organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­phenyl-1H-benzimidazole

aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 27 October 2012; accepted 30 October 2012; online 3 November 2012)

In the title mol­ecule, C19H14N2, the benzimidazole unit is close to being planar [maximum deviation = 0.0102 (6) Å] and forms dihedral angles of 55.80 (2) and 40.67 (3)° with the adjacent phenyl rings; the dihedral angle between the phenyl rings is 62.37 (3)°. In the crystal, one C—H⋯N hydrogen bond and three weak C—H⋯π inter­actions involving the fused benzene ring and the imidazole ring are observed, leading to a three-dimensional architecture.

Related literature

For the use of benzoimidazoles and phenanthroimidazoles as light-emitting devices and dye-sensitized solar cells, see: Fang et al. (2007[Fang, Z., Wang, S., Zhao, L., Xu, Z., Ren, J., Wang, X. & Yang, Q. (2007). Mater. Lett. 61, 4803-4806.]); Ge et al. (2008[Ge, Z., Hayakawa, T., Ando, S., Ueda, M., Akiike, T., Miyamoto, H., Kajita, T. & Kakimoto, M.-A. (2008). Chem. Mater. 20, 2532-2537.]); Lai et al. (2008[Lai, M.-Y., Chen, C.-H., Huang, W.-S., Lin, J. T., Ke, T.-H., Chen, L.-Y., Tsai, M.-H. & Wu, C.-C. (2008). Angew. Chem. Int. Ed. 47, 581-585.]); Shin et al. (2007[Shin, R. Y. C., Kietzke, T., Sudhakar, S., Dodabalapur, A., Chen, Z.-K. & Sellinger, A. (2007). Chem. Mater. 19, 1892-1894.]); Tsai et al. (2007[Tsai, M.-S., Hsu, Y.-C., Lin, J. T., Chen, H.-C. & Hsu, C.-P. (2007). J. Phys. Chem. C. 111, 18785-18793.]). For a closely related crystal structure, see: Jayamoorthy et al. (2012[Jayamoorthy, K., Rosepriya, S., Thiruvalluvar, A., Jayabharathi, J. & Butcher, R. J. (2012). Acta Cryst. E68, o2708.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N2

  • Mr = 270.32

  • Monoclinic, C 2/c

  • a = 10.1878 (3) Å

  • b = 16.6399 (4) Å

  • c = 17.4959 (5) Å

  • β = 106.205 (3)°

  • V = 2848.13 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.60 × 0.40 × 0.35 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.957, Tmax = 0.974

  • 25253 measured reflections

  • 7296 independent reflections

  • 5803 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 1.06

  • 7296 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 fused benzene ring and Cg1 is the centroid of the N1/C2/N3/C9/C8 imidazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N3i 0.93 2.62 3.4829 (11) 154
C16—H16⋯Cg2ii 0.93 2.68 3.4843 (9) 146
C22—H22⋯Cg1iii 0.93 2.91 3.3966 (9) 114
C23—H23⋯Cg2iii 0.93 2.83 3.4609 (9) 126
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Fused imidazole derivatives such as benzoimidazoles and phenanthroimidazoles [Fang et al., (2007), Ge et al., (2008), Lai et al., (2008)] have been used in the fabrication of light-emitting devices, employing them as electron-transporting layer and as sensitizers in dye-sensitized solar cells [Shin et al., (2007), Tsai et al., (2007)] due to their wide optical absorption, bright luminescence and bipolar transport characteristics. Since our research group is working in organic light emitting devices, we are interested to use the title compound as ligand for synthesizing Ir(III) complexes. Jayamoorthy et al., (2012) have reported a closely related crystal structure of 2-(4-Fluorophenyl)-1-phenyl-1H-benzimidazole.

In the title molecule, C19H14N2 (Fig. 1), the benzimidazole unit is almost planar [maximum deviation = 0.0102 (6) Å for C2]. The dihedral angles between the planes of the benzimidazole and the phenyl ring at N1 and the phenyl at C2 are 55.80 (2) and 40.67 (3)°, respectively. The dihedral angle between the planes of the adjacent phenyl rings is 62.37 (3)°. Intermolecular C14—H14···N3 hydrogen bond and weak C16—H16···π interaction involving the fused benzene ring, C22—H22···π interaction involving the imidazole ring and C23—H23···π interaction involving the fused benzene ring are found in the crystal structure (Fig. 2, Table 1).

Related literature top

For the use of benzoimidazoles and phenanthroimidazoles as light-emitting devices and dye-sensitized solar cells, see: Fang et al. (2007); Ge et al. (2008); Lai et al. (2008); Shin et al. (2007); Tsai et al. (2007). For a closely related crystal structure, see: Jayamoorthy et al. (2012).

Experimental top

The pure N-phenyl-o-phenylenediamine (3.128 g, 17 mmol) in ethanol (10 ml), benzaldehyde (1.72 ml, 17 mmol) and ammonium acetate (3 g) was added about 1 h by maintaining the temperature at 353 K. The reaction mixture was refluxed for appropriate time and the completion of reaction was monitored by TLC, finally the reaction extracted with dichloromethane. The solid separated was purified by column chromatography using petroleum ether: ethyl acetate as the eluent. Yield: 2.49 g (50%). The title compound was dissolved in acetonitrile and allowed to slow evaporation for two days to obtain crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å. Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
1,2-Diphenyl-1H-benzimidazole top
Crystal data top
C19H14N2F(000) = 1136
Mr = 270.32Dx = 1.261 Mg m3
Monoclinic, C2/cMelting point: 380 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 10.1878 (3) ÅCell parameters from 6755 reflections
b = 16.6399 (4) Åθ = 3.4–37.7°
c = 17.4959 (5) ŵ = 0.08 mm1
β = 106.205 (3)°T = 123 K
V = 2848.13 (14) Å3Block, colourless
Z = 80.60 × 0.40 × 0.35 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7296 independent reflections
Radiation source: Enhance (Mo) X-ray Source5803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 37.8°, θmin = 3.5°
ω scansh = 1716
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2727
Tmin = 0.957, Tmax = 0.974l = 2929
25253 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.063P)2 + 1.1529P]
where P = (Fo2 + 2Fc2)/3
7296 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C19H14N2V = 2848.13 (14) Å3
Mr = 270.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.1878 (3) ŵ = 0.08 mm1
b = 16.6399 (4) ÅT = 123 K
c = 17.4959 (5) Å0.60 × 0.40 × 0.35 mm
β = 106.205 (3)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7296 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5803 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.974Rint = 0.028
25253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
7296 reflectionsΔρmin = 0.25 e Å3
190 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02193 (7)0.41603 (4)0.11513 (4)0.0171 (2)
N30.10490 (7)0.53588 (4)0.13995 (4)0.0203 (2)
C20.00172 (8)0.49743 (5)0.12929 (4)0.0175 (2)
C40.33775 (9)0.48436 (6)0.13998 (5)0.0236 (2)
C50.41655 (9)0.41533 (6)0.13157 (6)0.0246 (2)
C60.36456 (9)0.34053 (6)0.11689 (5)0.0230 (2)
C70.23322 (9)0.33246 (5)0.10945 (5)0.0204 (2)
C80.15513 (8)0.40216 (5)0.11787 (4)0.0175 (2)
C90.20463 (8)0.47749 (5)0.13339 (5)0.0189 (2)
C110.07472 (8)0.35411 (5)0.11440 (4)0.0170 (2)
C120.04519 (9)0.29794 (5)0.05292 (5)0.0219 (2)
C130.13562 (10)0.23476 (5)0.05505 (6)0.0249 (2)
C140.25548 (10)0.22842 (5)0.11667 (6)0.0249 (2)
C150.28460 (9)0.28592 (6)0.17671 (5)0.0244 (2)
C160.19401 (9)0.34852 (5)0.17652 (5)0.0207 (2)
C210.13044 (8)0.53770 (5)0.12998 (5)0.0180 (2)
C220.20146 (9)0.51883 (5)0.07441 (5)0.0206 (2)
C230.32060 (9)0.56028 (6)0.07548 (5)0.0235 (2)
C240.36977 (9)0.61969 (6)0.13203 (6)0.0253 (2)
C250.29922 (10)0.63848 (5)0.18729 (6)0.0254 (2)
C260.17964 (9)0.59817 (5)0.18609 (5)0.0217 (2)
H40.372440.533820.149720.0283*
H50.505430.418590.135710.0296*
H60.419680.295200.112030.0275*
H70.199080.282960.099340.0245*
H120.033970.302620.010960.0262*
H130.115600.196380.014810.0299*
H140.315650.186130.117750.0299*
H150.365620.282490.217480.0293*
H160.213060.386140.217460.0248*
H220.169100.478700.036880.0248*
H230.367390.548200.038260.0281*
H240.449920.646920.132970.0303*
H250.332430.678210.225130.0305*
H260.132100.611360.222660.0260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0164 (3)0.0143 (3)0.0209 (3)0.0033 (2)0.0056 (2)0.0001 (2)
N30.0191 (3)0.0166 (3)0.0259 (3)0.0036 (2)0.0075 (2)0.0006 (2)
C20.0188 (3)0.0147 (3)0.0193 (3)0.0029 (2)0.0057 (2)0.0005 (2)
C40.0185 (3)0.0227 (4)0.0298 (4)0.0047 (3)0.0073 (3)0.0014 (3)
C50.0175 (3)0.0274 (4)0.0289 (4)0.0022 (3)0.0063 (3)0.0002 (3)
C60.0199 (3)0.0235 (4)0.0242 (3)0.0013 (3)0.0041 (3)0.0005 (3)
C70.0207 (3)0.0175 (3)0.0224 (3)0.0011 (3)0.0049 (3)0.0001 (3)
C80.0168 (3)0.0169 (3)0.0185 (3)0.0031 (2)0.0043 (2)0.0006 (2)
C90.0177 (3)0.0171 (3)0.0220 (3)0.0035 (2)0.0055 (2)0.0002 (2)
C110.0183 (3)0.0143 (3)0.0194 (3)0.0039 (2)0.0069 (2)0.0012 (2)
C120.0214 (3)0.0205 (3)0.0236 (3)0.0028 (3)0.0062 (3)0.0045 (3)
C130.0275 (4)0.0197 (4)0.0304 (4)0.0034 (3)0.0130 (3)0.0051 (3)
C140.0271 (4)0.0198 (3)0.0319 (4)0.0088 (3)0.0148 (3)0.0038 (3)
C150.0227 (4)0.0248 (4)0.0256 (4)0.0095 (3)0.0064 (3)0.0054 (3)
C160.0222 (3)0.0197 (3)0.0196 (3)0.0058 (3)0.0049 (3)0.0012 (3)
C210.0190 (3)0.0157 (3)0.0200 (3)0.0033 (2)0.0066 (2)0.0029 (2)
C220.0212 (3)0.0214 (3)0.0199 (3)0.0043 (3)0.0068 (3)0.0020 (3)
C230.0226 (4)0.0250 (4)0.0253 (4)0.0058 (3)0.0107 (3)0.0063 (3)
C240.0225 (4)0.0217 (4)0.0335 (4)0.0009 (3)0.0109 (3)0.0060 (3)
C250.0275 (4)0.0181 (3)0.0322 (4)0.0028 (3)0.0109 (3)0.0008 (3)
C260.0253 (4)0.0166 (3)0.0255 (3)0.0001 (3)0.0109 (3)0.0007 (3)
Geometric parameters (Å, º) top
N1—C21.3859 (11)C21—C261.3974 (12)
N1—C81.3905 (11)C22—C231.3916 (13)
N1—C111.4277 (11)C23—C241.3894 (14)
N3—C21.3180 (11)C24—C251.3918 (14)
N3—C91.3872 (11)C25—C261.3857 (14)
C2—C211.4697 (12)C4—H40.9300
C4—C51.3855 (14)C5—H50.9300
C4—C91.3975 (13)C6—H60.9300
C5—C61.4042 (14)C7—H70.9300
C6—C71.3866 (13)C12—H120.9300
C7—C81.3908 (12)C13—H130.9300
C8—C91.4056 (12)C14—H140.9300
C11—C121.3930 (11)C15—H150.9300
C11—C161.3891 (12)C16—H160.9300
C12—C131.3915 (13)C22—H220.9300
C13—C141.3892 (15)C23—H230.9300
C14—C151.3903 (13)C24—H240.9300
C15—C161.3911 (13)C25—H250.9300
C21—C221.4000 (12)C26—H260.9300
C2—N1—C8106.18 (7)C24—C25—C26120.20 (9)
C2—N1—C11128.39 (7)C21—C26—C25120.04 (8)
C8—N1—C11124.24 (7)C5—C4—H4121.00
C2—N3—C9105.18 (7)C9—C4—H4121.00
N1—C2—N3113.00 (7)C4—C5—H5119.00
N1—C2—C21123.87 (7)C6—C5—H5119.00
N3—C2—C21123.11 (7)C5—C6—H6119.00
C5—C4—C9118.06 (9)C7—C6—H6119.00
C4—C5—C6121.16 (9)C6—C7—H7122.00
C5—C6—C7121.75 (9)C8—C7—H7122.00
C6—C7—C8116.60 (8)C11—C12—H12120.00
N1—C8—C7132.04 (8)C13—C12—H12120.00
N1—C8—C9105.36 (7)C12—C13—H13120.00
C7—C8—C9122.59 (8)C14—C13—H13120.00
N3—C9—C4129.88 (8)C13—C14—H14120.00
N3—C9—C8110.28 (7)C15—C14—H14120.00
C4—C9—C8119.85 (8)C14—C15—H15120.00
N1—C11—C12119.36 (7)C16—C15—H15120.00
N1—C11—C16119.76 (7)C11—C16—H16120.00
C12—C11—C16120.83 (8)C15—C16—H16120.00
C11—C12—C13119.18 (8)C21—C22—H22120.00
C12—C13—C14120.68 (8)C23—C22—H22120.00
C13—C14—C15119.35 (9)C22—C23—H23120.00
C14—C15—C16120.80 (8)C24—C23—H23120.00
C11—C16—C15119.14 (8)C23—C24—H24120.00
C2—C21—C22121.66 (7)C25—C24—H24120.00
C2—C21—C26118.58 (8)C24—C25—H25120.00
C22—C21—C26119.72 (8)C26—C25—H25120.00
C21—C22—C23119.83 (8)C21—C26—H26120.00
C22—C23—C24120.13 (8)C25—C26—H26120.00
C23—C24—C25120.07 (9)
C8—N1—C2—N30.56 (8)C5—C6—C7—C80.47 (13)
C8—N1—C2—C21178.75 (7)C6—C7—C8—N1179.10 (8)
C11—N1—C2—N3168.36 (7)C6—C7—C8—C90.20 (12)
C11—N1—C2—C2113.45 (12)N1—C8—C9—N30.02 (8)
C2—N1—C8—C7178.75 (8)N1—C8—C9—C4179.91 (7)
C2—N1—C8—C90.30 (8)C7—C8—C9—N3179.18 (7)
C11—N1—C8—C710.30 (13)C7—C8—C9—C40.76 (12)
C11—N1—C8—C9168.74 (7)N1—C11—C12—C13175.99 (8)
C2—N1—C11—C12134.48 (8)C16—C11—C12—C131.25 (13)
C2—N1—C11—C1648.25 (11)N1—C11—C16—C15177.36 (8)
C8—N1—C11—C1259.73 (10)C12—C11—C16—C150.14 (13)
C8—N1—C11—C16117.54 (9)C11—C12—C13—C141.38 (14)
C9—N3—C2—N10.56 (9)C12—C13—C14—C150.13 (15)
C9—N3—C2—C21178.77 (7)C13—C14—C15—C161.29 (14)
C2—N3—C9—C4179.58 (9)C14—C15—C16—C111.42 (14)
C2—N3—C9—C80.35 (9)C2—C21—C22—C23177.85 (8)
N1—C2—C21—C2240.41 (12)C26—C21—C22—C230.10 (12)
N1—C2—C21—C26141.81 (8)C2—C21—C26—C25178.67 (8)
N3—C2—C21—C22137.60 (8)C22—C21—C26—C250.85 (13)
N3—C2—C21—C2640.18 (11)C21—C22—C23—C240.64 (14)
C9—C4—C5—C60.03 (14)C22—C23—C24—C250.65 (14)
C5—C4—C9—N3179.31 (9)C23—C24—C25—C260.11 (14)
C5—C4—C9—C80.62 (12)C24—C25—C26—C210.86 (14)
C4—C5—C6—C70.60 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 fused benzene ring and Cg1 is the centroid of the N1/C2/N3/C9/C8 imidazole ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···N3i0.932.623.4829 (11)154
C16—H16···Cg2ii0.932.683.4843 (9)146
C22—H22···Cg1iii0.932.913.3966 (9)114
C23—H23···Cg2iii0.932.833.4609 (9)126
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H14N2
Mr270.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)10.1878 (3), 16.6399 (4), 17.4959 (5)
β (°) 106.205 (3)
V3)2848.13 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.40 × 0.35
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.957, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
25253, 7296, 5803
Rint0.028
(sin θ/λ)max1)0.862
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.06
No. of reflections7296
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.25

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 fused benzene ring and Cg1 is the centroid of the N1/C2/N3/C9/C8 imidazole ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···N3i0.932.623.4829 (11)154
C16—H16···Cg2ii0.932.683.4843 (9)146
C22—H22···Cg1iii0.932.913.3966 (9)114
C23—H23···Cg2iii0.932.833.4609 (9)126
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

KJ thanks the DST (No. SR/S1/IC-73/2010) for a fellowship. JJ thanks the DST (No. SR/S1/IC-73/2010), the UGC [F. No. 36–21/2008 (SR)] and the DRDO (NRB-213/MAT/10–11) for providing funds for this research study. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFang, Z., Wang, S., Zhao, L., Xu, Z., Ren, J., Wang, X. & Yang, Q. (2007). Mater. Lett. 61, 4803–4806.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGe, Z., Hayakawa, T., Ando, S., Ueda, M., Akiike, T., Miyamoto, H., Kajita, T. & Kakimoto, M.-A. (2008). Chem. Mater. 20, 2532–2537.  Web of Science CrossRef CAS Google Scholar
First citationJayamoorthy, K., Rosepriya, S., Thiruvalluvar, A., Jayabharathi, J. & Butcher, R. J. (2012). Acta Cryst. E68, o2708.  CSD CrossRef IUCr Journals Google Scholar
First citationLai, M.-Y., Chen, C.-H., Huang, W.-S., Lin, J. T., Ke, T.-H., Chen, L.-Y., Tsai, M.-H. & Wu, C.-C. (2008). Angew. Chem. Int. Ed. 47, 581–585.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, R. Y. C., Kietzke, T., Sudhakar, S., Dodabalapur, A., Chen, Z.-K. & Sellinger, A. (2007). Chem. Mater. 19, 1892–1894.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, M.-S., Hsu, Y.-C., Lin, J. T., Chen, H.-C. & Hsu, C.-P. (2007). J. Phys. Chem. C. 111, 18785–18793.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds