organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3387-o3388

Ethyl 4-({1-[2-(4-bromo­phen­yl)-2-oxo­eth­yl]-1H-1,2,3-triazol-4-yl}meth­­oxy)-8-(tri­fluoro­meth­yl)quinoline-3-carboxyl­ate

aNational Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bTechnion Israel Institute of Technology, Schulich Faculty of Chemistry, Haifa, 32000, Israel, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 26 October 2012; accepted 9 November 2012; online 24 November 2012)

The title compound, C24H18BrF3N4O4, is a 1,2,3-triazole derivative featuring, among others, a quinoline-derived substituent. In the crystal, C—H⋯O, C—H⋯N and C—H⋯F contacts connect the mol­ecules into a three-dimensional network. The shortest centroid–centroid distance between two aromatic systems is 3.896 (2) Å and is found between the two different six-membered rings of the quinoline scaffold in neighbouring mol­ecules.

Related literature

For background to the industrial importance of heterocyclic compounds, see: Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Vijesh et al. (2011[Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591-5597.]); Ruanwasa et al. (2010[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824.]). For pharmacological properties of quinoline-derived compounds, see: Chen et al. (2004[Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539-6546.]); Kaur et al. (2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]); Bekhit et al. (2004[Bekhit, A. A., El-Sayed, O. A., Aboulmagd, E. & Park, J. Y. (2004). Eur. J. Med. Chem. 39, 249-255.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18BrF3N4O4

  • Mr = 563.33

  • Monoclinic, P 21 /c

  • a = 5.2809 (2) Å

  • b = 24.5131 (10) Å

  • c = 18.3517 (7) Å

  • β = 99.643 (1)°

  • V = 2342.08 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 200 K

  • 0.58 × 0.16 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.417, Tmax = 0.889

  • 22440 measured reflections

  • 5775 independent reflections

  • 3774 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.02

  • 5775 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N2i 0.99 2.62 3.339 (4) 129
C3—H3⋯N3i 0.95 2.65 3.288 (4) 125
C2—H2B⋯F2ii 0.99 2.45 3.308 (3) 144
C5—H5A⋯O3iii 0.99 2.37 3.258 (4) 149
C26—H26⋯O1iv 0.95 2.57 3.354 (5) 140
Symmetry codes: (i) x-1, y, z; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic compounds have a wide range of applications in a vast variety of different fields such as pharmacy, agrochemistry and even in optoelectronics (Isloor et al., 2009; Vijesh et al., 2011; Ruanwasa et al., 2010). Quinoline and its derivatives are well known nitrogen-containing heterocyclic compounds and play an important role in medicinal and pesticide chemistry by exhibiting a wide range of activities such as antibacterial, antifungal, antibiotic, anticancer, anticonvulsant, anti-tuberculosis and anti-inflammatory properties (Chen et al., 2004; Kaur et al., 2010; Bekhit et al. 2004). Keeping in mind the biological importance of quinoline-derived compounds, the title compound was synthesized to study its crystal structure.

The least-squares plane defined by the non-hydrogen atoms of the 1,2,3-triazole core encloses angles of 27.2 (2) ° and 48.4 (2) ° with the least-squares planes defined by the intracyclic atoms of the quinoline scaffold as well as the phenyl group, respectively. The latter two mentioned planes intersect at an angle of 41.5 (1) °. The quinoline scaffold is almost planar (r.m.s. of all fitted non-hydrogen atoms = 0.0176 Å) with C35 deviating most from this common plane by 0.028 (3) Å (Fig. 1).

In the crystal, intermolecular C–H···O, C–H···F and C–H···N contacts can be detected whose range falls by at least 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them. The C–H···N contacts – whose angles fall markedly below a linear arrangement for the donor atom, hydrogen atom as well as the acceptor atom – likely are to be seen as a result of the more pronounced C–H···O contacts described below (see below). They are supported by one of the hydrogen atoms on one of the methylene groups directly bonded to the 1,2,3-triazole core as well as the latter one's intracyclic CH group and have the two two-coordinate nitrogen atoms as acceptors. These contacts form two homodromic chains connecting the molecules to chains along the crystallographic a axis. Along these chains, one set of C–H···O contacts between the second methylene group bonded to the 1,2,3-triazole core as well as the double bonded oxygen atom of the ester group can be found. The second set of C–H···O contacts is apparent between one of the hydrogen atoms on the bromophenyl group in ortho position to the keto group as donor and the keto group in a neighbouring molecule as acceptor. The intermolecular C–H···F contact is supported by the second hydrogen atom of the methylene group that is already part of the C–H···N contact system. In addition, an intramolecular C–H···F contact can be hold responsible for the small F–C–C–CH dihedral angle that was measured at 0.6 (4) ° only. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, these contacts connect the molecules to a three-dimensional network. According to a graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···N contacts is C11(4)C11(4) on the unary level while the C–H···O contacts require a C11(7)R22(10) descriptor on the same level. The descriptor for the C–H···F contacts is S(5)C11(13). The shortest intercentroid distance between two aromatic systems was measured at 3.896 (2) Å and is found between the two different six-membered rings of the quinoline scaffold in neighbouring molecules.

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For background to the industrial importance of heterocyclic compounds, see: Isloor et al. (2009); Vijesh et al. (2011); Ruanwasa et al. (2010). For pharmacological properties of quinoline-derived compounds, see: Chen et al. (2004); Kaur et al. (2010); Bekhit et al. (2004). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a stirred solution of 2-bromo-1-(4-bromophenyl)ethanone (0.50 g, 0.0017 mol), sodium azide (0.117 g, 0.0018 mol) in aqueous PEG 400 (5 ml, v:v = 1:1), ethyl 4-oxo-1-(prop-2-yn-1-yl)-8- (trifluoromethyl)-1,4-dihydroquinoline-3-carboxylate (0.58 g, 0.0018 mol), sodium ascorbate (0.356 g, 0.0018 mol) and 10 mol % of copper iodide were added. The heterogeneous mixture was stirred vigorously overnight. Completion of the reaction was monitored by TLC. The product was extracted in ethyl acetate and concentrated. The crude product was purified by column chromatography using petrol ether and ethyl acetate as the eluent, yield: 0.53 g (52.47%). Single crystals suitable for the X-ray diffraction study were obtained by slow evaporation of a solution of the compound in ethyl acetate at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms and C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with Uiso(H) set to 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 0 - 1]. For reasons of clarity, only a selection of contacts is shown. Symmetry operators: i x - 1, y, z; ii x + 1, y, z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at the 50% probability level).
Ethyl 4-({1-[2-(4-bromophenyl)-2-oxoethyl]-1H-1,2,3-triazol- 4-yl}methoxy)-8-(trifluoromethyl)quinoline-3-carboxylate top
Crystal data top
C24H18BrF3N4O4F(000) = 1136
Mr = 563.33Dx = 1.598 Mg m3
Monoclinic, P21/cMelting point = 380–378 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.2809 (2) ÅCell parameters from 6880 reflections
b = 24.5131 (10) Åθ = 2.4–27.9°
c = 18.3517 (7) ŵ = 1.82 mm1
β = 99.643 (1)°T = 200 K
V = 2342.08 (16) Å3Platelet, colourless
Z = 40.58 × 0.16 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
5775 independent reflections
Radiation source: fine-focus sealed tube3774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 67
Tmin = 0.417, Tmax = 0.889k = 3232
22440 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0546P)2 + 2.6613P]
where P = (Fo2 + 2Fc2)/3
5775 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
C24H18BrF3N4O4V = 2342.08 (16) Å3
Mr = 563.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2809 (2) ŵ = 1.82 mm1
b = 24.5131 (10) ÅT = 200 K
c = 18.3517 (7) Å0.58 × 0.16 × 0.07 mm
β = 99.643 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5775 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3774 reflections with I > 2σ(I)
Tmin = 0.417, Tmax = 0.889Rint = 0.030
22440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
5775 reflectionsΔρmin = 0.93 e Å3
326 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68782 (8)0.629887 (16)0.22421 (3)0.0859 (2)
F11.3784 (4)0.00897 (8)0.56325 (11)0.0659 (6)
F21.3161 (4)0.05001 (7)0.66156 (9)0.0494 (4)
F31.0047 (4)0.00785 (7)0.59406 (11)0.0550 (5)
O10.2309 (7)0.48213 (13)0.44653 (15)0.0921 (11)
O20.6398 (4)0.25396 (8)0.50057 (11)0.0477 (5)
O30.3332 (5)0.27788 (10)0.60507 (14)0.0658 (7)
O40.3675 (5)0.22131 (9)0.70058 (13)0.0549 (6)
N10.4456 (5)0.39894 (10)0.38120 (14)0.0440 (6)
N20.6711 (6)0.39092 (14)0.3594 (2)0.0709 (10)
N30.8024 (6)0.35804 (14)0.4081 (2)0.0763 (11)
N40.8633 (5)0.11738 (9)0.63266 (12)0.0349 (5)
C10.1559 (7)0.47765 (13)0.38096 (18)0.0505 (8)
C20.2540 (6)0.43291 (12)0.33647 (16)0.0433 (7)
H2A0.10800.40980.31390.052*
H2B0.33010.44950.29590.052*
C30.4308 (6)0.37070 (12)0.44310 (17)0.0442 (7)
H30.29010.36920.46920.053*
C40.6589 (6)0.34487 (12)0.46013 (18)0.0450 (7)
C50.7543 (6)0.30655 (12)0.52164 (19)0.0500 (8)
H5A0.94400.30400.52900.060*
H5B0.70280.31930.56820.060*
C60.7165 (6)0.21159 (11)0.54721 (15)0.0370 (6)
C70.6172 (5)0.20139 (10)0.61068 (15)0.0353 (6)
C80.7001 (6)0.15307 (11)0.65100 (15)0.0366 (6)
H80.63140.14620.69480.044*
C90.4265 (6)0.23796 (12)0.63684 (17)0.0417 (7)
C100.1823 (7)0.25434 (14)0.73111 (19)0.0539 (8)
H10A0.01940.25650.69560.065*
H10B0.24960.29180.74100.065*
C110.1379 (11)0.2287 (2)0.7998 (2)0.0903 (16)
H11A0.08860.19050.79030.135*
H11B0.00020.24810.81860.135*
H11C0.29560.23050.83650.135*
C121.2086 (6)0.03989 (12)0.59112 (16)0.0423 (7)
C210.0461 (6)0.51471 (12)0.34071 (16)0.0440 (7)
C220.1286 (6)0.51169 (13)0.26558 (16)0.0451 (7)
H220.05650.48530.23720.054*
C230.3155 (7)0.54683 (13)0.23120 (18)0.0513 (8)
H230.36840.54530.17910.062*
C240.4236 (6)0.58361 (12)0.2723 (2)0.0508 (8)
C250.3501 (10)0.58660 (17)0.3464 (2)0.0862 (15)
H250.42910.61210.37450.103*
C260.1584 (10)0.55214 (17)0.3812 (2)0.0844 (15)
H260.10450.55440.43320.101*
C310.8958 (5)0.17471 (10)0.52570 (14)0.0347 (6)
C320.9629 (5)0.12778 (10)0.56984 (14)0.0311 (5)
C331.1420 (5)0.09074 (11)0.54750 (14)0.0341 (6)
C341.2501 (6)0.10091 (12)0.48611 (15)0.0410 (7)
H341.36880.07560.47180.049*
C351.1872 (7)0.14842 (13)0.44408 (16)0.0470 (7)
H351.26690.15540.40230.056*
C361.0133 (6)0.18436 (12)0.46280 (16)0.0446 (7)
H360.97010.21610.43370.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0515 (3)0.0564 (2)0.1386 (5)0.01219 (17)0.0170 (2)0.0347 (2)
F10.0879 (16)0.0592 (12)0.0565 (12)0.0408 (11)0.0290 (11)0.0074 (9)
F20.0566 (12)0.0539 (10)0.0370 (9)0.0161 (9)0.0060 (8)0.0067 (8)
F30.0720 (13)0.0296 (8)0.0640 (12)0.0009 (8)0.0132 (10)0.0037 (8)
O10.128 (3)0.088 (2)0.0487 (15)0.061 (2)0.0188 (16)0.0027 (14)
O20.0599 (14)0.0324 (10)0.0452 (11)0.0068 (9)0.0078 (10)0.0091 (8)
O30.0578 (16)0.0620 (15)0.0772 (17)0.0317 (13)0.0103 (13)0.0126 (13)
O40.0633 (16)0.0503 (13)0.0544 (14)0.0210 (11)0.0191 (11)0.0004 (10)
N10.0368 (14)0.0421 (13)0.0554 (15)0.0115 (11)0.0148 (12)0.0196 (11)
N20.0441 (18)0.080 (2)0.097 (2)0.0258 (15)0.0346 (17)0.0470 (19)
N30.0405 (18)0.084 (2)0.109 (3)0.0245 (16)0.0274 (18)0.054 (2)
N40.0402 (14)0.0305 (11)0.0347 (12)0.0042 (10)0.0082 (10)0.0039 (9)
C10.058 (2)0.0491 (17)0.0420 (17)0.0170 (15)0.0000 (15)0.0087 (14)
C20.0420 (17)0.0461 (16)0.0434 (16)0.0148 (13)0.0117 (13)0.0167 (13)
C30.0329 (16)0.0486 (17)0.0517 (18)0.0087 (13)0.0091 (13)0.0211 (14)
C40.0335 (16)0.0364 (14)0.063 (2)0.0054 (12)0.0030 (14)0.0159 (14)
C50.0422 (18)0.0360 (15)0.066 (2)0.0021 (13)0.0089 (15)0.0136 (14)
C60.0428 (16)0.0296 (13)0.0345 (14)0.0034 (11)0.0057 (12)0.0043 (10)
C70.0338 (15)0.0299 (13)0.0397 (15)0.0049 (11)0.0016 (12)0.0018 (11)
C80.0402 (16)0.0346 (13)0.0354 (14)0.0045 (12)0.0079 (12)0.0028 (11)
C90.0343 (16)0.0373 (14)0.0500 (18)0.0035 (12)0.0032 (13)0.0038 (12)
C100.046 (2)0.0561 (19)0.059 (2)0.0090 (15)0.0088 (15)0.0173 (16)
C110.123 (4)0.093 (3)0.063 (3)0.038 (3)0.041 (3)0.002 (2)
C120.0488 (19)0.0375 (15)0.0416 (16)0.0141 (13)0.0103 (13)0.0011 (12)
C210.0514 (19)0.0389 (15)0.0404 (16)0.0131 (13)0.0038 (13)0.0070 (12)
C220.0502 (19)0.0439 (16)0.0394 (16)0.0094 (14)0.0028 (13)0.0052 (12)
C230.056 (2)0.0464 (17)0.0446 (17)0.0030 (15)0.0119 (14)0.0093 (14)
C240.0431 (18)0.0360 (15)0.070 (2)0.0113 (13)0.0011 (15)0.0160 (15)
C250.116 (4)0.070 (3)0.070 (3)0.061 (3)0.009 (3)0.001 (2)
C260.132 (4)0.076 (3)0.0401 (19)0.063 (3)0.001 (2)0.0019 (17)
C310.0400 (15)0.0307 (12)0.0314 (13)0.0003 (11)0.0002 (11)0.0019 (10)
C320.0324 (14)0.0285 (12)0.0311 (13)0.0007 (10)0.0019 (11)0.0013 (10)
C330.0384 (15)0.0325 (13)0.0311 (13)0.0013 (11)0.0047 (11)0.0015 (10)
C340.0465 (18)0.0437 (15)0.0341 (14)0.0009 (13)0.0102 (13)0.0050 (12)
C350.059 (2)0.0517 (17)0.0318 (15)0.0047 (15)0.0123 (14)0.0011 (13)
C360.056 (2)0.0419 (15)0.0340 (15)0.0027 (14)0.0031 (13)0.0090 (12)
Geometric parameters (Å, º) top
Br1—C241.897 (3)C7—C91.487 (4)
F1—C121.339 (3)C8—H80.9500
F2—C121.345 (3)C10—C111.461 (6)
F3—C121.341 (4)C10—H10A0.9900
O1—C11.207 (4)C10—H10B0.9900
O2—C61.364 (3)C11—H11A0.9800
O2—C51.448 (4)C11—H11B0.9800
O3—C91.202 (4)C11—H11C0.9800
O4—C91.324 (4)C12—C331.491 (4)
O4—C101.452 (4)C21—C261.376 (5)
N1—N21.333 (4)C21—C221.377 (4)
N1—C31.344 (4)C22—C231.380 (4)
N1—C21.453 (3)C22—H220.9500
N2—N31.311 (4)C23—C241.361 (5)
N3—C41.354 (4)C23—H230.9500
N4—C81.311 (4)C24—C251.353 (5)
N4—C321.369 (4)C25—C261.389 (5)
C1—C211.498 (4)C25—H250.9500
C1—C21.510 (4)C26—H260.9500
C2—H2A0.9900C31—C321.417 (3)
C2—H2B0.9900C31—C361.419 (4)
C3—C41.351 (4)C32—C331.420 (4)
C3—H30.9500C33—C341.368 (4)
C4—C51.490 (4)C34—C351.406 (4)
C5—H5A0.9900C34—H340.9500
C5—H5B0.9900C35—C361.358 (5)
C6—C71.378 (4)C35—H350.9500
C6—C311.413 (4)C36—H360.9500
C7—C81.426 (4)
C6—O2—C5116.3 (2)C10—C11—H11B109.5
C9—O4—C10116.2 (2)H11A—C11—H11B109.5
N2—N1—C3111.0 (2)C10—C11—H11C109.5
N2—N1—C2119.2 (2)H11A—C11—H11C109.5
C3—N1—C2129.7 (3)H11B—C11—H11C109.5
N3—N2—N1106.5 (3)F1—C12—F3106.1 (2)
N2—N3—C4109.4 (3)F1—C12—F2105.6 (2)
C8—N4—C32117.0 (2)F3—C12—F2106.4 (2)
O1—C1—C21121.6 (3)F1—C12—C33112.4 (2)
O1—C1—C2121.3 (3)F3—C12—C33113.1 (2)
C21—C1—C2117.0 (3)F2—C12—C33112.7 (2)
N1—C2—C1112.4 (3)C26—C21—C22118.9 (3)
N1—C2—H2A109.1C26—C21—C1118.3 (3)
C1—C2—H2A109.1C22—C21—C1122.8 (3)
N1—C2—H2B109.1C21—C22—C23120.4 (3)
C1—C2—H2B109.1C21—C22—H22119.8
H2A—C2—H2B107.9C23—C22—H22119.8
N1—C3—C4105.1 (3)C24—C23—C22119.6 (3)
N1—C3—H3127.4C24—C23—H23120.2
C4—C3—H3127.4C22—C23—H23120.2
C3—C4—N3107.9 (3)C25—C24—C23121.1 (3)
C3—C4—C5130.3 (3)C25—C24—Br1120.0 (3)
N3—C4—C5121.8 (3)C23—C24—Br1118.8 (3)
O2—C5—C4106.6 (2)C24—C25—C26119.6 (3)
O2—C5—H5A110.4C24—C25—H25120.2
C4—C5—H5A110.4C26—C25—H25120.2
O2—C5—H5B110.4C21—C26—C25120.3 (3)
C4—C5—H5B110.4C21—C26—H26119.9
H5A—C5—H5B108.6C25—C26—H26119.9
O2—C6—C7123.6 (3)C6—C31—C32118.3 (2)
O2—C6—C31117.0 (3)C6—C31—C36121.7 (2)
C7—C6—C31119.2 (2)C32—C31—C36119.9 (3)
C6—C7—C8117.5 (2)N4—C32—C31122.6 (2)
C6—C7—C9122.5 (2)N4—C32—C33119.5 (2)
C8—C7—C9119.9 (3)C31—C32—C33117.9 (2)
N4—C8—C7125.4 (3)C34—C33—C32120.7 (2)
N4—C8—H8117.3C34—C33—C12120.1 (3)
C7—C8—H8117.3C32—C33—C12119.2 (2)
O3—C9—O4122.8 (3)C33—C34—C35120.7 (3)
O3—C9—C7125.4 (3)C33—C34—H34119.7
O4—C9—C7111.8 (2)C35—C34—H34119.7
O4—C10—C11108.0 (3)C36—C35—C34120.4 (3)
O4—C10—H10A110.1C36—C35—H35119.8
C11—C10—H10A110.1C34—C35—H35119.8
O4—C10—H10B110.1C35—C36—C31120.3 (3)
C11—C10—H10B110.1C35—C36—H36119.9
H10A—C10—H10B108.4C31—C36—H36119.9
C10—C11—H11A109.5
C3—N1—N2—N30.8 (5)C26—C21—C22—C232.0 (6)
C2—N1—N2—N3178.3 (3)C1—C21—C22—C23180.0 (3)
N1—N2—N3—C40.6 (5)C21—C22—C23—C241.9 (5)
N2—N1—C2—C1127.2 (3)C22—C23—C24—C250.4 (6)
C3—N1—C2—C155.8 (5)C22—C23—C24—Br1178.0 (3)
O1—C1—C2—N11.4 (5)C23—C24—C25—C261.0 (7)
C21—C1—C2—N1179.0 (3)Br1—C24—C25—C26179.3 (4)
N2—N1—C3—C40.7 (4)C22—C21—C26—C250.6 (7)
C2—N1—C3—C4177.9 (3)C1—C21—C26—C25178.7 (4)
N1—C3—C4—N30.3 (4)C24—C25—C26—C210.8 (8)
N1—C3—C4—C5178.3 (3)O2—C6—C31—C32174.8 (2)
N2—N3—C4—C30.2 (5)C7—C6—C31—C321.3 (4)
N2—N3—C4—C5178.1 (3)O2—C6—C31—C366.8 (4)
C6—O2—C5—C4175.5 (3)C7—C6—C31—C36177.1 (3)
C3—C4—C5—O278.5 (5)C8—N4—C32—C310.0 (4)
N3—C4—C5—O299.2 (4)C8—N4—C32—C33179.6 (3)
C5—O2—C6—C781.6 (4)C6—C31—C32—N40.9 (4)
C5—O2—C6—C31102.5 (3)C36—C31—C32—N4177.5 (3)
O2—C6—C7—C8175.0 (3)C6—C31—C32—C33179.6 (2)
C31—C6—C7—C80.9 (4)C36—C31—C32—C332.1 (4)
O2—C6—C7—C93.8 (4)N4—C32—C33—C34178.1 (3)
C31—C6—C7—C9179.6 (3)C31—C32—C33—C341.4 (4)
C32—N4—C8—C70.5 (4)N4—C32—C33—C122.8 (4)
C6—C7—C8—N40.0 (4)C31—C32—C33—C12177.6 (3)
C9—C7—C8—N4178.7 (3)F1—C12—C33—C340.6 (4)
C10—O4—C9—O30.3 (5)F3—C12—C33—C34119.5 (3)
C10—O4—C9—C7179.9 (3)F2—C12—C33—C34119.8 (3)
C6—C7—C9—O33.1 (5)F1—C12—C33—C32179.7 (3)
C8—C7—C9—O3175.6 (3)F3—C12—C33—C3259.6 (3)
C6—C7—C9—O4177.2 (3)F2—C12—C33—C3261.1 (4)
C8—C7—C9—O44.1 (4)C32—C33—C34—C350.4 (4)
C9—O4—C10—C11178.5 (3)C12—C33—C34—C35179.4 (3)
O1—C1—C21—C264.3 (6)C33—C34—C35—C361.6 (5)
C2—C1—C21—C26173.3 (4)C34—C35—C36—C310.9 (5)
O1—C1—C21—C22177.7 (4)C6—C31—C36—C35179.3 (3)
C2—C1—C21—C224.7 (5)C32—C31—C36—C350.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N2i0.992.623.339 (4)129
C3—H3···N3i0.952.653.288 (4)125
C2—H2B···F2ii0.992.453.308 (3)144
C5—H5A···O3iii0.992.373.258 (4)149
C26—H26···O1iv0.952.573.354 (5)140
C34—H34···F10.952.342.687 (4)101
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z1/2; (iii) x+1, y, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H18BrF3N4O4
Mr563.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.2809 (2), 24.5131 (10), 18.3517 (7)
β (°) 99.643 (1)
V3)2342.08 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.58 × 0.16 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.417, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
22440, 5775, 3774
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.02
No. of reflections5775
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.93

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N2i0.992.623.339 (4)129.3
C3—H3···N3i0.952.653.288 (4)125.3
C2—H2B···F2ii0.992.453.308 (3)144.0
C5—H5A···O3iii0.992.373.258 (4)148.7
C26—H26···O1iv0.952.573.354 (5)139.8
C34—H34···F10.952.342.687 (4)101.1
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z1/2; (iii) x+1, y, z; (iv) x, y+1, z+1.
 

Acknowledgements

AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award.

References

First citationBekhit, A. A., El-Sayed, O. A., Aboulmagd, E. & Park, J. Y. (2004). Eur. J. Med. Chem. 39, 249–255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3387-o3388
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds