organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[4-Chloro-2-(tri­fluoro­meth­yl)phen­yl]-3-fluoro-2-methyl­pyridine

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Chemistry, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India, cDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and dCentre of Advanced Study in Crystallography and Biophysics, University of Madras Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 14 October 2012; accepted 8 November 2012; online 17 November 2012)

In the title compound, C13H8ClF4N, the dihedral angle between the benzene and pyridine rings is 59.8 (3)°. In the crystal, mol­ecules are stacked in columns along the b axis through weak C—H⋯π inter­actions.

Related literature

For the biological activity of pyridine derivatives, see: Patrick & Kinsmar (1996[Patrick, G. L. & Kinsmar, O. S. (1996). Eur. J. Med. Chem. 31, 615-624.]); Hishmat et al. (1990[Hishmat, O. H., Abdel Galil, F. M. & Farrag, D. S. (1990). Pharmazie, 45, 793-795.]); Doshi et al. (1999[Doshi, R., Kagthara, P. & Parekh, H. (1999). Indian J. Chem. 38, 348-352.]); Bhatt et al. (2001[Bhatt, A. H., Parekh, M. H., Parikh, K. A. & Parikh, A. R. (2001). J. Indian Chem. Soc. 40, 57-21.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8ClF4N

  • Mr = 289.65

  • Monoclinic, P 21 /n

  • a = 13.1813 (7) Å

  • b = 4.5837 (3) Å

  • c = 20.4448 (11) Å

  • β = 92.441 (3)°

  • V = 1234.14 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.2 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 11077 measured reflections

  • 3033 independent reflections

  • 2116 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.01

  • 3033 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C8–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13BCg1i 0.96 2.83 3.606 (2) 138
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine derivatives of different heterocyclic nucleus have shown potent pharmacological properties like antifungal (Patrick & Kinsmar, 1996), antitubercular (Hishmat et al., 1990) and antibacterial (Doshi et al., 1999; Bhatt et al., 2001). Keeping in view of the biological importance of this class of compound, we synthesized the title compound to study its X-ray crystal structure.

In the title compound, the dihedral angle between the least square planes through the benzene ring and the pyridine ring is 59.8 (3)°. In the absence of hydrogen bonds, the structure is stabilized by a weak intermolecular C—H···π interaction (Table 1).

Related literature top

For the biological activity of pyridine derivatives, see: Patrick & Kinsmar (1996); Hishmat et al. (1990); Doshi et al. (1999); Bhatt et al. (2001).

Experimental top

2-Methyl-3-fluoropiridine-6-boromic acid (8.4 mmol) was taken in a mixture of dioxane (20 ml) and water (5 ml) at RT undernitrogen atmosphere. The reaction mixture was degassed with argon for 10 min, and K2CO3 (23.1 mmol) and dichlorobis(triphenylphosphene)-palladium(II) (0.231 mmol) were added and again degassed for 10 min. 2-Bromo-5-chlorobenzotrifluoride (7.7 mmol) was added and then reaction mixture was heated to 100 °C for 1 h (reaction was monitored by TLC), and the reaction mass was cooled to RT, diluted with ethyl acetate, filtered over celite, and washed with ethyl acetate. The filtrate was washed with water and brine, and the ethyl acetate layer was dried with anhydrous Na2SO4 and concentrated. The crude product was purified by tritulating with petroleum ether. Single crystals of the title compound used for X-ray diffraction studies were obtained from slow evaporation of the solution of the compound in petroleum ether-ethyl acetate mixture (1:1).

Refinement top

The H atoms were positioned with idealized geometry (C—H = 0.93–0.96 Å) using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing C—H··· π interactions (dotted lines).
6-[4-Chloro-2-(trifluoromethyl)phenyl]-3-fluoro-2-methylpyridine top
Crystal data top
C13H8ClF4NPrism
Mr = 289.65Dx = 1.559 Mg m3
Monoclinic, P21/nMelting point: 408 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.1813 (7) ÅCell parameters from 2116 reflections
b = 4.5837 (3) Åθ = 1.8–26.8°
c = 20.4448 (11) ŵ = 0.34 mm1
β = 92.441 (3)°T = 293 K
V = 1234.14 (12) Å3Prism, colourless
Z = 40.2 × 0.18 × 0.16 mm
F(000) = 584
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2116 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
Detector resolution: 1.20 pixels mm-1h = 1717
multi–scank = 56
11077 measured reflectionsl = 2727
3033 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.4806P]
where P = (Fo2 + 2Fc2)/3
3033 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.30 e Å3
0 constraints
Crystal data top
C13H8ClF4NV = 1234.14 (12) Å3
Mr = 289.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1813 (7) ŵ = 0.34 mm1
b = 4.5837 (3) ÅT = 293 K
c = 20.4448 (11) Å0.2 × 0.18 × 0.16 mm
β = 92.441 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2116 reflections with I > 2σ(I)
11077 measured reflectionsRint = 0.031
3033 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
3033 reflectionsΔρmin = 0.30 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.83131 (5)0.3848 (2)0.03175 (3)0.0883 (3)
F11.12038 (13)1.0835 (4)0.09837 (7)0.0978 (6)
F21.18924 (9)0.8102 (3)0.17220 (10)0.0964 (5)
F31.11540 (11)1.2001 (3)0.19839 (7)0.0781 (4)
F41.09214 (11)1.1818 (4)0.46328 (6)0.0853 (5)
N10.93981 (11)1.0496 (3)0.31763 (7)0.0451 (3)
C10.87112 (13)0.6135 (5)0.21835 (9)0.0528 (5)
H10.83680.58830.25680.063*
C20.83018 (14)0.4976 (5)0.16091 (9)0.0589 (5)
H20.76930.3950.16050.071*
C30.88083 (15)0.5361 (5)0.10418 (9)0.0565 (5)
C40.96922 (14)0.6939 (5)0.10389 (9)0.0552 (5)
H41.00150.72390.06490.066*
C51.01029 (13)0.8085 (4)0.16185 (9)0.0472 (4)
C60.96206 (12)0.7668 (4)0.22062 (9)0.0445 (4)
C71.10812 (16)0.9742 (5)0.15823 (11)0.0609 (5)
C81.00181 (13)0.8725 (4)0.28603 (9)0.0453 (4)
C91.09464 (14)0.7800 (5)0.31331 (11)0.0587 (5)
H91.13490.65020.2910.07*
C101.12574 (16)0.8841 (5)0.37399 (11)0.0638 (6)
H101.18760.82820.39370.077*
C111.06333 (16)1.0706 (5)0.40409 (10)0.0571 (5)
C120.96959 (14)1.1523 (4)0.37664 (9)0.0485 (4)
C130.90004 (18)1.3525 (5)0.41073 (10)0.0642 (6)
H13A0.84211.39590.38230.096*
H13B0.93521.53010.4220.096*
H13C0.87791.26050.44980.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0773 (4)0.1319 (7)0.0551 (3)0.0171 (4)0.0033 (3)0.0247 (4)
F10.1080 (12)0.1124 (13)0.0752 (9)0.0472 (10)0.0308 (8)0.0014 (9)
F20.0459 (7)0.0725 (10)0.1719 (16)0.0025 (6)0.0166 (8)0.0082 (10)
F30.0911 (9)0.0542 (8)0.0897 (10)0.0197 (7)0.0125 (7)0.0126 (7)
F40.0926 (10)0.0965 (11)0.0645 (8)0.0001 (8)0.0251 (7)0.0226 (8)
N10.0467 (8)0.0453 (8)0.0433 (7)0.0016 (6)0.0034 (6)0.0002 (6)
C10.0444 (9)0.0704 (13)0.0438 (9)0.0028 (9)0.0057 (7)0.0011 (9)
C20.0436 (9)0.0797 (15)0.0535 (11)0.0116 (10)0.0012 (8)0.0005 (10)
C30.0505 (10)0.0717 (14)0.0471 (10)0.0010 (10)0.0000 (8)0.0079 (10)
C40.0539 (10)0.0649 (13)0.0477 (10)0.0011 (9)0.0122 (8)0.0030 (9)
C50.0432 (9)0.0463 (10)0.0526 (10)0.0013 (8)0.0078 (7)0.0038 (8)
C60.0410 (8)0.0463 (10)0.0464 (9)0.0061 (7)0.0032 (7)0.0021 (8)
C70.0592 (12)0.0535 (12)0.0710 (13)0.0077 (10)0.0164 (10)0.0069 (11)
C80.0431 (9)0.0460 (10)0.0470 (9)0.0014 (7)0.0024 (7)0.0006 (8)
C90.0483 (10)0.0615 (13)0.0656 (12)0.0120 (9)0.0042 (9)0.0081 (10)
C100.0507 (11)0.0709 (15)0.0684 (13)0.0043 (10)0.0145 (9)0.0026 (11)
C110.0626 (12)0.0567 (12)0.0508 (10)0.0059 (10)0.0099 (9)0.0062 (9)
C120.0557 (10)0.0437 (10)0.0460 (9)0.0040 (8)0.0030 (8)0.0001 (8)
C130.0785 (14)0.0619 (14)0.0526 (11)0.0043 (11)0.0078 (10)0.0098 (10)
Geometric parameters (Å, º) top
Cl1—C31.737 (2)C5—C71.501 (3)
F1—C71.339 (3)C6—C11.388 (3)
F2—C71.328 (3)C6—C51.396 (2)
F3—C71.322 (2)C8—C91.389 (2)
F4—C111.353 (2)C8—C61.496 (2)
N1—C81.338 (2)C9—C101.375 (3)
N1—C121.338 (2)C9—H90.93
C1—C21.378 (3)C10—H100.93
C1—H10.93C11—C101.352 (3)
C2—H20.93C11—C121.387 (3)
C3—C21.374 (3)C12—C131.491 (3)
C4—C31.372 (3)C13—H13A0.96
C4—H40.93C13—H13B0.96
C5—C41.385 (3)C13—H13C0.96
C8—N1—C12119.16 (15)F2—C7—C5112.85 (18)
C2—C1—C6121.99 (17)F1—C7—C5111.83 (18)
C2—C1—H1119N1—C8—C9122.48 (17)
C6—C1—H1119N1—C8—C6115.49 (15)
C3—C2—C1118.89 (18)C9—C8—C6121.94 (17)
C3—C2—H2120.6C10—C9—C8118.67 (19)
C1—C2—H2120.6C10—C9—H9120.7
C4—C3—C2120.98 (18)C8—C9—H9120.7
C4—C3—Cl1119.69 (15)C11—C10—C9117.78 (18)
C2—C3—Cl1119.33 (16)C11—C10—H10121.1
C3—C4—C5119.83 (17)C9—C10—H10121.1
C3—C4—H4120.1F4—C11—C10119.50 (18)
C5—C4—H4120.1F4—C11—C12118.13 (19)
C4—C5—C6120.57 (17)C10—C11—C12122.36 (18)
C4—C5—C7117.07 (17)N1—C12—C11119.46 (18)
C6—C5—C7122.37 (17)N1—C12—C13118.39 (17)
C1—C6—C5117.69 (17)C11—C12—C13122.15 (18)
C1—C6—C8117.57 (16)C12—C13—H13A109.5
C5—C6—C8124.74 (16)C12—C13—H13B109.5
F3—C7—F2105.85 (18)H13A—C13—H13B109.5
F3—C7—F1105.45 (18)C12—C13—H13C109.5
F2—C7—F1106.32 (18)H13A—C13—H13C109.5
F3—C7—C5113.91 (17)H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13B···Cg1i0.962.833.606 (2)138
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H8ClF4N
Mr289.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.1813 (7), 4.5837 (3), 20.4448 (11)
β (°) 92.441 (3)
V3)1234.14 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.2 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11077, 3033, 2116
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.01
No. of reflections3033
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13B···Cg1i0.962.833.606 (2)138
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Authors thank Dr. S. C. Sharma, Vice Chancellor, Tumkur University, Tumkur for his constant encouragement and G·B. Sadananda, Department of Studies and Research in Physics, U.C.S. Tumkur University, Tumkur, for his help and valuable suggestions. BSP thanks Dr. H. C. Devaraje Gowda, Department of Physics, Yuvarajas College (constituent), University of Mysore for his guidance.

References

First citationBhatt, A. H., Parekh, M. H., Parikh, K. A. & Parikh, A. R. (2001). J. Indian Chem. Soc. 40, 57–21.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoshi, R., Kagthara, P. & Parekh, H. (1999). Indian J. Chem. 38, 348–352.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHishmat, O. H., Abdel Galil, F. M. & Farrag, D. S. (1990). Pharmazie, 45, 793–795.  CAS PubMed Web of Science Google Scholar
First citationPatrick, G. L. & Kinsmar, O. S. (1996). Eur. J. Med. Chem. 31, 615–624.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds