metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{bis­­[2-(diiso­propyl­phosphan­yl)phen­yl]phosphanido-κ3P,P′,P′′}chloridonickel(II)

aDipartimento di Chimica e Biologia, Università di Salerno, via Ponte Don Melillo, I-84084 Fisciano, Italy
*Correspondence e-mail: mmazzeo@unisa.it

(Received 8 October 2012; accepted 30 October 2012; online 7 November 2012)

In the title compound, [Ni(C24H36P3)Cl], the NiII atom adopts a distorted square-planar geometry with the two neutral P atoms of the tridentate ligand trans to one another. Bond lengths and angles of the phosphide P atom feature a pyramidal geometry of the donor atom, which forms a single bond with the NiII atom, retaining a stereochemically active lone pair.

Related literature

For related structures, see: Boro et al. (2008[Boro, B. J., Dickie, D. A., Goldberg, K. I. & Kemp, R. A. (2008). Acta Cryst. E64, m1304.]); Liang et al. (2006[Liang, L.-C., Chien, P.-S., Lin, J.-M., Huang, M.-H., Huang, Y.-L. & Liao, J.-H. (2006). Organometallics, 25, 1399-1411.]); Mazzeo et al. (2008[Mazzeo, M., Lamberti, M., Massa, A., Scettri, A., Pellecchia, C. & Peters, J. C. (2008). Organometallics, 27, 5741-5743.], 2011[Mazzeo, M., Strianese, M., Kühl, O. & Peters, J. C. (2011). Dalton Trans. 40, 9026-9033.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C24H36P3)Cl]

  • Mr = 511.60

  • Monoclinic, P 21 /n

  • a = 13.752 (3) Å

  • b = 11.978 (2) Å

  • c = 15.554 (4) Å

  • β = 101.043 (17)°

  • V = 2514.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.725, Tmax = 0.875

  • 36493 measured reflections

  • 10236 independent reflections

  • 7497 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.00

  • 10236 reflections

  • 270 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The solid-state structure of the title compound [P(o—C6H4P(CH(CH3)2)2]NiCl (see Scheme 1) confirms the tridentate feature of the phosphido diphosphine ligand. The coordination environment around Ni (II) is approximately square planar with the chloride ligand being trans to the phosphido phosphorous atom. The deviation from the idealized square planar geometry is primarily caused by the chelate PPP constraint with a P(3)—Ni(1)—P(2) angle of 164.81 (2)°. The Ni—Cl distance (2.2230 (6) Å) is appreciably longer than that observed in the related [iPr-PNP]Ni—Cl complex (2.1834 (6) Å), Liang et al., 2006) but shorter than that observed in the complex [tertBut-PCP]NiCl (2.2317 (5) Å, Boro et al., 2008), suggesting that the trans influence of the phosphido donor is larger than that of the corresponding amido ligand but less than that of the anionic aryl carbon. Bond distances and angles (between 108.17 (5)° and 111.03 (7)°) of the phosphido phosphorous atom suggest a pyramidal geometry of the donor atom in which the phosphorous donor forms a single bond with the nickel centre and retains a stereochemically active lone pair. This structure is reminiscent of those reported for the related platinum and palladium complexes (Mazzeo et al., 2008; Mazzeo et al., 2011).

Related literature top

For related structures, see: Boro et al. (2008); Liang et al. (2006); Mazzeo et al. (2008, 2011).

Experimental top

To a suspension of NiCl2 (0.216 g; 1.67 mmol) in THF (5 ml) a solution of the ligand (0.700 g; 1.67 mmol) in THF (15 ml) and a solution of HNEtiPr2 (0.309 g, 2.39 mmol) in 2 ml of THF were quickly added, at room temperature. The color of the reaction mixture quickly turned to red purple and the resulting slurry was stirred at 50 °C for 2 h. The resulting deep purple solution was cooled to room temperature and volatile material was removed in vacuo affording a red purple residue. This crude product was extracted with benzene (15 ml) and filtered through celite on a sintered-glass frit. The solvent was again removed under reduced pressure. The obtained red solid was washed with methanol (2 × 3 ml), with petroleum ether (2 × 5 ml) and then dried in vacuo to give the desidered product as analytically pure compound (0.600 g, yield 70%). Crystals for X-ray analysis were obtained via vapor diffusion of petroleum ether into a THF solution of the complex.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H = 0.82 Å [Uiso(H) = 1.5 Ueq(O)], C—H = 0.97 (methyl) Å [Uiso(H) = 1.5 Ueq(C)], and C—H = 0.93 (aromatic and methine) Å [Uiso(H) = 1.2 Ueq(C)].

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (1). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
Bis{bis[2-(diisopropylphosphanyl)phenyl]phosphanido- κ3P,P',P''}chloridonickel(II) top
Crystal data top
[Ni(C24H36P3)Cl]F(000) = 1080
Mr = 511.60Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10236 reflections
a = 13.752 (3) Åθ = 1.8–38.3°
b = 11.978 (2) ŵ = 1.08 mm1
c = 15.554 (4) ÅT = 100 K
β = 101.043 (17)°Platelet, red
V = 2514.7 (9) Å30.30 × 0.25 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
10236 independent reflections
Radiation source: fine-focus sealed tube7497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 13.6612 pixels mm-1θmax = 38.3°, θmin = 1.8°
ω scansh = 2118
Absorption correction: multi-scan
(Blessing, 1995)
k = 2020
Tmin = 0.725, Tmax = 0.875l = 2626
36493 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
10236 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ni(C24H36P3)Cl]V = 2514.7 (9) Å3
Mr = 511.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.752 (3) ŵ = 1.08 mm1
b = 11.978 (2) ÅT = 100 K
c = 15.554 (4) Å0.30 × 0.25 × 0.15 mm
β = 101.043 (17)°
Data collection top
Rigaku Mercury2
diffractometer
10236 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
7497 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.875Rint = 0.077
36493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.00Δρmax = 1.04 e Å3
10236 reflectionsΔρmin = 0.46 e Å3
270 parameters
Special details top

Experimental. 1H NMR (300 MHz; benzene-d6): δ 7.83(dd, 2 H, 2JP—H = 8 Hz, 1JH—H = 2 Hz, Ar—H), 7.13 (t, 2H, 2JP—H = 8 Hz, Ar—H), 7.00 (b, 2H, Ar—H), 6.93(t, 2H, 2JP—H= 7 Hz Ar—H,), 2.52 (m, 4H, CH(CH3)2), 1.49 (dd, 12 H, CH(CH3)2, J = 16 and 7 Hz), 1.05 (dd, 12H, J = 16 and 7 Hz CH(CH3)2).

13C{1H} NMR (75.409 MHz; benzene-d6): δ 148.7, 146.9, 131.7, 131.3, 129.1, 125.9, 26.07(t, J=11 Hz, CH(CH3)2), 19.70 (bs, CH(CH3)2),18.62 (s, CH(CH3)2).

31P{1H} NMR (121.4 MHz; benzene-d6): δ 115.32 (t, 1P, 3JP—P = 9 Hz), 54.02 (d, 2P, 3JP—P = 9 Hz).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.507688 (15)0.862502 (15)0.234394 (12)0.01174 (6)
P10.38852 (3)0.76794 (3)0.15893 (2)0.01232 (8)
P20.60305 (3)0.77839 (3)0.15774 (2)0.01240 (8)
P30.39159 (3)0.96155 (3)0.27720 (2)0.01268 (8)
Cl10.63222 (3)0.92364 (4)0.33635 (3)0.02309 (9)
C10.27837 (12)0.85825 (12)0.13536 (10)0.0144 (3)
C20.19587 (13)0.84451 (13)0.06790 (11)0.0193 (3)
H20.19780.79140.02290.023*
C30.11074 (13)0.90847 (14)0.06644 (11)0.0224 (3)
H30.05550.89950.01990.027*
C40.10613 (13)0.98523 (14)0.13266 (12)0.0229 (3)
H40.04731.02710.13210.027*
C50.18779 (13)1.00058 (14)0.19964 (11)0.0200 (3)
H50.18481.05320.24480.024*
C60.27443 (12)0.93868 (12)0.20071 (10)0.0153 (3)
C70.37738 (13)0.92346 (13)0.38917 (10)0.0184 (3)
H70.43920.94850.42940.022*
C80.37380 (16)0.79562 (15)0.39703 (12)0.0274 (4)
H8A0.37290.77510.45790.041*
H8B0.43240.76310.37940.041*
H8C0.31390.76720.35880.041*
C90.29155 (16)0.97945 (17)0.42077 (12)0.0291 (4)
H9A0.22880.95220.38630.044*
H9B0.29581.06050.41360.044*
H9C0.29460.96180.48280.044*
C100.40201 (13)1.11551 (12)0.27837 (11)0.0184 (3)
H100.33791.14640.28930.022*
C110.48453 (15)1.15913 (14)0.35091 (13)0.0277 (4)
H11A0.54821.12770.34330.042*
H11B0.47101.13680.40810.042*
H11C0.48721.24070.34770.042*
C120.41603 (17)1.15781 (15)0.18882 (13)0.0295 (4)
H12A0.41331.23960.18790.044*
H12B0.36331.12790.14320.044*
H12C0.48051.13310.17790.044*
C130.42472 (12)0.72062 (11)0.05737 (9)0.0129 (3)
C140.36210 (12)0.67045 (12)0.01409 (9)0.0151 (3)
H140.29230.67320.01820.018*
C150.40146 (13)0.61688 (12)0.07888 (10)0.0163 (3)
H150.35810.58550.12780.020*
C160.50366 (13)0.60846 (12)0.07316 (10)0.0167 (3)
H160.52990.57060.11730.020*
C170.56680 (13)0.65619 (12)0.00203 (10)0.0161 (3)
H170.63650.64960.00310.019*
C180.52782 (12)0.71385 (11)0.06193 (9)0.0139 (3)
C190.68016 (13)0.66106 (13)0.20976 (10)0.0171 (3)
H190.70070.61550.16240.021*
C200.61433 (14)0.58829 (13)0.25608 (11)0.0220 (3)
H20A0.64940.51910.27630.033*
H20B0.55280.57040.21520.033*
H20C0.59870.62890.30640.033*
C210.77391 (13)0.69711 (14)0.27367 (11)0.0228 (4)
H21A0.75540.73910.32220.034*
H21B0.81440.74450.24300.034*
H21C0.81200.63090.29670.034*
C220.68475 (13)0.88108 (13)0.11899 (10)0.0168 (3)
H220.72290.91880.17230.020*
C230.76138 (14)0.83460 (15)0.06823 (12)0.0228 (3)
H23A0.72760.80920.01030.034*
H23B0.79640.77170.10050.034*
H23C0.80900.89330.06150.034*
C240.62145 (14)0.97121 (14)0.06549 (11)0.0225 (3)
H24A0.66471.02870.04830.034*
H24B0.57761.00510.10100.034*
H24C0.58150.93760.01290.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00990 (11)0.01376 (8)0.01101 (8)0.00084 (6)0.00062 (7)0.00213 (6)
P10.01050 (19)0.01411 (15)0.01187 (15)0.00029 (13)0.00091 (14)0.00044 (11)
P20.00955 (19)0.01467 (15)0.01221 (15)0.00058 (13)0.00013 (14)0.00314 (12)
P30.0121 (2)0.01420 (15)0.01216 (15)0.00082 (13)0.00324 (14)0.00029 (12)
Cl10.0147 (2)0.02913 (18)0.02231 (17)0.00337 (15)0.00438 (15)0.01218 (14)
C10.0106 (7)0.0174 (6)0.0154 (6)0.0002 (5)0.0026 (5)0.0020 (5)
C20.0145 (8)0.0220 (7)0.0198 (7)0.0004 (6)0.0012 (6)0.0002 (5)
C30.0141 (8)0.0259 (7)0.0248 (8)0.0013 (6)0.0028 (6)0.0016 (6)
C40.0130 (8)0.0260 (7)0.0291 (8)0.0059 (6)0.0024 (7)0.0010 (6)
C50.0158 (9)0.0224 (7)0.0226 (7)0.0035 (6)0.0057 (6)0.0003 (6)
C60.0138 (8)0.0169 (6)0.0160 (6)0.0011 (5)0.0044 (6)0.0010 (5)
C70.0195 (9)0.0225 (7)0.0143 (6)0.0018 (6)0.0060 (6)0.0003 (5)
C80.0383 (12)0.0243 (7)0.0223 (8)0.0035 (7)0.0125 (8)0.0064 (6)
C90.0308 (11)0.0387 (10)0.0215 (8)0.0054 (8)0.0141 (8)0.0018 (7)
C100.0182 (9)0.0149 (6)0.0233 (7)0.0013 (5)0.0068 (6)0.0001 (5)
C110.0269 (10)0.0178 (7)0.0366 (10)0.0021 (7)0.0017 (8)0.0084 (6)
C120.0382 (12)0.0216 (7)0.0316 (9)0.0013 (7)0.0138 (9)0.0082 (7)
C130.0136 (7)0.0131 (5)0.0109 (5)0.0009 (5)0.0004 (5)0.0001 (4)
C140.0134 (8)0.0152 (5)0.0151 (6)0.0014 (5)0.0011 (6)0.0004 (5)
C150.0189 (8)0.0151 (6)0.0128 (6)0.0023 (5)0.0020 (6)0.0011 (4)
C160.0200 (9)0.0165 (6)0.0131 (6)0.0013 (6)0.0022 (6)0.0030 (5)
C170.0141 (8)0.0179 (6)0.0157 (6)0.0003 (5)0.0016 (6)0.0035 (5)
C180.0138 (8)0.0143 (5)0.0124 (6)0.0013 (5)0.0008 (5)0.0014 (4)
C190.0153 (8)0.0184 (6)0.0159 (6)0.0050 (5)0.0014 (6)0.0035 (5)
C200.0216 (9)0.0192 (6)0.0232 (7)0.0016 (6)0.0007 (7)0.0009 (6)
C210.0170 (9)0.0253 (7)0.0225 (7)0.0033 (6)0.0051 (6)0.0029 (6)
C220.0128 (8)0.0200 (6)0.0178 (6)0.0027 (5)0.0035 (6)0.0043 (5)
C230.0166 (9)0.0291 (8)0.0241 (8)0.0018 (7)0.0077 (7)0.0038 (6)
C240.0249 (10)0.0209 (7)0.0226 (7)0.0009 (6)0.0067 (7)0.0011 (6)
Geometric parameters (Å, º) top
Ni1—P12.1469 (6)C11—H11A0.9800
Ni1—P22.1807 (6)C11—H11B0.9800
Ni1—P32.1925 (6)C11—H11C0.9800
Ni1—Cl12.2234 (6)C12—H12A0.9800
P1—C131.8347 (16)C12—H12B0.9800
P1—C11.8402 (16)C12—H12C0.9800
P2—C181.8160 (14)C13—C141.4041 (19)
P2—C221.8434 (17)C13—C181.408 (2)
P2—C191.8508 (15)C14—C151.389 (2)
P3—C61.8307 (16)C14—H140.9500
P3—C71.8467 (17)C15—C161.395 (2)
P3—C101.8497 (16)C15—H150.9500
C1—C21.400 (2)C16—C171.392 (2)
C1—C61.409 (2)C16—H160.9500
C2—C31.396 (2)C17—C181.399 (2)
C2—H20.9500C17—H170.9500
C3—C41.391 (3)C19—C201.533 (3)
C3—H30.9500C19—C211.532 (2)
C4—C51.390 (2)C19—H191.0000
C4—H40.9500C20—H20A0.9800
C5—C61.401 (2)C20—H20B0.9800
C5—H50.9500C20—H20C0.9800
C7—C91.519 (3)C21—H21A0.9800
C7—C81.538 (2)C21—H21B0.9800
C7—H71.0000C21—H21C0.9800
C8—H8A0.9800C22—C241.529 (2)
C8—H8B0.9800C22—C231.537 (2)
C8—H8C0.9800C22—H221.0000
C9—H9A0.9800C23—H23A0.9800
C9—H9B0.9800C23—H23B0.9800
C9—H9C0.9800C23—H23C0.9800
C10—C121.529 (3)C24—H24A0.9800
C10—C111.531 (2)C24—H24B0.9800
C10—H101.0000C24—H24C0.9800
P1—Ni1—P286.18 (2)H11A—C11—H11B109.5
P1—Ni1—P385.84 (2)C10—C11—H11C109.5
P2—Ni1—P3164.837 (17)H11A—C11—H11C109.5
P1—Ni1—Cl1165.171 (19)H11B—C11—H11C109.5
P2—Ni1—Cl194.61 (2)C10—C12—H12A109.5
P3—Ni1—Cl196.40 (2)C10—C12—H12B109.5
C13—P1—C1111.03 (7)H12A—C12—H12B109.5
C13—P1—Ni1109.22 (5)C10—C12—H12C109.5
C1—P1—Ni1108.17 (5)H12A—C12—H12C109.5
C18—P2—C22107.63 (7)H12B—C12—H12C109.5
C18—P2—C19102.95 (7)C14—C13—C18118.31 (14)
C22—P2—C19108.39 (8)C14—C13—P1125.98 (13)
C18—P2—Ni1109.73 (6)C18—C13—P1114.26 (10)
C22—P2—Ni1109.78 (5)C15—C14—C13120.46 (16)
C19—P2—Ni1117.78 (6)C15—C14—H14119.8
C6—P3—C7109.69 (8)C13—C14—H14119.8
C6—P3—C10102.27 (7)C14—C15—C16121.00 (13)
C7—P3—C10105.01 (8)C14—C15—H15119.5
C6—P3—Ni1108.85 (6)C16—C15—H15119.5
C7—P3—Ni1111.56 (6)C17—C16—C15119.25 (15)
C10—P3—Ni1118.88 (6)C17—C16—H16120.4
C2—C1—C6118.91 (15)C15—C16—H16120.4
C2—C1—P1126.75 (12)C16—C17—C18120.16 (16)
C6—C1—P1113.71 (11)C16—C17—H17119.9
C3—C2—C1120.31 (15)C18—C17—H17119.9
C3—C2—H2119.8C17—C18—C13120.76 (13)
C1—C2—H2119.8C17—C18—P2123.91 (13)
C4—C3—C2120.51 (15)C13—C18—P2115.26 (11)
C4—C3—H3119.7C20—C19—C21110.78 (13)
C2—C3—H3119.7C20—C19—P2107.27 (12)
C3—C4—C5119.83 (16)C21—C19—P2114.22 (11)
C3—C4—H4120.1C20—C19—H19108.1
C5—C4—H4120.1C21—C19—H19108.1
C4—C5—C6120.15 (16)P2—C19—H19108.1
C4—C5—H5119.9C19—C20—H20A109.5
C6—C5—H5119.9C19—C20—H20B109.5
C5—C6—C1120.23 (14)H20A—C20—H20B109.5
C5—C6—P3124.70 (12)C19—C20—H20C109.5
C1—C6—P3114.86 (12)H20A—C20—H20C109.5
C9—C7—C8112.05 (16)H20B—C20—H20C109.5
C9—C7—P3115.17 (12)C19—C21—H21A109.5
C8—C7—P3109.37 (11)C19—C21—H21B109.5
C9—C7—H7106.6H21A—C21—H21B109.5
C8—C7—H7106.6C19—C21—H21C109.5
P3—C7—H7106.6H21A—C21—H21C109.5
C7—C8—H8A109.5H21B—C21—H21C109.5
C7—C8—H8B109.5C24—C22—C23110.55 (14)
H8A—C8—H8B109.5C24—C22—P2109.27 (12)
C7—C8—H8C109.5C23—C22—P2116.55 (11)
H8A—C8—H8C109.5C24—C22—H22106.6
H8B—C8—H8C109.5C23—C22—H22106.6
C7—C9—H9A109.5P2—C22—H22106.6
C7—C9—H9B109.5C22—C23—H23A109.5
H9A—C9—H9B109.5C22—C23—H23B109.5
C7—C9—H9C109.5H23A—C23—H23B109.5
H9A—C9—H9C109.5C22—C23—H23C109.5
H9B—C9—H9C109.5H23A—C23—H23C109.5
C12—C10—C11110.70 (16)H23B—C23—H23C109.5
C12—C10—P3110.15 (12)C22—C24—H24A109.5
C11—C10—P3113.12 (11)C22—C24—H24B109.5
C12—C10—H10107.5H24A—C24—H24B109.5
C11—C10—H10107.5C22—C24—H24C109.5
P3—C10—H10107.5H24A—C24—H24C109.5
C10—C11—H11A109.5H24B—C24—H24C109.5
C10—C11—H11B109.5
P2—Ni1—P1—C1320.53 (5)C6—P3—C7—C953.35 (15)
P3—Ni1—P1—C13146.57 (5)C10—P3—C7—C955.90 (15)
Cl1—Ni1—P1—C13114.11 (8)Ni1—P3—C7—C9174.04 (11)
P2—Ni1—P1—C1141.48 (6)C6—P3—C7—C873.88 (14)
P3—Ni1—P1—C125.62 (6)C10—P3—C7—C8176.87 (13)
Cl1—Ni1—P1—C1124.94 (9)Ni1—P3—C7—C846.82 (14)
P1—Ni1—P2—C1815.30 (5)C6—P3—C10—C1266.43 (15)
P3—Ni1—P2—C1843.06 (9)C7—P3—C10—C12179.03 (13)
Cl1—Ni1—P2—C18179.54 (5)Ni1—P3—C10—C1253.41 (15)
P1—Ni1—P2—C22133.40 (6)C6—P3—C10—C11169.10 (14)
P3—Ni1—P2—C2275.03 (9)C7—P3—C10—C1154.56 (16)
Cl1—Ni1—P2—C2261.45 (6)Ni1—P3—C10—C1171.06 (15)
P1—Ni1—P2—C19101.96 (6)C1—P1—C13—C1451.18 (14)
P3—Ni1—P2—C19160.33 (8)Ni1—P1—C13—C14170.37 (11)
Cl1—Ni1—P2—C1963.19 (6)C1—P1—C13—C18142.91 (11)
P1—Ni1—P3—C618.46 (5)Ni1—P1—C13—C1823.72 (11)
P2—Ni1—P3—C639.95 (9)C18—C13—C14—C150.8 (2)
Cl1—Ni1—P3—C6176.27 (5)P1—C13—C14—C15166.18 (11)
P1—Ni1—P3—C7102.73 (6)C13—C14—C15—C162.1 (2)
P2—Ni1—P3—C7161.13 (8)C14—C15—C16—C171.0 (2)
Cl1—Ni1—P3—C762.55 (6)C15—C16—C17—C181.3 (2)
P1—Ni1—P3—C10134.87 (6)C16—C17—C18—C132.6 (2)
P2—Ni1—P3—C1076.46 (9)C16—C17—C18—P2179.52 (12)
Cl1—Ni1—P3—C1059.86 (6)C14—C13—C18—C171.6 (2)
C13—P1—C1—C238.93 (17)P1—C13—C18—C17165.51 (11)
Ni1—P1—C1—C2158.75 (14)C14—C13—C18—P2178.71 (10)
C13—P1—C1—C6150.31 (12)P1—C13—C18—P211.64 (14)
Ni1—P1—C1—C630.49 (13)C22—P2—C18—C1758.57 (14)
C6—C1—C2—C31.0 (2)C19—P2—C18—C1755.81 (15)
P1—C1—C2—C3169.38 (14)Ni1—P2—C18—C17177.99 (11)
C1—C2—C3—C41.1 (3)C22—P2—C18—C13124.38 (11)
C2—C3—C4—C51.7 (3)C19—P2—C18—C13121.24 (12)
C3—C4—C5—C60.2 (3)Ni1—P2—C18—C134.95 (12)
C4—C5—C6—C11.8 (2)C18—P2—C19—C2076.47 (12)
C4—C5—C6—P3172.58 (14)C22—P2—C19—C20169.71 (10)
C2—C1—C6—C52.4 (2)Ni1—P2—C19—C2044.38 (11)
P1—C1—C6—C5169.15 (13)C18—P2—C19—C21160.36 (13)
C2—C1—C6—P3172.53 (12)C22—P2—C19—C2146.54 (15)
P1—C1—C6—P315.91 (16)Ni1—P2—C19—C2178.80 (14)
C7—P3—C6—C567.74 (16)C18—P2—C22—C2462.07 (13)
C10—P3—C6—C543.32 (16)C19—P2—C22—C24172.77 (11)
Ni1—P3—C6—C5169.94 (13)Ni1—P2—C22—C2457.32 (11)
C7—P3—C6—C1117.58 (12)C18—P2—C22—C2364.12 (14)
C10—P3—C6—C1131.36 (12)C19—P2—C22—C2346.58 (14)
Ni1—P3—C6—C14.74 (13)Ni1—P2—C22—C23176.49 (10)

Experimental details

Crystal data
Chemical formula[Ni(C24H36P3)Cl]
Mr511.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.752 (3), 11.978 (2), 15.554 (4)
β (°) 101.043 (17)
V3)2514.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.725, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
36493, 10236, 7497
Rint0.077
(sin θ/λ)max1)0.873
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.00
No. of reflections10236
No. of parameters270
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.46

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

 

Acknowledgements

MM wishes to acknowledge Professor Jonas C. Peters (CalTech) for valuable discussions.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoro, B. J., Dickie, D. A., Goldberg, K. I. & Kemp, R. A. (2008). Acta Cryst. E64, m1304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiang, L.-C., Chien, P.-S., Lin, J.-M., Huang, M.-H., Huang, Y.-L. & Liao, J.-H. (2006). Organometallics, 25, 1399–1411.  Web of Science CSD CrossRef CAS Google Scholar
First citationMazzeo, M., Lamberti, M., Massa, A., Scettri, A., Pellecchia, C. & Peters, J. C. (2008). Organometallics, 27, 5741–5743.  Web of Science CSD CrossRef CAS Google Scholar
First citationMazzeo, M., Strianese, M., Kühl, O. & Peters, J. C. (2011). Dalton Trans. 40, 9026–9033.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds