organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­benzo­yl)-3-(2,3-di­methyl­phen­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: mkhawarrauf@yahoo.co.uk, aminbadshah@yahoo.com

(Received 17 November 2012; accepted 23 November 2012; online 30 November 2012)

The dihedral angle between the two phenyl groups in the title compound, C16H15ClN2OS, is 14.88 (4)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, pairs of N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For background and a related structure, see: Rauf et al. (2012[Rauf, M. K, Ebihara, M., Badshah, A. & Imtiaz-ud-Din, (2012). Acta Cryst. E68, o119.]). For a description of the Cambridge Structural Database, see: Allen et al. (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15ClN2OS

  • Mr = 318.81

  • Triclinic, [P \overline 1]

  • a = 7.489 (3) Å

  • b = 9.338 (4) Å

  • c = 13.274 (5) Å

  • α = 65.674 (13)°

  • β = 69.975 (16)°

  • γ = 73.639 (17)°

  • V = 783.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 123 K

  • 0.50 × 0.35 × 0.28 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • 6180 measured reflections

  • 3506 independent reflections

  • 3373 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.08

  • 3506 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.88 2.46 3.3104 (15) 164
N2—H2⋯O1 0.88 2.00 2.6866 (17) 134
Symmetry code: (i) -x, -y, -z+1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne .jp/k-wakita/yadokari]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]).

Supporting information


Comment top

The background to this study has been set out in our previous work for the structural chemistry of N,N'-disubstituted thiourea (Rauf et al., 2012) and their coordination chemistry. Herein, as a continuation of these crytallographic studies, the structure of the title compound (I) is described, Fig. 1. Compared to N-benzoyl-N'-phenylthioureas [Cambridge Structural Database (Mogul Version 1.7; Allen, 2002], the methyl substitutions at C(10) and C(11)on phenyl ring, implies no significant effect on these bond lengths. and show the molecule to exist in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. The dihedral angles to the O(1) C(1) N(1) C(2) N(2)S(1) plane are 79.89 (2)° for the ring formed by C(3) to C(8) and 65.32 (2)° for the ring formed by C(9) to C(14). An intramolecular N—H···O H–bond is present (Table 1), forming a six-membered ring commonly observed in this class of compounds (Rauf et al., 2012). In the crystal packing of (I), intermolecular N—H···S H–bonds link the molecules into centrosymmetric dimers (Fig.2).

Related literature top

For backgrounfd and a related structure, see: Rauf et al. (2012). For a description of the Cambridge Structural Database, see: Allen et al. (2002).

Experimental top

Freshly prepared 2-chlorobenzoylisothiocyanate (1.98 g, 10 mmol) was dissolved in acetone (30 ml) and stirred for 30 minutes. Afterwards neat 2,3-dimethylaniline(1.21 g, 10 mmol) was added and the resulting mixture was stirred for 2 h. The reaction mixture was then poured into acidified water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/ 1,1-dichloromethane (1:1 v/v) to give fine crystals of the title compound (I), with an overall yield of 95% (3.02 g). M.P; 180–181°C Anal. calcd. for C16 H15Cl N2 O S; C, 60.28 H, 4.74 N, 8.79 S, 10.06 Found: C, 60.22 H, 4.73 N, 8.78 S, 10.01.

Refinement top

Hydrogen atoms were included in calculated positions and refined as riding on their parent atom with N—H = 0.88 Å and Uiso(H) = 1.2U(Neq), Caromatic—H = 0.95 Å and Uiso(H) = 1.2U(Ceq) or C—H = 0.98 Å and Uiso(H) = 1.5U(Ceq), for methyl C atoms.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP of (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen bonds shown as dashed lines.
1-(2-Chlorobenzoyl)-3-(2,3-dimethylphenyl)thiourea top
Crystal data top
C16H15ClN2OSZ = 2
Mr = 318.81F(000) = 332
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.489 (3) ÅCell parameters from 2732 reflections
b = 9.338 (4) Åθ = 3.0–27.5°
c = 13.274 (5) ŵ = 0.38 mm1
α = 65.674 (13)°T = 123 K
β = 69.975 (16)°Prism, colorless
γ = 73.639 (17)°0.50 × 0.35 × 0.28 mm
V = 783.9 (5) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3373 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.062
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.5°
Detector resolution: 14.62 pixels mm-1h = 69
ω scansk = 912
6180 measured reflectionsl = 1017
3506 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.4197P]
where P = (Fo2 + 2Fc2)/3
3506 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H15ClN2OSγ = 73.639 (17)°
Mr = 318.81V = 783.9 (5) Å3
Triclinic, P1Z = 2
a = 7.489 (3) ÅMo Kα radiation
b = 9.338 (4) ŵ = 0.38 mm1
c = 13.274 (5) ÅT = 123 K
α = 65.674 (13)°0.50 × 0.35 × 0.28 mm
β = 69.975 (16)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3373 reflections with I > 2σ(I)
6180 measured reflectionsRint = 0.062
3506 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
3506 reflectionsΔρmin = 0.31 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38592 (19)0.07516 (15)0.27734 (11)0.0162 (3)
O10.44634 (15)0.17028 (13)0.18262 (9)0.0245 (2)
N10.20232 (16)0.09731 (13)0.34511 (9)0.0170 (2)
H10.17910.02750.41520.020*
C20.04854 (19)0.21635 (15)0.31664 (11)0.0151 (2)
S10.15915 (5)0.22091 (4)0.41821 (3)0.01758 (10)
N20.07877 (16)0.31921 (13)0.20967 (9)0.0172 (2)
H20.19720.31590.16550.021*
C30.51000 (18)0.07725 (15)0.32976 (11)0.0157 (3)
C40.48935 (19)0.22203 (16)0.33182 (11)0.0175 (3)
C50.6119 (2)0.36192 (17)0.37358 (12)0.0234 (3)
H50.59880.45970.37280.028*
C60.7535 (2)0.35614 (18)0.41627 (13)0.0269 (3)
H60.83710.45120.44600.032*
C70.7751 (2)0.21271 (19)0.41617 (13)0.0258 (3)
H70.87210.21020.44620.031*
C80.6538 (2)0.07287 (17)0.37186 (12)0.0211 (3)
H80.66950.02550.37040.025*
Cl10.30905 (5)0.22869 (5)0.28008 (3)0.02652 (11)
C90.07073 (18)0.43554 (16)0.16191 (10)0.0155 (3)
C100.06255 (19)0.59756 (16)0.12305 (11)0.0166 (3)
C110.2070 (2)0.70696 (16)0.07143 (11)0.0188 (3)
C120.3533 (2)0.65092 (18)0.06365 (11)0.0206 (3)
H120.45190.72510.03040.025*
C130.3589 (2)0.48910 (18)0.10335 (11)0.0213 (3)
H130.46040.45330.09730.026*
C140.2158 (2)0.38012 (17)0.15185 (11)0.0191 (3)
H140.21660.26900.17790.023*
C150.0930 (2)0.65647 (18)0.13585 (13)0.0236 (3)
H15C0.16870.56710.18330.035*
H15A0.03420.73690.17240.035*
H15B0.17730.70380.06020.035*
C160.2044 (2)0.88359 (18)0.02548 (14)0.0299 (3)
H16C0.30840.94050.01270.045*
H16A0.08020.90590.02950.045*
H16B0.22290.91920.08880.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0165 (6)0.0149 (6)0.0178 (6)0.0008 (5)0.0061 (5)0.0059 (5)
O10.0191 (5)0.0235 (5)0.0202 (5)0.0012 (4)0.0032 (4)0.0004 (4)
N10.0172 (5)0.0141 (5)0.0143 (5)0.0016 (4)0.0037 (4)0.0030 (4)
C20.0173 (6)0.0126 (5)0.0161 (6)0.0001 (5)0.0061 (5)0.0059 (5)
S10.01736 (17)0.01515 (16)0.01454 (16)0.00274 (11)0.00288 (12)0.00425 (12)
N20.0138 (5)0.0177 (5)0.0152 (5)0.0010 (4)0.0040 (4)0.0031 (4)
C30.0140 (6)0.0156 (6)0.0149 (6)0.0003 (5)0.0025 (5)0.0055 (5)
C40.0149 (6)0.0193 (6)0.0183 (6)0.0020 (5)0.0018 (5)0.0092 (5)
C50.0230 (7)0.0174 (6)0.0253 (7)0.0014 (5)0.0021 (6)0.0095 (5)
C60.0234 (7)0.0227 (7)0.0270 (7)0.0076 (6)0.0087 (6)0.0070 (6)
C70.0185 (7)0.0310 (8)0.0285 (7)0.0027 (6)0.0112 (6)0.0111 (6)
C80.0191 (6)0.0216 (7)0.0245 (7)0.0018 (5)0.0078 (5)0.0094 (5)
Cl10.02276 (19)0.0319 (2)0.0347 (2)0.00257 (14)0.00959 (15)0.02058 (16)
C90.0147 (6)0.0169 (6)0.0111 (5)0.0013 (5)0.0037 (4)0.0037 (5)
C100.0157 (6)0.0184 (6)0.0138 (5)0.0011 (5)0.0029 (5)0.0057 (5)
C110.0184 (6)0.0181 (6)0.0153 (6)0.0013 (5)0.0038 (5)0.0046 (5)
C120.0162 (6)0.0260 (7)0.0146 (6)0.0025 (5)0.0055 (5)0.0048 (5)
C130.0167 (6)0.0297 (7)0.0170 (6)0.0045 (5)0.0050 (5)0.0069 (5)
C140.0206 (6)0.0184 (6)0.0160 (6)0.0037 (5)0.0041 (5)0.0040 (5)
C150.0229 (7)0.0225 (7)0.0283 (7)0.0031 (5)0.0097 (6)0.0096 (6)
C160.0303 (8)0.0173 (7)0.0344 (8)0.0012 (6)0.0100 (7)0.0037 (6)
Geometric parameters (Å, º) top
C1—O11.2211 (17)C8—H80.9500
C1—N11.3743 (17)C9—C141.392 (2)
C1—C31.5017 (18)C9—C101.395 (2)
N1—C21.3912 (17)C10—C111.4115 (19)
N1—H10.8800C10—C151.504 (2)
C2—N21.3299 (17)C11—C121.389 (2)
C2—S11.6770 (14)C11—C161.508 (2)
N2—C91.4385 (17)C12—C131.388 (2)
N2—H20.8800C12—H120.9500
C3—C81.389 (2)C13—C141.385 (2)
C3—C41.3917 (19)C13—H130.9500
C4—C51.390 (2)C14—H140.9500
C4—Cl11.7367 (15)C15—H15C0.9800
C5—C61.385 (2)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C71.393 (2)C16—H16C0.9800
C6—H60.9500C16—H16A0.9800
C7—C81.393 (2)C16—H16B0.9800
C7—H70.9500
O1—C1—N1123.81 (12)C14—C9—C10122.26 (13)
O1—C1—C3121.86 (12)C14—C9—N2117.73 (12)
N1—C1—C3114.33 (11)C10—C9—N2119.95 (12)
C1—N1—C2128.06 (11)C9—C10—C11117.91 (13)
C1—N1—H1116.0C9—C10—C15121.91 (13)
C2—N1—H1116.0C11—C10—C15120.18 (13)
N2—C2—N1116.79 (11)C12—C11—C10119.49 (13)
N2—C2—S1124.85 (10)C12—C11—C16119.89 (13)
N1—C2—S1118.37 (10)C10—C11—C16120.61 (13)
C2—N2—C9123.85 (11)C13—C12—C11121.55 (13)
C2—N2—H2118.1C13—C12—H12119.2
C9—N2—H2118.1C11—C12—H12119.2
C8—C3—C4119.39 (12)C14—C13—C12119.64 (13)
C8—C3—C1119.55 (12)C14—C13—H13120.2
C4—C3—C1120.99 (12)C12—C13—H13120.2
C5—C4—C3121.20 (13)C13—C14—C9119.12 (13)
C5—C4—Cl1119.12 (11)C13—C14—H14120.4
C3—C4—Cl1119.67 (11)C9—C14—H14120.4
C6—C5—C4118.81 (14)C10—C15—H15C109.5
C6—C5—H5120.6C10—C15—H15A109.5
C4—C5—H5120.6H15C—C15—H15A109.5
C5—C6—C7120.82 (14)C10—C15—H15B109.5
C5—C6—H6119.6H15C—C15—H15B109.5
C7—C6—H6119.6H15A—C15—H15B109.5
C6—C7—C8119.76 (14)C11—C16—H16C109.5
C6—C7—H7120.1C11—C16—H16A109.5
C8—C7—H7120.1H16C—C16—H16A109.5
C3—C8—C7119.99 (14)C11—C16—H16B109.5
C3—C8—H8120.0H16C—C16—H16B109.5
C7—C8—H8120.0H16A—C16—H16B109.5
O1—C1—N1—C27.9 (2)C1—C3—C8—C7177.24 (12)
C3—C1—N1—C2172.60 (12)C6—C7—C8—C31.1 (2)
C1—N1—C2—N22.5 (2)C2—N2—C9—C1464.20 (17)
C1—N1—C2—S1177.20 (11)C2—N2—C9—C10118.53 (15)
N1—C2—N2—C9171.32 (12)C14—C9—C10—C110.39 (19)
S1—C2—N2—C98.96 (19)N2—C9—C10—C11176.76 (11)
O1—C1—C3—C874.09 (18)C14—C9—C10—C15179.07 (12)
N1—C1—C3—C8105.46 (15)N2—C9—C10—C153.78 (19)
O1—C1—C3—C4102.77 (16)C9—C10—C11—C121.59 (19)
N1—C1—C3—C477.68 (16)C15—C10—C11—C12177.88 (12)
C8—C3—C4—C51.0 (2)C9—C10—C11—C16178.78 (12)
C1—C3—C4—C5175.84 (12)C15—C10—C11—C161.75 (19)
C8—C3—C4—Cl1179.64 (10)C10—C11—C12—C131.4 (2)
C1—C3—C4—Cl13.49 (17)C16—C11—C12—C13178.98 (13)
C3—C4—C5—C61.6 (2)C11—C12—C13—C140.1 (2)
Cl1—C4—C5—C6179.05 (11)C12—C13—C14—C91.29 (19)
C4—C5—C6—C70.9 (2)C10—C9—C14—C131.1 (2)
C5—C6—C7—C80.5 (2)N2—C9—C14—C13178.27 (11)
C4—C3—C8—C70.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.463.3104 (15)164
N2—H2···O10.882.002.6866 (17)134
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H15ClN2OS
Mr318.81
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.489 (3), 9.338 (4), 13.274 (5)
α, β, γ (°)65.674 (13), 69.975 (16), 73.639 (17)
V3)783.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.50 × 0.35 × 0.28
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6180, 3506, 3373
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.08
No. of reflections3506
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), Yadokari-XG (Wakita, 2001; Kabuto et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.463.3104 (15)163.6
N2—H2···O10.882.002.6866 (17)134.3
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

MR is grateful to The Quaid-i-Azam University, Islamabad, for financial support for a postdoctoral fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRauf, M. K, Ebihara, M., Badshah, A. & Imtiaz-ud-Din, (2012). Acta Cryst. E68, o119.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne .jp/k-wakita/yadokari  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds