organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3-(4-chloro­phen­yl)thio­urea di­chloro­methane hemisolvate

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 November 2012; accepted 5 November 2012; online 10 November 2012)

In the title hemisolvate, C14H11ClN2OS·0.5CH2Cl2, an anti disposition is found for the thione and ketone atoms, as well as the N—H H atoms; the dichloro­methane C atom lies on a twofold axis. The central chromophore (including the two adjacent ipso C atoms) is planar (r.m.s. deviation = 0.021 Å) owing to the presence of an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) loop. Significant twists are evident in the mol­ecule, the dihedral angles between the central moiety and the phenyl and benzene rings being 29.52 (7) and 40.02 (7)°, respectively. In the crystal, eight-membered {⋯HNC= S}2 synthons with twofold symmetry form via N—H⋯S hydrogen bonds. The dimers are connected into a supra­molecular chain along [111] by C—H⋯O inter­actions. The chains stack along the c axis, forming columns which define channels in which the occluded dichloro­methane mol­ecules reside.

Related literature

For complexation of N-benzoyl-N′-aryl­thio­urea derivatives to transition metals, see: Selvakumaran et al. (2011[Selvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278-284.]). For related structures, see: Khawar Rauf et al. (2006[Khawar Rauf, M., Badshah, A., Flörke, U. & Saeed, A. (2006). Acta Cryst. E62, o1419-o1420.]); Selvakumaran et al. (2012[Selvakumaran, N., Sheeba, M. M., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o3259.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2OS·0.5CH2Cl2

  • Mr = 333.23

  • Monoclinic, C 2/c

  • a = 20.0800 (4) Å

  • b = 16.0136 (2) Å

  • c = 10.3752 (2) Å

  • β = 117.690 (3)°

  • V = 2954.10 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 5.26 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.619, Tmax = 1.000

  • 5766 measured reflections

  • 2937 independent reflections

  • 2802 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.05

  • 2937 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O1 0.90 (2) 1.85 (2) 2.6034 (17) 140.6 (18)
N1—H1n⋯S1i 0.87 (2) 2.59 (2) 3.4368 (15) 167 (2)
C12—H12⋯O1ii 0.95 2.47 3.3743 (19) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of continuing studies of N-benzoyl-N'-arylthiourea derivatives (Selvakumaran et al., 2012) and their coordination to transition metals such as PdII (Selvakumaran et al., 2011), the title compound (I) was investigated as its dichloromethane hemi-solvate. The structure of the unsolvated form is available for comparison (Khawar Rauf et al., 2006).

In (I), Fig. 1, anti dispositions are found for the thione and ketone atoms, and for the N—H H-atoms. The central chromophore (including the two adjacent ipso C atoms) is planar with a r.m.s. deviation of 0.021 Å [maximum deviations of 0.033 (1) Å for N1, and -0.023 (1) Å for S1] owing to the presence of an intramolecular N—H···O hydrogen bond which closes an S(6) loop, Table 1. The observed disposition of atoms is the same as for the unsolvated form (Khawar Rauf et al., 2006).

A significant twist is evident in (I) as seen in the dihedral angles of 29.52 (7) and 40.02 (7)° formed between the central moiety and the C1-phenyl and C9-benzene rings, respectively. The dihedral angle between the six-membered rings is 11.11 (9)°. This pattern of dihedral angles contrasts the situation for the unsolvated form where the comparable dihedral angles are 41.42 (8), 2.77 (8) and 43.93 (10)°, respectively, indicating a significantly greater twist in the molecule as highlighted in the overlay diagram, Fig. 2.

Eight-membered {···HNCS}2 synthons (2-fold symmetry) feature in the crystal packing which arise via N—H···S hydrogen bonds and these are connected into a supramolecular chain along [111] by C—H···O interactions which stabilize centrosymmetric 18-membered {···OCNCNC3H}2 synthons., Fig. 3 and Table 1. Chains stack along the c axis to form columns which define channels in which the occluded dichloromethane molecules (with 2-fold axis symmetry) reside. There are no specific interactions between the chains nor with the solvent molecules, Fig. 4.

Related literature top

For complexation of N-benzoyl-N'-arylthiourea derivatives to transition metals, see: Selvakumaran et al. (2011). For related structures, see: Khawar Rauf et al. (2006); Selvakumaran et al. (2012).

Experimental top

A solution of benzoyl chloride (0.005 mol, 0.7029 g) in acetone (30 ml) was added drop wise to a suspension of potassium thiocyanate (0.005 mol, 0.4859 g) in anhydrous acetone (30 ml). The reaction mixture was heated under reflux for 45 minutes and then cooled to room temperature. A solution of '4-chloroaniline (0.005 mol, 0.6379 g) in acetone (30 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added and resulting solid was filtered, washed with water and dried in vacuo. The resulting solid product (78% yield) was recrystallized as colourless blocks from its ethanol/dichloromethane (1:2 ratio) solution. Characterization (dried sample): M.pt: 411 K, Anal. Calcd. For C14H11ClN2O2S (%): C, 57.8; H, 3.81; N, 9.63; Found: C, 57.5; H, 4.0; N, 9.8. 1H NMR: δ (400 MHz, CDCl3, p.p.m.): 7.35–7.88 (m, 9H); 9.14 (s, 1H, thiourea NH); 12.58 (s, 1H, amide NH). 13C NMR: δ (400 MHz, CDCl3, p.p.m.): 125.3; 127.5; 129.0; 129.2; 131.4; 132.1; 133.8; 136.1; 167.0; 178.4. IR (KBr, cm-1): 3230 ν(amide N–H), 3028 ν(thiourea N–H), 1688 ν(C=O), 1262 ν(C=S).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H)= 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atoms were refined freely. Despite the elongated anisotropic displacement parameters for the dichloromethane-C atom, multiple positions could not be resolved.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level. The dichloromethane molecule of solvation has been omitted.
[Figure 2] Fig. 2. Overlay diagram of N-benzoyl-N'-arylthiourea derivative (I) with the unsolvated form (blue). The NSN atoms have been superimposed.
[Figure 3] Fig. 3. A view of the supramolecular chain along [111] in (I). The N—H···S and C—H···O interactions are shown as orange and blue dashed lines, respectively.
[Figure 4] Fig. 4. A view of the unit-cell contents in projection down the c axis in (I). The N—H···S and C—H···O interactions are shown as orange and blue dashed lines, respectively.
1-Benzoyl-3-(4-chlorophenyl)thiourea dichloromethane hemisolvate top
Crystal data top
C14H11ClN2OS·0.5CH2Cl2F(000) = 1368
Mr = 333.23Dx = 1.498 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 3963 reflections
a = 20.0800 (4) Åθ = 3.7–74.2°
b = 16.0136 (2) ŵ = 5.26 mm1
c = 10.3752 (2) ÅT = 100 K
β = 117.690 (3)°Block, colourless
V = 2954.10 (9) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2937 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2802 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 3.7°
ω scanh = 1924
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1918
Tmin = 0.619, Tmax = 1.000l = 128
5766 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 3.8195P]
where P = (Fo2 + 2Fc2)/3
2937 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C14H11ClN2OS·0.5CH2Cl2V = 2954.10 (9) Å3
Mr = 333.23Z = 8
Monoclinic, C2/cCu Kα radiation
a = 20.0800 (4) ŵ = 5.26 mm1
b = 16.0136 (2) ÅT = 100 K
c = 10.3752 (2) Å0.30 × 0.25 × 0.20 mm
β = 117.690 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2937 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2802 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 1.000Rint = 0.013
5766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
2937 reflectionsΔρmin = 0.63 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.64817 (3)0.24103 (3)1.38168 (4)0.02772 (13)
Cl20.06334 (3)0.49157 (3)0.21781 (6)0.04144 (16)
S10.34276 (2)0.21105 (2)0.68579 (4)0.01812 (12)
O10.40404 (6)0.47474 (7)0.61554 (12)0.0182 (2)
N20.43155 (7)0.34562 (8)0.78527 (14)0.0141 (3)
N10.33686 (7)0.35253 (8)0.54885 (14)0.0139 (3)
C10.30153 (8)0.46811 (10)0.37713 (17)0.0142 (3)
C20.26545 (9)0.41884 (10)0.25243 (17)0.0161 (3)
H20.27270.36010.25850.019*
C30.21909 (9)0.45587 (11)0.11989 (18)0.0196 (3)
H30.19460.42240.03500.024*
C40.20837 (9)0.54186 (11)0.11089 (18)0.0210 (3)
H40.17600.56690.02010.025*
C50.24478 (9)0.59118 (11)0.23394 (19)0.0199 (3)
H50.23740.64990.22710.024*
C60.29191 (9)0.55510 (10)0.36699 (18)0.0166 (3)
H60.31760.58910.45090.020*
C70.35206 (8)0.43302 (10)0.52309 (17)0.0143 (3)
C80.37385 (8)0.30647 (10)0.67746 (17)0.0135 (3)
C90.48080 (8)0.31534 (10)0.92652 (17)0.0136 (3)
C100.50405 (8)0.37306 (10)1.03984 (17)0.0151 (3)
H100.48400.42801.02100.018*
C120.55623 (9)0.35074 (10)1.17967 (17)0.0166 (3)
H120.57270.39011.25680.020*
C130.58394 (9)0.26988 (11)1.20494 (18)0.0172 (3)
C140.56186 (9)0.21168 (10)1.09322 (18)0.0179 (3)
H140.58200.15671.11260.021*
C150.51002 (9)0.23468 (10)0.95287 (17)0.0156 (3)
H150.49460.19560.87540.019*
C160.00000.5521 (2)0.25000.090 (2)
H16A0.02860.58850.16470.108*0.50
H16B0.02860.58850.33530.108*0.50
H1n0.2952 (13)0.3301 (14)0.485 (2)0.026 (6)*
H2n0.4380 (12)0.3990 (15)0.767 (2)0.029 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0299 (2)0.0251 (2)0.0164 (2)0.00383 (17)0.00079 (18)0.00311 (15)
Cl20.0391 (3)0.0343 (3)0.0530 (3)0.0115 (2)0.0232 (3)0.0051 (2)
S10.0128 (2)0.0128 (2)0.0220 (2)0.00272 (13)0.00228 (16)0.00305 (14)
O10.0162 (5)0.0142 (5)0.0196 (6)0.0034 (4)0.0045 (5)0.0006 (4)
N20.0115 (6)0.0118 (6)0.0156 (7)0.0008 (5)0.0035 (5)0.0006 (5)
N10.0102 (6)0.0128 (6)0.0148 (6)0.0013 (5)0.0027 (5)0.0001 (5)
C10.0112 (7)0.0156 (7)0.0169 (7)0.0007 (6)0.0074 (6)0.0012 (6)
C20.0147 (7)0.0155 (7)0.0197 (8)0.0019 (6)0.0096 (6)0.0003 (6)
C30.0186 (8)0.0237 (8)0.0168 (8)0.0034 (7)0.0084 (6)0.0018 (7)
C40.0182 (8)0.0254 (9)0.0186 (8)0.0022 (7)0.0079 (7)0.0078 (7)
C50.0189 (8)0.0163 (8)0.0264 (8)0.0017 (6)0.0123 (7)0.0057 (7)
C60.0157 (7)0.0150 (7)0.0199 (8)0.0012 (6)0.0090 (6)0.0001 (6)
C70.0122 (7)0.0133 (7)0.0181 (7)0.0009 (6)0.0077 (6)0.0000 (6)
C80.0102 (7)0.0132 (7)0.0172 (8)0.0015 (6)0.0065 (6)0.0010 (6)
C90.0091 (7)0.0153 (7)0.0158 (7)0.0006 (6)0.0051 (6)0.0009 (6)
C100.0134 (7)0.0127 (7)0.0198 (8)0.0006 (6)0.0082 (6)0.0003 (6)
C120.0153 (7)0.0172 (8)0.0174 (8)0.0032 (6)0.0077 (6)0.0035 (6)
C130.0140 (7)0.0198 (8)0.0152 (7)0.0003 (6)0.0047 (6)0.0023 (6)
C140.0154 (8)0.0139 (8)0.0217 (8)0.0015 (6)0.0065 (7)0.0014 (6)
C150.0130 (7)0.0143 (7)0.0175 (8)0.0004 (6)0.0054 (6)0.0021 (6)
C160.077 (3)0.0225 (16)0.218 (7)0.0000.110 (4)0.000
Geometric parameters (Å, º) top
Cl1—C131.7439 (16)C4—H40.9500
Cl2—C161.750 (2)C5—C61.386 (2)
S1—C81.6679 (16)C5—H50.9500
O1—C71.2350 (19)C6—H60.9500
N2—C81.335 (2)C9—C151.392 (2)
N2—C91.419 (2)C9—C101.395 (2)
N2—H2n0.90 (2)C10—C121.385 (2)
N1—C71.379 (2)C10—H100.9500
N1—C81.398 (2)C12—C131.385 (2)
N1—H1n0.87 (2)C12—H120.9500
C1—C21.396 (2)C13—C141.390 (2)
C1—C61.403 (2)C14—C151.390 (2)
C1—C71.487 (2)C14—H140.9500
C2—C31.385 (2)C15—H150.9500
C2—H20.9500C16—Cl2i1.750 (2)
C3—C41.390 (2)C16—H16A0.9900
C3—H30.9500C16—H16B0.9900
C4—C51.386 (3)
C8—N2—C9128.44 (14)N2—C8—N1114.91 (13)
C8—N2—H2n115.0 (14)N2—C8—S1125.93 (12)
C9—N2—H2n116.4 (14)N1—C8—S1119.15 (11)
C7—N1—C8127.64 (13)C15—C9—C10120.27 (14)
C7—N1—H1n117.6 (15)C15—C9—N2123.21 (14)
C8—N1—H1n113.8 (15)C10—C9—N2116.34 (14)
C2—C1—C6119.81 (15)C12—C10—C9120.40 (15)
C2—C1—C7123.01 (14)C12—C10—H10119.8
C6—C1—C7117.16 (14)C9—C10—H10119.8
C3—C2—C1119.86 (15)C10—C12—C13118.77 (15)
C3—C2—H2120.1C10—C12—H12120.6
C1—C2—H2120.1C13—C12—H12120.6
C2—C3—C4120.15 (15)C12—C13—C14121.64 (15)
C2—C3—H3119.9C12—C13—Cl1118.83 (13)
C4—C3—H3119.9C14—C13—Cl1119.53 (13)
C5—C4—C3120.25 (15)C13—C14—C15119.32 (15)
C5—C4—H4119.9C13—C14—H14120.3
C3—C4—H4119.9C15—C14—H14120.3
C4—C5—C6120.24 (15)C14—C15—C9119.59 (15)
C4—C5—H5119.9C14—C15—H15120.2
C6—C5—H5119.9C9—C15—H15120.2
C5—C6—C1119.67 (15)Cl2—C16—Cl2i112.8 (2)
C5—C6—H6120.2Cl2—C16—H16A109.0
C1—C6—H6120.2Cl2i—C16—H16A109.0
O1—C7—N1122.58 (14)Cl2—C16—H16B109.0
O1—C7—C1121.13 (14)Cl2i—C16—H16B109.0
N1—C7—C1116.29 (13)H16A—C16—H16B107.8
C6—C1—C2—C31.4 (2)C9—N2—C8—S12.8 (2)
C7—C1—C2—C3179.99 (14)C7—N1—C8—N21.7 (2)
C1—C2—C3—C40.1 (2)C7—N1—C8—S1177.10 (12)
C2—C3—C4—C50.9 (2)C8—N2—C9—C1541.7 (2)
C3—C4—C5—C60.3 (2)C8—N2—C9—C10143.19 (16)
C4—C5—C6—C11.2 (2)C15—C9—C10—C120.2 (2)
C2—C1—C6—C52.0 (2)N2—C9—C10—C12175.41 (13)
C7—C1—C6—C5179.27 (14)C9—C10—C12—C130.9 (2)
C8—N1—C7—O11.6 (2)C10—C12—C13—C141.4 (2)
C8—N1—C7—C1177.64 (14)C10—C12—C13—Cl1178.67 (12)
C2—C1—C7—O1151.52 (15)C12—C13—C14—C150.8 (2)
C6—C1—C7—O127.2 (2)Cl1—C13—C14—C15179.28 (12)
C2—C1—C7—N129.2 (2)C13—C14—C15—C90.3 (2)
C6—C1—C7—N1152.07 (14)C10—C9—C15—C140.8 (2)
C9—N2—C8—N1178.51 (14)N2—C9—C15—C14175.69 (14)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.90 (2)1.85 (2)2.6034 (17)140.6 (18)
N1—H1n···S1ii0.87 (2)2.59 (2)3.4368 (15)167 (2)
C12—H12···O1iii0.952.473.3743 (19)160
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2OS·0.5CH2Cl2
Mr333.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.0800 (4), 16.0136 (2), 10.3752 (2)
β (°) 117.690 (3)
V3)2954.10 (9)
Z8
Radiation typeCu Kα
µ (mm1)5.26
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.619, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5766, 2937, 2802
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.05
No. of reflections2937
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.63

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.90 (2)1.85 (2)2.6034 (17)140.6 (18)
N1—H1n···S1i0.87 (2)2.59 (2)3.4368 (15)167 (2)
C12—H12···O1ii0.952.473.3743 (19)160
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NS thanks NITT for a Fellowship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhawar Rauf, M., Badshah, A., Flörke, U. & Saeed, A. (2006). Acta Cryst. E62, o1419–o1420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationSelvakumaran, N., Sheeba, M. M., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o3259.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds