from 9960 reflections
c = 11.3702 (3) Åθ = 2.7–28.3°
α = 91.021 (1)°µ = 0.09 mm1
β = 97.922 (1)°T = 200 K
γ = 93.445 (1)°Block, yellow
V = 1045.02 (5) Å30.36 × 0.31 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
4983 independent reflections
Radiation source: fine-focus sealed tube4313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.969, Tmax = 0.986k = 1414
18073 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.4147P]
where P = (Fo2 + 2Fc2)/3
4983 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C23H27N3O4γ = 93.445 (1)°
Mr = 409.48V = 1045.02 (5) Å3
Triclinic, P1Z = 2
a = 8.5905 (2) ÅMo Kα radiation
b = 10.8253 (3) ŵ = 0.09 mm1
c = 11.3702 (3) ÅT = 200 K
α = 91.021 (1)°0.36 × 0.31 × 0.16 mm
β = 97.922 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4983 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4313 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.986Rint = 0.017
18073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
4983 reflectionsΔρmin = 0.21 e Å3
284 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45908 (13)0.00208 (9)0.66938 (10)0.0463 (3)
O20.25873 (11)0.00254 (8)0.52185 (9)0.0327 (2)
O30.15357 (10)0.44024 (9)0.88752 (8)0.0317 (2)
O40.37379 (10)0.34282 (9)0.94459 (8)0.0304 (2)
N110.25151 (12)0.37638 (9)0.53483 (9)0.0245 (2)
H11B0.2162 (19)0.4218 (15)0.4735 (15)0.034 (4)*
N210.76600 (12)0.46269 (10)0.68190 (10)0.0280 (2)
N220.82226 (12)0.39623 (9)0.77631 (9)0.0242 (2)
H220.923 (2)0.4087 (15)0.8088 (14)0.033 (4)*
C10.24030 (17)0.21083 (13)0.38718 (11)0.0343 (3)
H1A0.13190.17440.37640.051*
H1B0.31150.14840.36790.051*
H1C0.24780.28100.33450.051*
C20.15003 (15)0.53629 (12)0.64804 (12)0.0297 (3)
H2A0.17260.57590.72730.045*
H2B0.03630.51740.62820.045*
H2C0.18650.59240.58940.045*
C30.36694 (14)0.05624 (11)0.60280 (11)0.0266 (2)
C40.25461 (18)0.13674 (12)0.51954 (14)0.0362 (3)
H4A0.24250.16890.59900.043*
H4B0.35300.16580.49570.043*
C50.11687 (18)0.17966 (13)0.43120 (14)0.0403 (3)
H5A0.02160.14480.45280.060*
H5B0.10410.27020.43050.060*
H5C0.13420.15210.35210.060*
C60.26466 (13)0.38529 (11)0.86200 (11)0.0237 (2)
C70.35707 (17)0.36804 (16)1.06793 (12)0.0378 (3)
H7A0.25620.32961.08660.045*
H7B0.35890.45841.08370.045*
C80.49288 (19)0.31395 (17)1.14178 (13)0.0443 (4)
H8A0.49030.33401.22580.066*
H8B0.59180.34861.11840.066*
H8C0.48550.22381.12940.066*
C90.90941 (19)0.02184 (15)1.18484 (14)0.0431 (4)
H9A0.89810.01371.26290.065*
H9B1.02040.03601.18170.065*
H9C0.84650.10071.17190.065*
C110.41373 (12)0.25920 (10)0.72388 (10)0.0203 (2)
H110.41530.19890.78950.024*
C120.35319 (13)0.19111 (11)0.60642 (10)0.0226 (2)
C130.28586 (14)0.25489 (11)0.51391 (11)0.0244 (2)
C140.23363 (13)0.41889 (11)0.64688 (11)0.0228 (2)
C150.29660 (13)0.35556 (10)0.74185 (10)0.0210 (2)
C210.57727 (13)0.32159 (10)0.72757 (10)0.0211 (2)
C220.61806 (14)0.41725 (12)0.65375 (11)0.0265 (3)
H22A0.54730.44650.59020.032*
C230.71422 (13)0.31013 (10)0.80674 (10)0.0214 (2)
C310.75666 (13)0.22762 (11)0.90584 (10)0.0231 (2)
C320.86603 (15)0.26894 (12)1.00279 (11)0.0282 (3)
H320.90840.35231.00740.034*
C330.91302 (16)0.18844 (13)1.09262 (12)0.0327 (3)
H330.98830.21771.15780.039*
C340.85291 (15)0.06632 (13)1.08966 (12)0.0321 (3)
C350.74117 (17)0.02728 (13)0.99461 (13)0.0357 (3)
H350.69590.05510.99210.043*
C360.69364 (15)0.10560 (12)0.90293 (12)0.0311 (3)
H360.61800.07600.83810.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0470 (6)0.0281 (5)0.0564 (7)0.0101 (4)0.0218 (5)0.0044 (5)
O20.0351 (5)0.0228 (4)0.0369 (5)0.0006 (4)0.0064 (4)0.0024 (4)
O30.0226 (4)0.0383 (5)0.0348 (5)0.0059 (4)0.0047 (4)0.0034 (4)
O40.0269 (4)0.0430 (5)0.0215 (4)0.0090 (4)0.0015 (3)0.0001 (4)
N110.0230 (5)0.0253 (5)0.0242 (5)0.0011 (4)0.0010 (4)0.0067 (4)
N210.0209 (5)0.0310 (5)0.0316 (5)0.0012 (4)0.0004 (4)0.0109 (4)
N220.0178 (5)0.0265 (5)0.0273 (5)0.0015 (4)0.0012 (4)0.0056 (4)
C10.0409 (7)0.0360 (7)0.0239 (6)0.0007 (6)0.0016 (5)0.0017 (5)
C20.0244 (6)0.0273 (6)0.0373 (7)0.0063 (5)0.0012 (5)0.0064 (5)
C30.0243 (6)0.0256 (6)0.0292 (6)0.0018 (4)0.0018 (5)0.0019 (5)
C40.0398 (7)0.0222 (6)0.0439 (8)0.0016 (5)0.0033 (6)0.0025 (5)
C50.0424 (8)0.0287 (7)0.0462 (8)0.0004 (6)0.0042 (6)0.0033 (6)
C60.0189 (5)0.0236 (5)0.0277 (6)0.0015 (4)0.0016 (4)0.0002 (4)
C70.0341 (7)0.0567 (9)0.0229 (6)0.0055 (6)0.0049 (5)0.0031 (6)
C80.0413 (8)0.0642 (10)0.0255 (7)0.0036 (7)0.0025 (6)0.0007 (6)
C90.0408 (8)0.0478 (9)0.0400 (8)0.0045 (7)0.0001 (6)0.0213 (7)
C110.0176 (5)0.0212 (5)0.0216 (5)0.0016 (4)0.0004 (4)0.0029 (4)
C120.0199 (5)0.0229 (5)0.0245 (5)0.0003 (4)0.0022 (4)0.0000 (4)
C130.0209 (5)0.0265 (6)0.0248 (6)0.0025 (4)0.0013 (4)0.0012 (4)
C140.0158 (5)0.0230 (5)0.0287 (6)0.0008 (4)0.0010 (4)0.0031 (4)
C150.0164 (5)0.0212 (5)0.0251 (5)0.0002 (4)0.0016 (4)0.0017 (4)
C210.0182 (5)0.0224 (5)0.0223 (5)0.0031 (4)0.0007 (4)0.0019 (4)
C220.0195 (5)0.0304 (6)0.0287 (6)0.0020 (4)0.0006 (4)0.0089 (5)
C230.0188 (5)0.0221 (5)0.0229 (5)0.0031 (4)0.0012 (4)0.0009 (4)
C310.0195 (5)0.0258 (6)0.0239 (5)0.0046 (4)0.0011 (4)0.0033 (4)
C320.0265 (6)0.0293 (6)0.0272 (6)0.0008 (5)0.0008 (5)0.0033 (5)
C330.0287 (6)0.0409 (7)0.0262 (6)0.0007 (5)0.0047 (5)0.0060 (5)
C340.0272 (6)0.0384 (7)0.0311 (6)0.0052 (5)0.0023 (5)0.0127 (5)
C350.0344 (7)0.0284 (6)0.0419 (8)0.0012 (5)0.0030 (6)0.0101 (6)
C360.0275 (6)0.0286 (6)0.0339 (7)0.0007 (5)0.0070 (5)0.0045 (5)
Geometric parameters (Å, º) top
O1—C31.2041 (16)C7—H7A0.9900
O2—C31.3373 (15)C7—H7B0.9900
O2—C41.4508 (15)C8—H8A0.9800
O3—C61.2195 (15)C8—H8B0.9800
O4—C61.3403 (14)C8—H8C0.9800
O4—C71.4521 (15)C9—C341.5050 (18)
N11—C141.3785 (16)C9—H9A0.9800
N11—C131.3886 (16)C9—H9B0.9800
N11—H11B0.890 (17)C9—H9C0.9800
N21—C221.3292 (15)C11—C211.5167 (15)
N21—N221.3527 (14)C11—C151.5223 (15)
N22—C231.3586 (15)C11—C121.5247 (15)
N22—H220.892 (17)C11—H111.0000
C1—C131.5015 (17)C12—C131.3505 (16)
C1—H1A0.9800C14—C151.3559 (16)
C1—H1B0.9800C21—C231.3926 (15)
C1—H1C0.9800C21—C221.4029 (16)
C2—C141.4977 (16)C22—H22A0.9500
C2—H2A0.9800C23—C311.4704 (15)
C2—H2B0.9800C31—C321.3945 (17)
C2—H2C0.9800C31—C361.3952 (17)
C3—C121.4720 (16)C32—C331.3877 (17)
C4—C51.488 (2)C32—H320.9500
C4—H4A0.9900C33—C341.388 (2)
C4—H4B0.9900C33—H330.9500
C5—H5A0.9800C34—C351.3845 (19)
C5—H5B0.9800C35—C361.3885 (18)
C5—H5C0.9800C35—H350.9500
C6—C151.4641 (16)C36—H360.9500
C7—C81.496 (2)
C3—O2—C4116.55 (10)C34—C9—H9A109.5
C6—O4—C7116.94 (10)C34—C9—H9B109.5
C14—N11—C13121.46 (10)H9A—C9—H9B109.5
C14—N11—H11B117.7 (10)C34—C9—H9C109.5
C13—N11—H11B119.0 (10)H9A—C9—H9C109.5
C22—N21—N22103.83 (9)H9B—C9—H9C109.5
N21—N22—C23112.96 (10)C21—C11—C15109.87 (9)
N21—N22—H22119.8 (10)C21—C11—C12113.53 (9)
C23—N22—H22127.1 (10)C15—C11—C12106.87 (9)
C13—C1—H1A109.5C21—C11—H11108.8
C13—C1—H1B109.5C15—C11—H11108.8
H1A—C1—H1B109.5C12—C11—H11108.8
C13—C1—H1C109.5C13—C12—C3123.65 (11)
H1A—C1—H1C109.5C13—C12—C11119.48 (10)
H1B—C1—H1C109.5C3—C12—C11116.82 (10)
C14—C2—H2A109.5C12—C13—N11118.14 (11)
C14—C2—H2B109.5C12—C13—C1128.04 (11)
H2A—C2—H2B109.5N11—C13—C1113.82 (11)
C14—C2—H2C109.5C15—C14—N11118.45 (10)
H2A—C2—H2C109.5C15—C14—C2127.45 (11)
H2B—C2—H2C109.5N11—C14—C2114.04 (10)
O1—C3—O2122.52 (11)C14—C15—C6121.38 (10)
O1—C3—C12124.48 (11)C14—C15—C11118.89 (10)
O2—C3—C12112.88 (10)C6—C15—C11119.52 (10)
O2—C4—C5106.23 (11)C23—C21—C22103.87 (10)
O2—C4—H4A110.5C23—C21—C11130.71 (10)
C5—C4—H4A110.5C22—C21—C11125.13 (10)
O2—C4—H4B110.5N21—C22—C21113.03 (10)
C5—C4—H4B110.5N21—C22—H22A123.5
H4A—C4—H4B108.7C21—C22—H22A123.5
C4—C5—H5A109.5N22—C23—C21106.30 (10)
C4—C5—H5B109.5N22—C23—C31120.22 (10)
H5A—C5—H5B109.5C21—C23—C31133.47 (11)
C4—C5—H5C109.5C32—C31—C36118.69 (11)
H5A—C5—H5C109.5C32—C31—C23120.25 (11)
H5B—C5—H5C109.5C36—C31—C23121.01 (11)
O3—C6—O4122.45 (11)C33—C32—C31120.06 (12)
O3—C6—C15126.12 (11)C33—C32—H32120.0
O4—C6—C15111.42 (10)C31—C32—H32120.0
O4—C7—C8106.79 (11)C32—C33—C34121.70 (12)
O4—C7—H7A110.4C32—C33—H33119.2
C8—C7—H7A110.4C34—C33—H33119.2
O4—C7—H7B110.4C35—C34—C33117.73 (12)
C8—C7—H7B110.4C35—C34—C9120.89 (13)
H7A—C7—H7B108.6C33—C34—C9121.37 (13)
C7—C8—H8A109.5C34—C35—C36121.64 (13)
C7—C8—H8B109.5C34—C35—H35119.2
H8A—C8—H8B109.5C36—C35—H35119.2
C7—C8—H8C109.5C35—C36—C31120.15 (12)
H8A—C8—H8C109.5C35—C36—H36119.9
H8B—C8—H8C109.5C31—C36—H36119.9
C22—N21—N22—C230.64 (14)C21—C11—C15—C1483.76 (12)
C4—O2—C3—O11.44 (19)C12—C11—C15—C1439.82 (13)
C4—O2—C3—C12174.64 (11)C21—C11—C15—C691.09 (12)
C3—O2—C4—C5174.86 (12)C12—C11—C15—C6145.33 (10)
C7—O4—C6—O31.67 (18)C15—C11—C21—C23116.11 (13)
C7—O4—C6—C15179.04 (11)C12—C11—C21—C23124.30 (13)
C6—O4—C7—C8179.02 (12)C15—C11—C21—C2256.77 (15)
O1—C3—C12—C13159.81 (14)C12—C11—C21—C2262.82 (15)
O2—C3—C12—C1324.20 (17)N22—N21—C22—C210.49 (14)
O1—C3—C12—C1122.62 (18)C23—C21—C22—N210.18 (14)
O2—C3—C12—C11153.37 (10)C11—C21—C22—N21174.63 (11)
C21—C11—C12—C1383.11 (13)N21—N22—C23—C210.54 (14)
C15—C11—C12—C1338.18 (14)N21—N22—C23—C31178.60 (10)
C21—C11—C12—C399.21 (12)C22—C21—C23—N220.21 (13)
C15—C11—C12—C3139.50 (10)C11—C21—C23—N22173.80 (11)
C3—C12—C13—N11167.37 (11)C22—C21—C23—C31178.77 (12)
C11—C12—C13—N1110.14 (16)C11—C21—C23—C317.2 (2)
C3—C12—C13—C112.1 (2)N22—C23—C31—C3232.05 (17)
C11—C12—C13—C1170.34 (11)C21—C23—C31—C32149.08 (13)
C14—N11—C13—C1222.13 (16)N22—C23—C31—C36145.42 (12)
C14—N11—C13—C1157.45 (11)C21—C23—C31—C3633.4 (2)
C13—N11—C14—C1520.38 (16)C36—C31—C32—C331.51 (19)
C13—N11—C14—C2162.15 (10)C23—C31—C32—C33176.02 (11)
N11—C14—C15—C6171.78 (10)C31—C32—C33—C340.5 (2)
C2—C14—C15—C611.14 (18)C32—C33—C34—C351.2 (2)
N11—C14—C15—C1113.47 (15)C32—C33—C34—C9177.43 (13)
C2—C14—C15—C11163.61 (11)C33—C34—C35—C362.0 (2)
O3—C6—C15—C1421.00 (18)C9—C34—C35—C36176.65 (14)
O4—C6—C15—C14159.74 (11)C34—C35—C36—C311.1 (2)
O3—C6—C15—C11164.28 (11)C32—C31—C36—C350.75 (19)
O4—C6—C15—C1114.98 (14)C23—C31—C36—C35176.77 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···N21i0.890 (17)2.200 (17)3.0352 (14)156.2 (14)
N22—H22···O3ii0.892 (17)2.066 (17)2.9580 (13)178.6 (15)
C2—H2B···N21iii0.982.523.4223 (16)153
C36—H36···O10.952.303.2428 (17)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H27N3O4
Mr409.48
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.5905 (2), 10.8253 (3), 11.3702 (3)
α, β, γ (°)91.021 (1), 97.922 (1), 93.445 (1)
V3)1045.02 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.31 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.969, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
18073, 4983, 4313
Rint0.017
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.05
No. of reflections4983
No. of parameters284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···N21i0.890 (17)2.200 (17)3.0352 (14)156.2 (14)
N22—H22···O3ii0.892 (17)2.066 (17)2.9580 (13)178.6 (15)
C2—H2B···N21iii0.982.523.4223 (16)152.8
C36—H36···O10.952.303.2428 (17)173.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

AMI is thankful to the Board of Research in Nuclear Sciences, Government of India for the Young Scientist award and also thanks the Vision Group on Science & Technology, Government of Karnataka, India for the Best Research Paper award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603.  CrossRef CAS PubMed Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223–243.  CrossRef CAS Web of Science Google Scholar
First citationVijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T., Nishitha, A. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3269-o3270
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds