Experimental
Crystal data
C13H8ClF4N Mr = 289.65 Monoclinic, P 21 /n a = 13.1813 (7) Å b = 4.5837 (3) Å c = 20.4448 (11) Å β = 92.441 (3)° V = 1234.14 (12) Å3 Z = 4 Mo Kα radiation μ = 0.34 mm−1 T = 293 K 0.2 × 0.18 × 0.16 mm
|
Data collection
Bruker APEXII CCD area-detector diffractometer 11077 measured reflections 3033 independent reflections 2116 reflections with I > 2σ(I) Rint = 0.031
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | C13—H13B⋯Cg1i | 0.96 | 2.83 | 3.606 (2) | 138 | Symmetry code: (i) x, y+1, z. | |
Data collection: APEX2 (Bruker, 2004
); cell refinement: SAINT-Plus (Bruker, 2004
); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: ORTEP-3 (Farrugia, 2012
); software used to prepare material for publication: SHELXL97.
Supporting information
2-Methyl-3-fluoropiridine-6-boromic acid (8.4 mmol) was taken in a mixture of dioxane (20 ml) and water (5 ml) at RT undernitrogen atmosphere. The reaction mixture was degassed with argon for 10 min, and K2CO3 (23.1 mmol) and dichlorobis(triphenylphosphene)-palladium(II) (0.231 mmol) were added and again degassed for 10 min. 2-Bromo-5-chlorobenzotrifluoride (7.7 mmol) was added and then reaction mixture was heated to 100 °C for 1 h (reaction was monitored by TLC), and the reaction mass was cooled to RT, diluted with ethyl acetate, filtered over celite, and washed with ethyl acetate. The filtrate was washed with water and brine, and the ethyl acetate layer was dried with anhydrous Na2SO4 and concentrated. The crude product was purified by tritulating with petroleum ether. Single crystals of the title compound used for X-ray diffraction studies were obtained from slow evaporation of the solution of the compound in petroleum ether-ethyl acetate mixture (1:1).
The H atoms were positioned with idealized geometry (C—H = 0.93–0.96 Å) using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C).
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
6-[4-Chloro-2-(trifluoromethyl)phenyl]-3-fluoro-2-methylpyridine
top Crystal data top C13H8ClF4N | Prism |
Mr = 289.65 | Dx = 1.559 Mg m−3 |
Monoclinic, P21/n | Melting point: 408 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 13.1813 (7) Å | Cell parameters from 2116 reflections |
b = 4.5837 (3) Å | θ = 1.8–26.8° |
c = 20.4448 (11) Å | µ = 0.34 mm−1 |
β = 92.441 (3)° | T = 293 K |
V = 1234.14 (12) Å3 | Prism, colourless |
Z = 4 | 0.2 × 0.18 × 0.16 mm |
F(000) = 584 | |
Data collection top Bruker APEXII CCD area-detector diffractometer | 2116 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 28.3°, θmin = 1.8° |
Detector resolution: 1.20 pixels mm-1 | h = −17→17 |
multi–scan | k = −5→6 |
11077 measured reflections | l = −27→27 |
3033 independent reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0549P)2 + 0.4806P] where P = (Fo2 + 2Fc2)/3 |
3033 reflections | (Δ/σ)max = 0.001 |
173 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
0 constraints | |
Crystal data top C13H8ClF4N | V = 1234.14 (12) Å3 |
Mr = 289.65 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.1813 (7) Å | µ = 0.34 mm−1 |
b = 4.5837 (3) Å | T = 293 K |
c = 20.4448 (11) Å | 0.2 × 0.18 × 0.16 mm |
β = 92.441 (3)° | |
Data collection top Bruker APEXII CCD area-detector diffractometer | 2116 reflections with I > 2σ(I) |
11077 measured reflections | Rint = 0.031 |
3033 independent reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.23 e Å−3 |
3033 reflections | Δρmin = −0.30 e Å−3 |
173 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl1 | 0.83131 (5) | 0.3848 (2) | 0.03175 (3) | 0.0883 (3) | |
F1 | 1.12038 (13) | 1.0835 (4) | 0.09837 (7) | 0.0978 (6) | |
F2 | 1.18924 (9) | 0.8102 (3) | 0.17220 (10) | 0.0964 (5) | |
F3 | 1.11540 (11) | 1.2001 (3) | 0.19839 (7) | 0.0781 (4) | |
F4 | 1.09214 (11) | 1.1818 (4) | 0.46328 (6) | 0.0853 (5) | |
N1 | 0.93981 (11) | 1.0496 (3) | 0.31763 (7) | 0.0451 (3) | |
C1 | 0.87112 (13) | 0.6135 (5) | 0.21835 (9) | 0.0528 (5) | |
H1 | 0.8368 | 0.5883 | 0.2568 | 0.063* | |
C2 | 0.83018 (14) | 0.4976 (5) | 0.16091 (9) | 0.0589 (5) | |
H2 | 0.7693 | 0.395 | 0.1605 | 0.071* | |
C3 | 0.88083 (15) | 0.5361 (5) | 0.10418 (9) | 0.0565 (5) | |
C4 | 0.96922 (14) | 0.6939 (5) | 0.10389 (9) | 0.0552 (5) | |
H4 | 1.0015 | 0.7239 | 0.0649 | 0.066* | |
C5 | 1.01029 (13) | 0.8085 (4) | 0.16185 (9) | 0.0472 (4) | |
C6 | 0.96206 (12) | 0.7668 (4) | 0.22062 (9) | 0.0445 (4) | |
C7 | 1.10812 (16) | 0.9742 (5) | 0.15823 (11) | 0.0609 (5) | |
C8 | 1.00181 (13) | 0.8725 (4) | 0.28603 (9) | 0.0453 (4) | |
C9 | 1.09464 (14) | 0.7800 (5) | 0.31331 (11) | 0.0587 (5) | |
H9 | 1.1349 | 0.6502 | 0.291 | 0.07* | |
C10 | 1.12574 (16) | 0.8841 (5) | 0.37399 (11) | 0.0638 (6) | |
H10 | 1.1876 | 0.8282 | 0.3937 | 0.077* | |
C11 | 1.06333 (16) | 1.0706 (5) | 0.40409 (10) | 0.0571 (5) | |
C12 | 0.96959 (14) | 1.1523 (4) | 0.37664 (9) | 0.0485 (4) | |
C13 | 0.90004 (18) | 1.3525 (5) | 0.41073 (10) | 0.0642 (6) | |
H13A | 0.8421 | 1.3959 | 0.3823 | 0.096* | |
H13B | 0.9352 | 1.5301 | 0.422 | 0.096* | |
H13C | 0.8779 | 1.2605 | 0.4498 | 0.096* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl1 | 0.0773 (4) | 0.1319 (7) | 0.0551 (3) | −0.0171 (4) | −0.0033 (3) | −0.0247 (4) |
F1 | 0.1080 (12) | 0.1124 (13) | 0.0752 (9) | −0.0472 (10) | 0.0308 (8) | 0.0014 (9) |
F2 | 0.0459 (7) | 0.0725 (10) | 0.1719 (16) | −0.0025 (6) | 0.0166 (8) | −0.0082 (10) |
F3 | 0.0911 (9) | 0.0542 (8) | 0.0897 (10) | −0.0197 (7) | 0.0125 (7) | −0.0126 (7) |
F4 | 0.0926 (10) | 0.0965 (11) | 0.0645 (8) | 0.0001 (8) | −0.0251 (7) | −0.0226 (8) |
N1 | 0.0467 (8) | 0.0453 (8) | 0.0433 (7) | 0.0016 (6) | 0.0034 (6) | 0.0002 (6) |
C1 | 0.0444 (9) | 0.0704 (13) | 0.0438 (9) | −0.0028 (9) | 0.0057 (7) | 0.0011 (9) |
C2 | 0.0436 (9) | 0.0797 (15) | 0.0535 (11) | −0.0116 (10) | 0.0012 (8) | −0.0005 (10) |
C3 | 0.0505 (10) | 0.0717 (14) | 0.0471 (10) | 0.0010 (10) | 0.0000 (8) | −0.0079 (10) |
C4 | 0.0539 (10) | 0.0649 (13) | 0.0477 (10) | 0.0011 (9) | 0.0122 (8) | −0.0030 (9) |
C5 | 0.0432 (9) | 0.0463 (10) | 0.0526 (10) | 0.0013 (8) | 0.0078 (7) | −0.0038 (8) |
C6 | 0.0410 (8) | 0.0463 (10) | 0.0464 (9) | 0.0061 (7) | 0.0032 (7) | −0.0021 (8) |
C7 | 0.0592 (12) | 0.0535 (12) | 0.0710 (13) | −0.0077 (10) | 0.0164 (10) | −0.0069 (11) |
C8 | 0.0431 (9) | 0.0460 (10) | 0.0470 (9) | 0.0014 (7) | 0.0024 (7) | −0.0006 (8) |
C9 | 0.0483 (10) | 0.0615 (13) | 0.0656 (12) | 0.0120 (9) | −0.0042 (9) | −0.0081 (10) |
C10 | 0.0507 (11) | 0.0709 (15) | 0.0684 (13) | 0.0043 (10) | −0.0145 (9) | −0.0026 (11) |
C11 | 0.0626 (12) | 0.0567 (12) | 0.0508 (10) | −0.0059 (10) | −0.0099 (9) | −0.0062 (9) |
C12 | 0.0557 (10) | 0.0437 (10) | 0.0460 (9) | −0.0040 (8) | 0.0030 (8) | 0.0001 (8) |
C13 | 0.0785 (14) | 0.0619 (14) | 0.0526 (11) | 0.0043 (11) | 0.0078 (10) | −0.0098 (10) |
Geometric parameters (Å, º) top Cl1—C3 | 1.737 (2) | C5—C7 | 1.501 (3) |
F1—C7 | 1.339 (3) | C6—C1 | 1.388 (3) |
F2—C7 | 1.328 (3) | C6—C5 | 1.396 (2) |
F3—C7 | 1.322 (2) | C8—C9 | 1.389 (2) |
F4—C11 | 1.353 (2) | C8—C6 | 1.496 (2) |
N1—C8 | 1.338 (2) | C9—C10 | 1.375 (3) |
N1—C12 | 1.338 (2) | C9—H9 | 0.93 |
C1—C2 | 1.378 (3) | C10—H10 | 0.93 |
C1—H1 | 0.93 | C11—C10 | 1.352 (3) |
C2—H2 | 0.93 | C11—C12 | 1.387 (3) |
C3—C2 | 1.374 (3) | C12—C13 | 1.491 (3) |
C4—C3 | 1.372 (3) | C13—H13A | 0.96 |
C4—H4 | 0.93 | C13—H13B | 0.96 |
C5—C4 | 1.385 (3) | C13—H13C | 0.96 |
| | | |
C8—N1—C12 | 119.16 (15) | F2—C7—C5 | 112.85 (18) |
C2—C1—C6 | 121.99 (17) | F1—C7—C5 | 111.83 (18) |
C2—C1—H1 | 119 | N1—C8—C9 | 122.48 (17) |
C6—C1—H1 | 119 | N1—C8—C6 | 115.49 (15) |
C3—C2—C1 | 118.89 (18) | C9—C8—C6 | 121.94 (17) |
C3—C2—H2 | 120.6 | C10—C9—C8 | 118.67 (19) |
C1—C2—H2 | 120.6 | C10—C9—H9 | 120.7 |
C4—C3—C2 | 120.98 (18) | C8—C9—H9 | 120.7 |
C4—C3—Cl1 | 119.69 (15) | C11—C10—C9 | 117.78 (18) |
C2—C3—Cl1 | 119.33 (16) | C11—C10—H10 | 121.1 |
C3—C4—C5 | 119.83 (17) | C9—C10—H10 | 121.1 |
C3—C4—H4 | 120.1 | F4—C11—C10 | 119.50 (18) |
C5—C4—H4 | 120.1 | F4—C11—C12 | 118.13 (19) |
C4—C5—C6 | 120.57 (17) | C10—C11—C12 | 122.36 (18) |
C4—C5—C7 | 117.07 (17) | N1—C12—C11 | 119.46 (18) |
C6—C5—C7 | 122.37 (17) | N1—C12—C13 | 118.39 (17) |
C1—C6—C5 | 117.69 (17) | C11—C12—C13 | 122.15 (18) |
C1—C6—C8 | 117.57 (16) | C12—C13—H13A | 109.5 |
C5—C6—C8 | 124.74 (16) | C12—C13—H13B | 109.5 |
F3—C7—F2 | 105.85 (18) | H13A—C13—H13B | 109.5 |
F3—C7—F1 | 105.45 (18) | C12—C13—H13C | 109.5 |
F2—C7—F1 | 106.32 (18) | H13A—C13—H13C | 109.5 |
F3—C7—C5 | 113.91 (17) | H13B—C13—H13C | 109.5 |
Hydrogen-bond geometry (Å, º) topCg1 is the centroid of the N1/C8–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13B···Cg1i | 0.96 | 2.83 | 3.606 (2) | 138 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data |
Chemical formula | C13H8ClF4N |
Mr | 289.65 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 13.1813 (7), 4.5837 (3), 20.4448 (11) |
β (°) | 92.441 (3) |
V (Å3) | 1234.14 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.34 |
Crystal size (mm) | 0.2 × 0.18 × 0.16 |
|
Data collection |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11077, 3033, 2116 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.667 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.129, 1.01 |
No. of reflections | 3033 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.30 |
Hydrogen-bond geometry (Å, º) topCg1 is the centroid of the N1/C8–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13B···Cg1i | 0.96 | 2.83 | 3.606 (2) | 138 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
Authors thank Dr. S. C. Sharma, Vice Chancellor, Tumkur University, Tumkur for his constant encouragement and G·B. Sadananda, Department of Studies and Research in Physics, U.C.S. Tumkur University, Tumkur, for his help and valuable suggestions. BSP thanks Dr. H. C. Devaraje Gowda, Department of Physics, Yuvarajas College (constituent), University of Mysore for his guidance.
References
Bhatt, A. H., Parekh, M. H., Parikh, K. A. & Parikh, A. R. (2001). J. Indian Chem. Soc. 40, 57–21. Google Scholar
Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Doshi, R., Kagthara, P. & Parekh, H. (1999). Indian J. Chem. 38, 348–352. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hishmat, O. H., Abdel Galil, F. M. & Farrag, D. S. (1990). Pharmazie, 45, 793–795. CAS PubMed Web of Science Google Scholar
Patrick, G. L. & Kinsmar, O. S. (1996). Eur. J. Med. Chem. 31, 615–624. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
![Journal logo](https://journals.iucr.org/logos/jicons/e_96x112.png) | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
![Open Access](/logos/open.png)
access
Pyridine derivatives of different heterocyclic nucleus have shown potent pharmacological properties like antifungal (Patrick & Kinsmar, 1996), antitubercular (Hishmat et al., 1990) and antibacterial (Doshi et al., 1999; Bhatt et al., 2001). Keeping in view of the biological importance of this class of compound, we synthesized the title compound to study its X-ray crystal structure.
In the title compound, the dihedral angle between the least square planes through the benzene ring and the pyridine ring is 59.8 (3)°. In the absence of hydrogen bonds, the structure is stabilized by a weak intermolecular C—H···π interaction (Table 1).