organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3404-o3405

Ethyl 4-(5-bromo-1H-indol-3-yl)-2,6,6-tri­methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

aHacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100 Sihhiye-Ankara, Turkey, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 5 November 2012; accepted 14 November 2012; online 24 November 2012)

The title compound, C23H25BrN2O3, crystallizes with two independent mol­ecules in the asymmetric unit (Z′ = 2) which differ in the twist of the 5-bromo-1H-indole ring with respect to the plane of the 4-methyl-1,4,5,6,7,8-hexa­hydro­quinoline ring [dihedral angles of 78.55 (9) and 89.70 (8)° in molecules A and B, respectively]. The indole ring is planar in both molecules [maximum deviations = 0.021 (3) and −0.020 (3) Å for the N atom] while the cyclo­hexene ring has adopts a sofa conformation. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming dimers with R12(6) ring motifs. These dimers are connected by N—H⋯O hydrogen bonds, generating chains along [110]. A C—H⋯O contact occurs between the independent mol­ecules.

Related literature

For biological properties of 1,4-dihydro­pyridines, see: Triggle, (2003[Triggle, D. J. (2003). Mini Rev. Med. Chem. 3, 215-223.]); Şafak & Şimşek (2006[Şafak, C. & Şimşek, R. (2006). Mini Rev. Med. Chem. 6, 747-755.]). For the introduction of nifedipine into clinical use, see: Gordeev et al. (1998[Gordeev, M. F., Patel, D. V., England, B. P., Jonnalagadda, S., Combs, J. D. & Gordon, E. M. (1998). Bioorg. Med. Chem. 6, 883-889.]). For a description of the Cambridge Structural Database, see: Allen, (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For similar structures, see: El-Khouly et al. (2012[El-Khouly, A., Öztürk Yildirim, S., Butcher, R. J., Şimsek, R. & Şafak, C. (2012). Acta Cryst. E68, o3337.]); Öztürk Yildirim et al. (2012[Öztürk Yildirim, S., Butcher, R. J., El-Khouly, A., Safak, C. & Şimsek, R. (2012). Acta Cryst. E68, o3365-o3366.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25BrN2O3

  • Mr = 457.36

  • Monoclinic, P 21 /c

  • a = 14.0044 (6) Å

  • b = 16.8802 (5) Å

  • c = 18.8341 (7) Å

  • β = 105.582 (4)°

  • V = 4288.7 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.83 mm−1

  • T = 123 K

  • 0.83 × 0.69 × 0.48 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [(Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) in CrysAlis RED (Agilent (2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.])] Tmin = 0.270, Tmax = 0.514

  • 17300 measured reflections

  • 8621 independent reflections

  • 7227 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.159

  • S = 1.02

  • 8621 reflections

  • 531 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AB⋯O1B 0.99 2.51 3.296 (4) 136
N1A—H1AA⋯O1B 0.88 2.01 2.870 (3) 165
N2A—H2AC⋯O2Bi 0.88 1.94 2.807 (3) 167
N1B—H1BA⋯O1Aii 0.88 1.97 2.845 (3) 173
N2B—H2BC⋯O2Aiii 0.88 2.05 2.889 (3) 159
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-Dihydropyridines (DHP), of which nifedipine is the prototype for this group, are one of the known classes of calcium antagonists, which reversibly block Ca2+ influx through L-type calcium channels and are frequently used for the treatment of cardiovascular diseases like angina, hypertension and supraventricular tachycardia (Triggle, 2003; Şafak & Şimşek, 2006).

Since the introduction of nifedipine into clinical use, many modifications have been made such as fusing one of the carbonyl groups into the ring system or substitution of the phenyl ring with heteroaromatic rings in order to elucidate the SARs (severe acute respiratory syndrome) and to enhance calcium-modulating effects (Gordeev et al., 1998). Following on from these results, we synthesized the title compound and determined its structure.

In the title compound (I), (Fig. 1, Fig. 2), the 5-bromo-1H-indole ring is almost planar in both of the molecules with a maximum deviation from the mean plane of 0.021 (3) Å for atom N2A and -0.020 (3) Å for atom N2B. The cyclohexene rings adopt a sofa conformation and are puckered with puckering parameters in molecule A and B (Cremer & Pople, 1975) of QT = 0.472 (4) Å, θ = 120.7 (5) °, ϕ = 295.1 (5) ° and QT = 0.475 (4) Å, θ = 62.7 (4) °, ϕ = 120.5 (4) °, respectively. The values of the bond lengths (Allen, 2002) and angles in (I) are in normal ranges and are comparable with those of related structures (El-Khouly et al., 2012; Öztürk Yildirim et al., 2012).

In the crystal, molecules are linked by pairs of intermolecular N—H···O hydrogen bonds, forming dimers with R12(6) ring motifs (Bernstein et al., 1995; Etter et al., 1990), and these dimers are connected by N—H···O hydrogen bonds, generating one-dimensional chains along [110] (Table 1, Fig. 3).

Related literature top

For biological properties of 1,4-dihydropyridines, see: Triggle, (2003); Şafak & Şimşek (2006). For the introduction of nifedipine into clinical use, see: Gordeev et al. (1998). For a description of the Cambridge Structural Database, see: Allen, (2002). For geometric analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990). For similar structures, see: El-Khouly et al. (2012); Öztürk Yildirim et al. (2012).

Experimental top

The title compound was prepared by refluxing 4,4-dimethyl-1,3-cyclohexanedione (0.001 mol), ethyl acetoacetate (0.001 mol), 6-bromoindole-2-carbaldehyde (0.001 mol) and ammonium acetate (0.005 mol) in methanol for 8 h. Crystals were grown by slow evaporation of a methanol solution. The structure of the compound was elucidated by IR, 1H-NMR and elemental analysis. M.p. 487 K; IR (cm-1): 3297, 3087, 2983, 1688; 1H-NMR δ (p.p.m.) 0.9–1.0 (6H; s; 2xCH3), 1.1 (3H; t; CH2CH3), 1.6–1.8 (6H; m; quinoline H7,8), 2.2 (3H; s; CH3), 4.0 (2H; m; CH2CH3), 5.2 (1H; s; quinoline H4), 6.9 (1H; s; indole H3), 7.1–7.7 (3H; m; aromatic), 9.2 (1H; s; quinoline NH), 10.8 (1H; s; indole NH). Anal. for C23H25BrN2O3 calculated: C, 60.40; H, 5.51; N, 6.13; found: C, 59.89; H, 5.86; N, 6.36. The compound demonstrated calcium channel blocker activity in isolated rat ileum and lamb carotid artery.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.95–0.99 Å and N—H = 0.88 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C or N) or 1.5 Ueq(Cmethyl). A rotating-group model was applied for the methyl groups. The highest residual electron density peak and the deepest hole are located at 0.86 and 0.82 Å from Br1B, respectively. Forty three outliers,(1 0 0), (-3 6 2), (2 4 0(, (-1 2 7), (1 3 6), (-4 6 2), (1 4 1), (3 1 3), (4 5 1), (-1 0 4), (-11 5 5), (-2 0 12), (-8 6 10), (-3 1 8), (-4 2 4), (3 1 2), (0 5 3), (6 2 1), (-2 1 8), (4 8 9), (-3 3 9), (-7 0 12), (-3 2 8), (-9 3 5), (-8 7 6), (-1 1 1), (-1 1 10), (-4 4 1), (-4 2 5), (-9 9 20), (-3 9 1), (-6 2 3), (-2 0 6), (-9 4 5), (-1 7 3), (3 1 5), (2 4 3), (2 4 4), (-11 3 5), (0 0 6), (0 1 10), (-5 3 2) and (1 8 3), were omitted in the final refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecule A of the title compound showing the conformation of the 5-bromo-1H-indole ring with respect to the hexahydro-quinoline ring plane. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecule B of the title compound showing the conformation of the 5-bromo-1H-indole ring with respect to the hexahydro-quinoline ring plane. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewing along the b axis. Dashed lines show the intermolecular hydrogen bonding interactions.
Ethyl 4-(5-bromo-1H-indol-3-yl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8- hexahydroquinoline-3-carboxylate top
Crystal data top
C23H25BrN2O3F(000) = 1888
Mr = 457.36Dx = 1.417 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 6306 reflections
a = 14.0044 (6) Åθ = 3.3–75.5°
b = 16.8802 (5) ŵ = 2.83 mm1
c = 18.8341 (7) ÅT = 123 K
β = 105.582 (4)°Irregular, colorless
V = 4288.7 (3) Å30.83 × 0.69 × 0.48 mm
Z = 8
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
8621 independent reflections
Radiation source: Enhance (Cu) X-ray Source7227 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 3.6°
ω scansh = 1716
Absorption correction: analytical
[(Clark & Reid, 1995) implemented in CrysAlis RED (Agilent (2011)]
k = 1821
Tmin = 0.270, Tmax = 0.514l = 2322
17300 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.078P)2 + 4.2146P]
where P = (Fo2 + 2Fc2)/3
8621 reflections(Δ/σ)max = 0.001
531 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 1.01 e Å3
Crystal data top
C23H25BrN2O3V = 4288.7 (3) Å3
Mr = 457.36Z = 8
Monoclinic, P21/cCu Kα radiation
a = 14.0044 (6) ŵ = 2.83 mm1
b = 16.8802 (5) ÅT = 123 K
c = 18.8341 (7) Å0.83 × 0.69 × 0.48 mm
β = 105.582 (4)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
8621 independent reflections
Absorption correction: analytical
[(Clark & Reid, 1995) implemented in CrysAlis RED (Agilent (2011)]
7227 reflections with I > 2σ(I)
Tmin = 0.270, Tmax = 0.514Rint = 0.038
17300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.02Δρmax = 1.31 e Å3
8621 reflectionsΔρmin = 1.01 e Å3
531 parameters
Special details top

Experimental. The crystals were very fragile. On cutting the crystals shattered so the smallest viable crystal was selected and an incident collimator of 1.0 mm was used.

Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.13692 (3)0.37770 (3)0.09007 (2)0.05924 (14)
O1A0.15665 (18)0.27492 (13)0.32627 (17)0.0493 (6)
O2A0.09319 (17)0.55281 (13)0.41215 (13)0.0420 (5)
O3A0.05958 (19)0.60408 (13)0.43578 (15)0.0469 (5)
N1A0.15943 (18)0.38895 (14)0.36909 (15)0.0355 (5)
H1AA0.22100.38360.36680.043*
N2A0.22154 (19)0.49209 (15)0.17494 (17)0.0400 (6)
H2AC0.27820.51350.15050.048*
C1A0.0954 (2)0.32637 (17)0.34815 (18)0.0365 (6)
C2A0.1409 (2)0.24903 (18)0.3337 (2)0.0473 (8)
H2AA0.16660.22000.38070.057*
H2AB0.19700.25950.31240.057*
C3A0.0613 (3)0.1980 (2)0.2793 (3)0.0539 (9)
H3AA0.04400.22350.23010.065*
H3AB0.08960.14520.27430.065*
C4A0.0320 (2)0.18776 (18)0.3045 (2)0.0411 (7)
C5A0.0703 (2)0.26800 (17)0.3243 (2)0.0396 (7)
C6A0.0030 (2)0.33535 (16)0.34118 (18)0.0359 (6)
C7A0.0463 (2)0.41683 (16)0.34580 (18)0.0331 (6)
H7AA0.09620.41190.37490.040*
C8A0.0331 (2)0.47467 (16)0.38612 (17)0.0335 (6)
C9A0.1307 (2)0.46069 (17)0.39384 (17)0.0348 (6)
C10A0.1001 (2)0.44528 (16)0.26938 (17)0.0326 (6)
C11A0.0690 (2)0.43850 (16)0.20286 (17)0.0331 (6)
C12A0.0175 (2)0.41221 (17)0.18585 (18)0.0366 (6)
H12A0.07270.39370.22340.044*
C13A0.0202 (3)0.41393 (19)0.1136 (2)0.0424 (7)
C14A0.0594 (3)0.4412 (2)0.0561 (2)0.0476 (8)
H14A0.05490.44030.00670.057*
C15A0.1440 (3)0.4691 (2)0.0719 (2)0.0461 (7)
H15A0.19800.48890.03400.055*
C16A0.1481 (2)0.46742 (17)0.14475 (19)0.0379 (6)
C17A0.1929 (2)0.47820 (16)0.24887 (19)0.0358 (6)
H17A0.23200.48980.28180.043*
C18A0.0062 (2)0.54629 (17)0.41275 (17)0.0360 (6)
C19A0.0234 (3)0.6765 (2)0.4605 (2)0.0510 (8)
H19A0.00250.66590.50360.061*
H19B0.03060.69940.42070.061*
C20A0.1085 (4)0.7317 (2)0.4809 (3)0.0671 (12)
H20A0.08740.78160.49850.101*
H20B0.13300.74200.43760.101*
H20C0.16160.70800.52000.101*
C21A0.2166 (2)0.5128 (2)0.4294 (2)0.0444 (7)
H21A0.21410.52600.47960.067*
H21B0.21330.56160.40070.067*
H21C0.27870.48490.43140.067*
C22A0.0118 (3)0.1373 (2)0.3741 (3)0.0598 (10)
H22A0.03720.16390.41400.090*
H22B0.01390.08550.36450.090*
H22C0.07350.13010.38850.090*
C23A0.1124 (3)0.1468 (3)0.2437 (3)0.0639 (11)
H23A0.08750.09560.23170.096*
H23B0.12940.18030.19960.096*
H23C0.17160.13830.26110.096*
Br1B0.63774 (4)0.23757 (4)0.06648 (3)0.07158 (17)
O1B0.34556 (15)0.34914 (12)0.34170 (13)0.0369 (4)
O2B0.40595 (16)0.06588 (13)0.38178 (14)0.0421 (5)
O3B0.55806 (17)0.01606 (12)0.39880 (14)0.0423 (5)
N1B0.65221 (18)0.23898 (14)0.34324 (16)0.0354 (5)
H1BA0.71180.24590.33710.042*
N2B0.2680 (2)0.14747 (15)0.14840 (16)0.0416 (6)
H2BC0.20960.12980.12330.050*
C1B0.5887 (2)0.30229 (16)0.33371 (16)0.0314 (5)
C2B0.6358 (2)0.38185 (17)0.3312 (2)0.0415 (7)
H2BA0.68510.37810.30230.050*
H2BB0.67080.39880.38180.050*
C3B0.5566 (3)0.44283 (18)0.2960 (2)0.0419 (7)
H3BA0.53160.43130.24270.050*
H3BB0.58710.49620.30130.050*
C4B0.4689 (2)0.44316 (16)0.33058 (17)0.0351 (6)
C5B0.4289 (2)0.35879 (16)0.33301 (15)0.0298 (5)
C6B0.4914 (2)0.29147 (15)0.32859 (15)0.0291 (5)
C7B0.44794 (19)0.20870 (15)0.32303 (15)0.0280 (5)
H7BA0.39900.20770.35310.034*
C8B0.5283 (2)0.14830 (16)0.35610 (16)0.0304 (5)
C9B0.6255 (2)0.16410 (16)0.36236 (17)0.0327 (6)
C10B0.3929 (2)0.18810 (15)0.24485 (16)0.0298 (5)
C11B0.4259 (2)0.19214 (15)0.17849 (16)0.0321 (6)
C12B0.5150 (2)0.21294 (17)0.16260 (18)0.0377 (6)
H12B0.57110.22920.20050.045*
C13B0.5185 (3)0.2090 (2)0.09021 (19)0.0448 (7)
C14B0.4370 (3)0.1861 (2)0.03215 (19)0.0516 (9)
H14B0.44240.18550.01700.062*
C15B0.3497 (3)0.16487 (18)0.04660 (18)0.0475 (8)
H15B0.29410.14930.00790.057*
C16B0.3447 (2)0.16667 (16)0.11969 (18)0.0394 (7)
C17B0.2974 (2)0.16038 (16)0.22313 (19)0.0376 (6)
H17B0.25700.15130.25550.045*
C18B0.4912 (2)0.07421 (16)0.37957 (16)0.0321 (6)
C19B0.5237 (3)0.05911 (17)0.42088 (19)0.0424 (7)
H19C0.47340.08320.37920.051*
H19D0.49380.05120.46240.051*
C20B0.6131 (3)0.1108 (2)0.4437 (3)0.0647 (12)
H20D0.59600.15970.46550.097*
H20E0.66550.08290.48010.097*
H20F0.63640.12380.40050.097*
C21B0.7139 (2)0.11148 (19)0.3907 (2)0.0474 (8)
H21D0.69510.05630.37770.071*
H21E0.73750.11650.44440.071*
H21F0.76670.12720.36840.071*
C22B0.5021 (3)0.47315 (19)0.4104 (2)0.0448 (7)
H22D0.52320.52850.41080.067*
H22E0.55760.44090.43850.067*
H22F0.44670.46920.43280.067*
C23B0.3868 (3)0.49594 (19)0.2847 (2)0.0476 (8)
H23G0.41270.54960.28250.071*
H23D0.33170.49780.30750.071*
H23E0.36350.47440.23480.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0535 (2)0.0716 (3)0.0595 (2)0.01058 (19)0.02695 (19)0.00035 (19)
O1A0.0372 (12)0.0293 (10)0.0884 (19)0.0001 (9)0.0288 (12)0.0013 (11)
O2A0.0417 (12)0.0342 (11)0.0516 (13)0.0121 (9)0.0150 (10)0.0003 (9)
O3A0.0480 (13)0.0313 (11)0.0597 (14)0.0078 (9)0.0117 (11)0.0068 (10)
N1A0.0272 (11)0.0303 (12)0.0479 (14)0.0071 (9)0.0080 (10)0.0030 (10)
N2A0.0297 (12)0.0289 (11)0.0574 (16)0.0030 (9)0.0051 (11)0.0022 (11)
C1A0.0356 (15)0.0258 (13)0.0509 (17)0.0055 (11)0.0165 (13)0.0037 (12)
C2A0.0373 (16)0.0276 (14)0.081 (3)0.0062 (12)0.0234 (16)0.0005 (15)
C3A0.050 (2)0.0388 (17)0.078 (3)0.0002 (15)0.0267 (19)0.0095 (17)
C4A0.0418 (16)0.0277 (14)0.0564 (19)0.0020 (12)0.0178 (14)0.0016 (13)
C5A0.0382 (15)0.0262 (13)0.0571 (19)0.0022 (11)0.0176 (14)0.0046 (13)
C6A0.0355 (15)0.0229 (12)0.0516 (17)0.0065 (11)0.0156 (13)0.0039 (12)
C7A0.0301 (13)0.0219 (12)0.0488 (16)0.0040 (10)0.0130 (12)0.0033 (11)
C8A0.0350 (14)0.0259 (12)0.0399 (15)0.0045 (11)0.0103 (12)0.0022 (11)
C9A0.0358 (14)0.0267 (13)0.0396 (15)0.0051 (11)0.0062 (12)0.0027 (11)
C10A0.0276 (13)0.0224 (12)0.0471 (16)0.0001 (10)0.0087 (11)0.0015 (11)
C11A0.0314 (13)0.0221 (12)0.0429 (15)0.0021 (10)0.0052 (11)0.0011 (11)
C12A0.0335 (14)0.0285 (13)0.0470 (16)0.0004 (11)0.0092 (12)0.0008 (12)
C13A0.0420 (16)0.0352 (15)0.0526 (18)0.0009 (13)0.0172 (14)0.0037 (13)
C14A0.056 (2)0.0425 (17)0.0423 (17)0.0034 (15)0.0088 (15)0.0020 (14)
C15A0.0499 (19)0.0361 (15)0.0445 (17)0.0011 (14)0.0005 (14)0.0015 (13)
C16A0.0347 (15)0.0252 (13)0.0494 (17)0.0020 (11)0.0040 (12)0.0022 (12)
C17A0.0302 (13)0.0223 (12)0.0560 (18)0.0012 (10)0.0132 (12)0.0021 (12)
C18A0.0402 (16)0.0285 (13)0.0375 (14)0.0084 (11)0.0076 (12)0.0032 (11)
C19A0.059 (2)0.0340 (16)0.059 (2)0.0102 (15)0.0152 (17)0.0085 (15)
C20A0.069 (3)0.0410 (19)0.083 (3)0.0050 (18)0.007 (2)0.018 (2)
C21A0.0352 (15)0.0387 (16)0.0541 (19)0.0032 (13)0.0027 (13)0.0076 (14)
C22A0.063 (2)0.0441 (19)0.077 (3)0.0123 (17)0.027 (2)0.0091 (19)
C23A0.058 (2)0.057 (2)0.076 (3)0.0062 (19)0.017 (2)0.016 (2)
Br1B0.0723 (3)0.0922 (4)0.0617 (3)0.0128 (2)0.0379 (2)0.0172 (2)
O1B0.0324 (10)0.0288 (9)0.0510 (12)0.0011 (8)0.0135 (9)0.0036 (9)
O2B0.0337 (11)0.0357 (11)0.0547 (13)0.0089 (9)0.0079 (9)0.0096 (10)
O3B0.0449 (12)0.0246 (10)0.0602 (14)0.0025 (9)0.0186 (10)0.0083 (9)
N1B0.0276 (11)0.0269 (11)0.0525 (15)0.0039 (9)0.0120 (10)0.0034 (10)
N2B0.0397 (14)0.0270 (11)0.0487 (15)0.0048 (10)0.0046 (11)0.0049 (11)
C1B0.0325 (13)0.0238 (12)0.0385 (14)0.0049 (10)0.0105 (11)0.0016 (11)
C2B0.0378 (15)0.0251 (13)0.065 (2)0.0073 (12)0.0198 (15)0.0005 (13)
C3B0.0513 (18)0.0253 (13)0.0535 (18)0.0050 (12)0.0219 (15)0.0047 (13)
C4B0.0403 (15)0.0230 (12)0.0430 (16)0.0018 (11)0.0130 (13)0.0011 (11)
C5B0.0327 (13)0.0244 (12)0.0309 (13)0.0025 (10)0.0060 (10)0.0011 (10)
C6B0.0324 (13)0.0227 (12)0.0315 (13)0.0064 (10)0.0074 (10)0.0018 (10)
C7B0.0264 (12)0.0216 (11)0.0357 (13)0.0045 (10)0.0080 (10)0.0014 (10)
C8B0.0314 (13)0.0233 (12)0.0355 (13)0.0044 (10)0.0071 (11)0.0007 (10)
C9B0.0317 (14)0.0232 (12)0.0411 (15)0.0022 (10)0.0061 (11)0.0007 (11)
C10B0.0282 (13)0.0197 (11)0.0388 (14)0.0009 (9)0.0045 (11)0.0022 (10)
C11B0.0388 (15)0.0199 (11)0.0343 (14)0.0031 (10)0.0041 (11)0.0008 (10)
C12B0.0418 (16)0.0310 (14)0.0396 (15)0.0049 (12)0.0099 (12)0.0031 (12)
C13B0.057 (2)0.0372 (16)0.0438 (17)0.0116 (14)0.0189 (15)0.0057 (13)
C14B0.084 (3)0.0338 (15)0.0340 (16)0.0142 (17)0.0113 (16)0.0003 (13)
C15B0.071 (2)0.0264 (14)0.0344 (15)0.0070 (14)0.0033 (15)0.0045 (12)
C16B0.0461 (17)0.0216 (12)0.0434 (16)0.0048 (11)0.0003 (13)0.0036 (11)
C17B0.0347 (15)0.0248 (12)0.0495 (17)0.0036 (11)0.0045 (12)0.0049 (12)
C18B0.0346 (14)0.0257 (12)0.0337 (13)0.0052 (11)0.0051 (11)0.0019 (10)
C19B0.0531 (19)0.0238 (13)0.0491 (18)0.0075 (12)0.0116 (15)0.0051 (12)
C20B0.055 (2)0.0290 (16)0.104 (4)0.0019 (15)0.011 (2)0.0128 (19)
C21B0.0295 (15)0.0347 (15)0.071 (2)0.0013 (12)0.0016 (14)0.0097 (15)
C22B0.0519 (19)0.0329 (15)0.0503 (18)0.0120 (13)0.0150 (15)0.0102 (13)
C23B0.0540 (19)0.0320 (15)0.057 (2)0.0067 (14)0.0151 (16)0.0089 (14)
Geometric parameters (Å, º) top
Br1A—C13A1.906 (3)Br1B—C13B1.903 (4)
O1A—C5A1.225 (4)O1B—C5B1.232 (4)
O2A—C18A1.220 (4)O2B—C18B1.214 (4)
O3A—C18A1.332 (4)O3B—C18B1.338 (4)
O3A—C19A1.447 (4)O3B—C19B1.457 (3)
N1A—C1A1.374 (4)N1B—C1B1.371 (4)
N1A—C9A1.395 (4)N1B—C9B1.393 (4)
N1A—H1AA0.8800N1B—H1BA0.8800
N2A—C17A1.362 (5)N2B—C16B1.365 (5)
N2A—C16A1.367 (4)N2B—C17B1.374 (4)
N2A—H2AC0.8800N2B—H2BC0.8800
C1A—C6A1.356 (4)C1B—C6B1.353 (4)
C1A—C2A1.509 (4)C1B—C2B1.503 (4)
C2A—C3A1.556 (5)C2B—C3B1.528 (5)
C2A—H2AA0.9900C2B—H2BA0.9900
C2A—H2AB0.9900C2B—H2BB0.9900
C3A—C4A1.515 (5)C3B—C4B1.536 (4)
C3A—H3AA0.9900C3B—H3BA0.9900
C3A—H3AB0.9900C3B—H3BB0.9900
C4A—C22A1.524 (5)C4B—C23B1.526 (4)
C4A—C23A1.538 (5)C4B—C22B1.535 (5)
C4A—C5A1.539 (4)C4B—C5B1.536 (4)
C5A—C6A1.457 (4)C5B—C6B1.450 (4)
C6A—C7A1.516 (4)C6B—C7B1.516 (3)
C7A—C10A1.512 (4)C7B—C10B1.508 (4)
C7A—C8A1.521 (4)C7B—C8B1.523 (4)
C7A—H7AA1.0000C7B—H7BA1.0000
C8A—C9A1.356 (4)C8B—C9B1.360 (4)
C8A—C18A1.472 (4)C8B—C18B1.468 (4)
C9A—C21A1.495 (4)C9B—C21B1.500 (4)
C10A—C17A1.371 (4)C10B—C17B1.371 (4)
C10A—C11A1.437 (4)C10B—C11B1.446 (4)
C11A—C12A1.405 (4)C11B—C12B1.403 (4)
C11A—C16A1.419 (4)C11B—C16B1.424 (4)
C12A—C13A1.371 (5)C12B—C13B1.379 (5)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.406 (5)C13B—C14B1.406 (6)
C14A—C15A1.380 (5)C14B—C15B1.369 (6)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.389 (5)C15B—C16B1.397 (5)
C15A—H15A0.9500C15B—H15B0.9500
C17A—H17A0.9500C17B—H17B0.9500
C19A—C20A1.480 (6)C19B—C20B1.491 (5)
C19A—H19A0.9900C19B—H19C0.9900
C19A—H19B0.9900C19B—H19D0.9900
C20A—H20A0.9800C20B—H20D0.9800
C20A—H20B0.9800C20B—H20E0.9800
C20A—H20C0.9800C20B—H20F0.9800
C21A—H21A0.9800C21B—H21D0.9800
C21A—H21B0.9800C21B—H21E0.9800
C21A—H21C0.9800C21B—H21F0.9800
C22A—H22A0.9800C22B—H22D0.9800
C22A—H22B0.9800C22B—H22E0.9800
C22A—H22C0.9800C22B—H22F0.9800
C23A—H23A0.9800C23B—H23G0.9800
C23A—H23B0.9800C23B—H23D0.9800
C23A—H23C0.9800C23B—H23E0.9800
C18A—O3A—C19A116.9 (3)C18B—O3B—C19B117.1 (2)
C1A—N1A—C9A122.6 (3)C1B—N1B—C9B122.1 (2)
C1A—N1A—H1AA118.7C1B—N1B—H1BA118.9
C9A—N1A—H1AA118.7C9B—N1B—H1BA118.9
C17A—N2A—C16A109.0 (3)C16B—N2B—C17B108.5 (3)
C17A—N2A—H2AC125.5C16B—N2B—H2BC125.8
C16A—N2A—H2AC125.5C17B—N2B—H2BC125.8
C6A—C1A—N1A120.6 (3)C6B—C1B—N1B120.6 (2)
C6A—C1A—C2A123.1 (3)C6B—C1B—C2B124.1 (3)
N1A—C1A—C2A116.2 (3)N1B—C1B—C2B115.2 (2)
C1A—C2A—C3A109.6 (3)C1B—C2B—C3B110.0 (3)
C1A—C2A—H2AA109.8C1B—C2B—H2BA109.7
C3A—C2A—H2AA109.8C3B—C2B—H2BA109.7
C1A—C2A—H2AB109.8C1B—C2B—H2BB109.7
C3A—C2A—H2AB109.8C3B—C2B—H2BB109.7
H2AA—C2A—H2AB108.2H2BA—C2B—H2BB108.2
C4A—C3A—C2A112.4 (3)C2B—C3B—C4B112.8 (3)
C4A—C3A—H3AA109.1C2B—C3B—H3BA109.0
C2A—C3A—H3AA109.1C4B—C3B—H3BA109.0
C4A—C3A—H3AB109.1C2B—C3B—H3BB109.0
C2A—C3A—H3AB109.1C4B—C3B—H3BB109.0
H3AA—C3A—H3AB107.9H3BA—C3B—H3BB107.8
C3A—C4A—C22A110.9 (3)C23B—C4B—C22B110.2 (3)
C3A—C4A—C23A109.8 (3)C23B—C4B—C5B109.4 (3)
C22A—C4A—C23A108.6 (3)C22B—C4B—C5B107.1 (2)
C3A—C4A—C5A111.2 (3)C23B—C4B—C3B109.2 (3)
C22A—C4A—C5A106.2 (3)C22B—C4B—C3B110.5 (3)
C23A—C4A—C5A110.1 (3)C5B—C4B—C3B110.4 (2)
O1A—C5A—C6A120.3 (3)O1B—C5B—C6B120.8 (2)
O1A—C5A—C4A120.2 (3)O1B—C5B—C4B119.6 (2)
C6A—C5A—C4A119.5 (3)C6B—C5B—C4B119.6 (2)
C1A—C6A—C5A121.0 (3)C1B—C6B—C5B120.1 (2)
C1A—C6A—C7A120.5 (3)C1B—C6B—C7B120.5 (2)
C5A—C6A—C7A118.4 (3)C5B—C6B—C7B119.3 (2)
C10A—C7A—C6A109.8 (3)C10B—C7B—C6B111.7 (2)
C10A—C7A—C8A112.4 (2)C10B—C7B—C8B111.9 (2)
C6A—C7A—C8A111.1 (2)C6B—C7B—C8B110.5 (2)
C10A—C7A—H7AA107.8C10B—C7B—H7BA107.5
C6A—C7A—H7AA107.8C6B—C7B—H7BA107.5
C8A—C7A—H7AA107.8C8B—C7B—H7BA107.5
C9A—C8A—C18A124.4 (3)C9B—C8B—C18B124.6 (3)
C9A—C8A—C7A121.5 (3)C9B—C8B—C7B121.1 (2)
C18A—C8A—C7A114.0 (2)C18B—C8B—C7B114.3 (2)
C8A—C9A—N1A119.2 (3)C8B—C9B—N1B119.2 (3)
C8A—C9A—C21A127.7 (3)C8B—C9B—C21B128.7 (3)
N1A—C9A—C21A113.0 (3)N1B—C9B—C21B112.1 (2)
C17A—C10A—C11A105.9 (3)C17B—C10B—C11B105.7 (3)
C17A—C10A—C7A126.1 (3)C17B—C10B—C7B124.9 (3)
C11A—C10A—C7A127.9 (3)C11B—C10B—C7B129.4 (2)
C12A—C11A—C16A118.4 (3)C12B—C11B—C16B118.7 (3)
C12A—C11A—C10A134.9 (3)C12B—C11B—C10B134.8 (3)
C16A—C11A—C10A106.8 (3)C16B—C11B—C10B106.5 (3)
C13A—C12A—C11A118.3 (3)C13B—C12B—C11B118.0 (3)
C13A—C12A—H12A120.8C13B—C12B—H12B121.0
C11A—C12A—H12A120.8C11B—C12B—H12B121.0
C12A—C13A—C14A123.0 (3)C12B—C13B—C14B123.0 (3)
C12A—C13A—Br1A118.5 (3)C12B—C13B—Br1B119.1 (3)
C14A—C13A—Br1A118.5 (3)C14B—C13B—Br1B117.9 (3)
C15A—C14A—C13A119.6 (3)C15B—C14B—C13B119.9 (3)
C15A—C14A—H14A120.2C15B—C14B—H14B120.0
C13A—C14A—H14A120.2C13B—C14B—H14B120.0
C14A—C15A—C16A118.1 (3)C14B—C15B—C16B118.3 (3)
C14A—C15A—H15A120.9C14B—C15B—H15B120.9
C16A—C15A—H15A120.9C16B—C15B—H15B120.9
N2A—C16A—C15A129.8 (3)N2B—C16B—C15B129.7 (3)
N2A—C16A—C11A107.6 (3)N2B—C16B—C11B108.2 (3)
C15A—C16A—C11A122.6 (3)C15B—C16B—C11B122.1 (3)
N2A—C17A—C10A110.7 (3)C10B—C17B—N2B111.1 (3)
N2A—C17A—H17A124.6C10B—C17B—H17B124.4
C10A—C17A—H17A124.6N2B—C17B—H17B124.4
O2A—C18A—O3A122.6 (3)O2B—C18B—O3B121.9 (3)
O2A—C18A—C8A122.4 (3)O2B—C18B—C8B122.7 (3)
O3A—C18A—C8A115.0 (3)O3B—C18B—C8B115.3 (2)
O3A—C19A—C20A106.7 (3)O3B—C19B—C20B106.0 (3)
O3A—C19A—H19A110.4O3B—C19B—H19C110.5
C20A—C19A—H19A110.4C20B—C19B—H19C110.5
O3A—C19A—H19B110.4O3B—C19B—H19D110.5
C20A—C19A—H19B110.4C20B—C19B—H19D110.5
H19A—C19A—H19B108.6H19C—C19B—H19D108.7
C19A—C20A—H20A109.5C19B—C20B—H20D109.5
C19A—C20A—H20B109.5C19B—C20B—H20E109.5
H20A—C20A—H20B109.5H20D—C20B—H20E109.5
C19A—C20A—H20C109.5C19B—C20B—H20F109.5
H20A—C20A—H20C109.5H20D—C20B—H20F109.5
H20B—C20A—H20C109.5H20E—C20B—H20F109.5
C9A—C21A—H21A109.5C9B—C21B—H21D109.5
C9A—C21A—H21B109.5C9B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
C9A—C21A—H21C109.5C9B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
C4A—C22A—H22A109.5C4B—C22B—H22D109.5
C4A—C22A—H22B109.5C4B—C22B—H22E109.5
H22A—C22A—H22B109.5H22D—C22B—H22E109.5
C4A—C22A—H22C109.5C4B—C22B—H22F109.5
H22A—C22A—H22C109.5H22D—C22B—H22F109.5
H22B—C22A—H22C109.5H22E—C22B—H22F109.5
C4A—C23A—H23A109.5C4B—C23B—H23G109.5
C4A—C23A—H23B109.5C4B—C23B—H23D109.5
H23A—C23A—H23B109.5H23G—C23B—H23D109.5
C4A—C23A—H23C109.5C4B—C23B—H23E109.5
H23A—C23A—H23C109.5H23G—C23B—H23E109.5
H23B—C23A—H23C109.5H23D—C23B—H23E109.5
C9A—N1A—C1A—C6A9.0 (5)C9B—N1B—C1B—C6B12.8 (5)
C9A—N1A—C1A—C2A171.1 (3)C9B—N1B—C1B—C2B166.0 (3)
C6A—C1A—C2A—C3A25.3 (5)C6B—C1B—C2B—C3B19.8 (4)
N1A—C1A—C2A—C3A154.6 (3)N1B—C1B—C2B—C3B161.5 (3)
C1A—C2A—C3A—C4A52.8 (4)C1B—C2B—C3B—C4B50.6 (4)
C2A—C3A—C4A—C22A67.6 (4)C2B—C3B—C4B—C23B171.3 (3)
C2A—C3A—C4A—C23A172.4 (3)C2B—C3B—C4B—C22B67.4 (3)
C2A—C3A—C4A—C5A50.3 (4)C2B—C3B—C4B—C5B50.9 (4)
C3A—C4A—C5A—O1A160.1 (4)C23B—C4B—C5B—O1B42.1 (4)
C22A—C4A—C5A—O1A79.2 (4)C22B—C4B—C5B—O1B77.3 (3)
C23A—C4A—C5A—O1A38.2 (5)C3B—C4B—C5B—O1B162.4 (3)
C3A—C4A—C5A—C6A20.3 (5)C23B—C4B—C5B—C6B140.8 (3)
C22A—C4A—C5A—C6A100.4 (4)C22B—C4B—C5B—C6B99.8 (3)
C23A—C4A—C5A—C6A142.3 (3)C3B—C4B—C5B—C6B20.6 (4)
N1A—C1A—C6A—C5A175.4 (3)N1B—C1B—C6B—C5B167.9 (3)
C2A—C1A—C6A—C5A4.7 (5)C2B—C1B—C6B—C5B10.7 (5)
N1A—C1A—C6A—C7A8.6 (5)N1B—C1B—C6B—C7B8.2 (4)
C2A—C1A—C6A—C7A171.3 (3)C2B—C1B—C6B—C7B173.1 (3)
O1A—C5A—C6A—C1A171.8 (3)O1B—C5B—C6B—C1B166.9 (3)
C4A—C5A—C6A—C1A7.8 (5)C4B—C5B—C6B—C1B10.1 (4)
O1A—C5A—C6A—C7A12.2 (5)O1B—C5B—C6B—C7B9.3 (4)
C4A—C5A—C6A—C7A168.2 (3)C4B—C5B—C6B—C7B173.7 (2)
C1A—C6A—C7A—C10A103.4 (3)C1B—C6B—C7B—C10B101.1 (3)
C5A—C6A—C7A—C10A72.6 (4)C5B—C6B—C7B—C10B82.7 (3)
C1A—C6A—C7A—C8A21.5 (4)C1B—C6B—C7B—C8B24.2 (4)
C5A—C6A—C7A—C8A162.4 (3)C5B—C6B—C7B—C8B152.0 (2)
C10A—C7A—C8A—C9A103.7 (3)C10B—C7B—C8B—C9B102.7 (3)
C6A—C7A—C8A—C9A19.7 (4)C6B—C7B—C8B—C9B22.5 (4)
C10A—C7A—C8A—C18A74.4 (3)C10B—C7B—C8B—C18B77.3 (3)
C6A—C7A—C8A—C18A162.2 (3)C6B—C7B—C8B—C18B157.5 (2)
C18A—C8A—C9A—N1A177.3 (3)C18B—C8B—C9B—N1B175.1 (3)
C7A—C8A—C9A—N1A4.9 (4)C7B—C8B—C9B—N1B4.8 (4)
C18A—C8A—C9A—C21A0.2 (5)C18B—C8B—C9B—C21B2.4 (5)
C7A—C8A—C9A—C21A177.7 (3)C7B—C8B—C9B—C21B177.6 (3)
C1A—N1A—C9A—C8A10.9 (5)C1B—N1B—C9B—C8B14.5 (5)
C1A—N1A—C9A—C21A166.9 (3)C1B—N1B—C9B—C21B163.5 (3)
C6A—C7A—C10A—C17A132.8 (3)C6B—C7B—C10B—C17B127.5 (3)
C8A—C7A—C10A—C17A102.9 (3)C8B—C7B—C10B—C17B108.0 (3)
C6A—C7A—C10A—C11A42.2 (4)C6B—C7B—C10B—C11B52.7 (4)
C8A—C7A—C10A—C11A82.1 (3)C8B—C7B—C10B—C11B71.8 (3)
C17A—C10A—C11A—C12A178.0 (3)C17B—C10B—C11B—C12B177.8 (3)
C7A—C10A—C11A—C12A6.2 (5)C7B—C10B—C11B—C12B1.9 (5)
C17A—C10A—C11A—C16A1.0 (3)C17B—C10B—C11B—C16B0.7 (3)
C7A—C10A—C11A—C16A174.8 (3)C7B—C10B—C11B—C16B179.5 (3)
C16A—C11A—C12A—C13A1.6 (4)C16B—C11B—C12B—C13B1.2 (4)
C10A—C11A—C12A—C13A179.5 (3)C10B—C11B—C12B—C13B179.7 (3)
C11A—C12A—C13A—C14A0.3 (5)C11B—C12B—C13B—C14B0.8 (5)
C11A—C12A—C13A—Br1A179.6 (2)C11B—C12B—C13B—Br1B179.5 (2)
C12A—C13A—C14A—C15A1.3 (5)C12B—C13B—C14B—C15B1.5 (5)
Br1A—C13A—C14A—C15A178.8 (3)Br1B—C13B—C14B—C15B179.8 (2)
C13A—C14A—C15A—C16A1.5 (5)C13B—C14B—C15B—C16B0.0 (5)
C17A—N2A—C16A—C15A179.6 (3)C17B—N2B—C16B—C15B178.7 (3)
C17A—N2A—C16A—C11A1.4 (3)C17B—N2B—C16B—C11B0.4 (3)
C14A—C15A—C16A—N2A179.1 (3)C14B—C15B—C16B—N2B179.0 (3)
C14A—C15A—C16A—C11A0.2 (5)C14B—C15B—C16B—C11B2.0 (4)
C12A—C11A—C16A—N2A177.7 (2)C12B—C11B—C16B—N2B178.1 (2)
C10A—C11A—C16A—N2A1.5 (3)C10B—C11B—C16B—N2B0.7 (3)
C12A—C11A—C16A—C15A1.4 (4)C12B—C11B—C16B—C15B2.7 (4)
C10A—C11A—C16A—C15A179.4 (3)C10B—C11B—C16B—C15B178.5 (3)
C16A—N2A—C17A—C10A0.8 (3)C11B—C10B—C17B—N2B0.5 (3)
C11A—C10A—C17A—N2A0.1 (3)C7B—C10B—C17B—N2B179.7 (2)
C7A—C10A—C17A—N2A175.8 (3)C16B—N2B—C17B—C10B0.1 (3)
C19A—O3A—C18A—O2A0.1 (5)C19B—O3B—C18B—O2B1.6 (4)
C19A—O3A—C18A—C8A178.3 (3)C19B—O3B—C18B—C8B178.7 (3)
C9A—C8A—C18A—O2A171.6 (3)C9B—C8B—C18B—O2B170.5 (3)
C7A—C8A—C18A—O2A10.4 (4)C7B—C8B—C18B—O2B9.5 (4)
C9A—C8A—C18A—O3A10.0 (4)C9B—C8B—C18B—O3B9.3 (4)
C7A—C8A—C18A—O3A168.1 (3)C7B—C8B—C18B—O3B170.7 (2)
C18A—O3A—C19A—C20A178.3 (3)C18B—O3B—C19B—C20B176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2AB···O1B0.992.513.296 (4)136
C21B—H21D···O3B0.982.172.749 (4)116
N1A—H1AA···O1B0.882.012.870 (3)165
N2A—H2AC···O2Bi0.881.942.807 (3)167
N1B—H1BA···O1Aii0.881.972.845 (3)173
N2B—H2BC···O2Aiii0.882.052.889 (3)159
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H25BrN2O3
Mr457.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)14.0044 (6), 16.8802 (5), 18.8341 (7)
β (°) 105.582 (4)
V3)4288.7 (3)
Z8
Radiation typeCu Kα
µ (mm1)2.83
Crystal size (mm)0.83 × 0.69 × 0.48
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionAnalytical
[(Clark & Reid, 1995) implemented in CrysAlis RED (Agilent (2011)]
Tmin, Tmax0.270, 0.514
No. of measured, independent and
observed [I > 2σ(I)] reflections
17300, 8621, 7227
Rint0.038
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.159, 1.02
No. of reflections8621
No. of parameters531
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 1.01

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2AB···O1B0.992.513.296 (4)136.1
N1A—H1AA···O1B0.882.012.870 (3)164.7
N2A—H2AC···O2Bi0.881.942.807 (3)167.4
N1B—H1BA···O1Aii0.881.972.845 (3)173.0
N2B—H2BC···O2Aiii0.882.052.889 (3)158.8
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1/2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Khouly, A., Öztürk Yildirim, S., Butcher, R. J., Şimsek, R. & Şafak, C. (2012). Acta Cryst. E68, o3337.  CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGordeev, M. F., Patel, D. V., England, B. P., Jonnalagadda, S., Combs, J. D. & Gordon, E. M. (1998). Bioorg. Med. Chem. 6, 883–889.  Web of Science CrossRef CAS PubMed Google Scholar
First citationÖztürk Yildirim, S., Butcher, R. J., El-Khouly, A., Safak, C. & Şimsek, R. (2012). Acta Cryst. E68, o3365–o3366.  CSD CrossRef IUCr Journals Google Scholar
First citationŞafak, C. & Şimşek, R. (2006). Mini Rev. Med. Chem. 6, 747–755.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTriggle, D. J. (2003). Mini Rev. Med. Chem. 3, 215–223.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3404-o3405
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds