organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-cyano-5-oxo-5-(thio­phen-2-yl)-3-(3,4,5-trimeth­­oxy­phen­yl)penta­noate

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Physics, Faculty of Science, An Najah National University, Nabtus West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 18 October 2012; accepted 27 October 2012; online 3 November 2012)

In the title compound, C21H23NO6S, the dihedral angle between the thio­pene and benzene rings is 88.66 (6)°. In the crystal, mol­ecules are connected by C—H⋯N and C—H⋯O hydrogen bonds, forming a tape along [10-1]. In addition, C—H⋯π and ππ stacking [centroid–centroid distance = 3.879 (2) Å between the thio­phene rings] inter­actions are observed.

Related literature

For applications of thio­phenes, see: Günther & Steinmetz (1963[Günther, O. S. & Steinmetz, R. (1963). Liebigs Ann. Chem. 668, 19-30.]). For a similar structure, see: Harrison et al. (2010[Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2010). Acta Cryst. E66, o2477.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO6S

  • Mr = 417.47

  • Triclinic, [P \overline 1]

  • a = 8.4308 (5) Å

  • b = 10.5025 (6) Å

  • c = 12.3059 (6) Å

  • α = 98.530 (2)°

  • β = 107.950 (2)°

  • γ = 97.966 (3)°

  • V = 1005.26 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 16712 measured reflections

  • 3965 independent reflections

  • 3498 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.04

  • 3965 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.93 2.49 3.368 (2) 157
C18—H18B⋯O2ii 0.96 2.56 3.385 (2) 143
C17—H17ACg2iii 0.96 2.85 3.6327 (16) 139
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: Mercury.

Supporting information


Comment top

Thiophenes have importance to give cycloaddition products with carbenes (Günther et al.,1963). In the title molecule, C21H23NO6S (Fig. 1.), the thiopene ring is basically planar and its geometry is similar to (2E)-3-(1,3-benzodioxol-5-yl)-1-(3-bromo-2-thienyl)prop-2-en-1-one (Harrison et al., 2010). The dihedral angle between the thiopene ring and the trimethoxyphenyl unit is 88.66 (6)°, which signifies the thiopene ring is almost perpendicular to the trimethoxyphenyl unit. The molecules are connected by C—H···N and C—H···O interactions (Table 1) into a tape structure (Fig. 2). In addition, the crystal is stabilized with ππ stacking interactions between thiophene rings, related by unit translation along the a axis with the distance of 3.879 (2) Å [-x+1, -y+1, -z+1]. Also, short contacts C—H···π (Table 1) and C—O···π with a distance of 3.733 (1) Å [87.10 (9)°] [x+1, y, z] are present.

Related literature top

For applications of thiophenes, see: Günther & Steinmetz (1963). For a similar structure, see: Harrison et al. (2010).

Experimental top

Freshly distilled ethyl cyanoacetate (8.5 g, 0.72 mol) was added in to a stirred suspension of powdered sodium (2.51 g, 0.109 mol) in dry benzene (40 ml) at room temperature. To this mixture Chalcone-1{3-(benzo[1,3] dioxol-5-yl)-1(thiophene-2-yl)prop-2-ene-1-one} was added and stirred for 36 hrs, at room temperature. Salts were filtered off, the filterate was with 5% NaOH (100 ml), brine solution (100 ml), and dried over anhydrous sodium sulfate. Concentration of the solvent furnished crude product, which was purified by column chromatography using benzene-ethyl acetate (8:2) as eluent gave ethyl 2-cyano-5-oxo-5-(thiophen-2-yl)-3-(3,4,5-trimethoxyphenyl)pentanoate as pale yellow oily product in 78% yield (14.5 g). Recrystallization with benzene led to the formation of the crystals.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C). One bad reflection (-2 2 0) has been omitted in the final refinement.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. An ORTEP diagram of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the a-axis. C—H···N and C—H···O hydrogen bonds are indicated by dashed lines.
Ethyl 2-cyano-5-oxo-5-(thiophen-2-yl)-3-(3,4,5-trimethoxyphenyl)pentanoate top
Crystal data top
C21H23NO6SZ = 2
Mr = 417.47F(000) = 440
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4308 (5) ÅCell parameters from 3965 reflections
b = 10.5025 (6) Åθ = 1.8–26.0°
c = 12.3059 (6) ŵ = 0.20 mm1
α = 98.530 (2)°T = 296 K
β = 107.950 (2)°Block, white
γ = 97.966 (3)°0.22 × 0.20 × 0.19 mm
V = 1005.26 (10) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3498 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
Detector resolution: 16.0839 pixels mm-1h = 1010
ω scansk = 1212
16712 measured reflectionsl = 1515
3965 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.4919P]
where P = (Fo2 + 2Fc2)/3
3965 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H23NO6Sγ = 97.966 (3)°
Mr = 417.47V = 1005.26 (10) Å3
Triclinic, P1Z = 2
a = 8.4308 (5) ÅMo Kα radiation
b = 10.5025 (6) ŵ = 0.20 mm1
c = 12.3059 (6) ÅT = 296 K
α = 98.530 (2)°0.22 × 0.20 × 0.19 mm
β = 107.950 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3498 reflections with I > 2σ(I)
16712 measured reflectionsRint = 0.027
3965 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3965 reflectionsΔρmin = 0.29 e Å3
266 parameters
Special details top

Experimental. IR: 2249 cm-1 (CN), 1758 cm-1 (esterCO). 1H NMR: 400 MHz (CDCl3) δ: 7.8 (1H, s), 7.3 (1H, s), 7.15 (1H, s), 6.6 (2H, s), 4.3 (1H, m), 4.2 (2H, q), 3.91 (1H, d), 3.88(6H, s), 3.8 (3H, s), 3.58 (2H, d), 1.23 (3H, t). MS: (M++1): 417.114.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28565 (5)1.06346 (3)0.11584 (3)0.0210 (1)
O10.51411 (14)0.95781 (10)0.30335 (8)0.0242 (3)
O20.30973 (12)0.61342 (9)0.55116 (8)0.0190 (3)
O30.05123 (12)0.47024 (9)0.37057 (8)0.0185 (3)
O40.07586 (12)0.41627 (10)0.15717 (8)0.0196 (3)
O50.97151 (12)0.73365 (10)0.20324 (8)0.0209 (3)
O61.01797 (12)0.78955 (9)0.39592 (8)0.0170 (3)
N10.65206 (15)0.45085 (12)0.09731 (11)0.0234 (4)
C10.18369 (17)1.03613 (14)0.03091 (12)0.0200 (4)
C20.21615 (18)0.92745 (14)0.08935 (12)0.0207 (4)
C30.32723 (18)0.86473 (14)0.01290 (12)0.0193 (4)
C40.37613 (17)0.92704 (13)0.10141 (12)0.0160 (4)
C50.49077 (17)0.89505 (13)0.20599 (11)0.0161 (4)
C60.58474 (17)0.78544 (13)0.18750 (11)0.0156 (4)
C70.63629 (16)0.72138 (12)0.29378 (11)0.0139 (3)
C80.48318 (16)0.64602 (12)0.31321 (11)0.0140 (3)
C90.47425 (17)0.66368 (13)0.42533 (11)0.0146 (3)
C100.33230 (17)0.60120 (13)0.44517 (11)0.0152 (4)
C110.19780 (17)0.52151 (13)0.35220 (11)0.0150 (4)
C120.21070 (16)0.49990 (13)0.24072 (11)0.0153 (3)
C130.35232 (17)0.56266 (13)0.22062 (11)0.0151 (4)
C140.77024 (16)0.63512 (13)0.28577 (11)0.0147 (4)
C150.93232 (17)0.72248 (13)0.28766 (11)0.0149 (3)
C170.44421 (18)0.69491 (14)0.64868 (11)0.0201 (4)
C180.03823 (19)0.33577 (14)0.37964 (13)0.0224 (4)
C190.09595 (18)0.37209 (14)0.04739 (12)0.0216 (4)
C200.70638 (17)0.53120 (13)0.17950 (12)0.0168 (4)
C211.17352 (17)0.88197 (14)0.41028 (12)0.0202 (4)
C221.1345 (2)1.00956 (14)0.37958 (13)0.0243 (4)
H10.113601.089500.067100.0240*
H20.170800.898000.169800.0250*
H30.363100.789300.037800.0230*
H6A0.685900.820300.171300.0190*
H6B0.512700.719300.120100.0190*
H70.691700.792600.362200.0170*
H90.563400.717400.487100.0180*
H130.359700.549100.146100.0180*
H140.797500.593800.353900.0180*
H17A0.546800.661300.658000.0300*
H17B0.414500.695300.718000.0300*
H17C0.461600.782800.635500.0300*
H18A0.032700.283600.307100.0340*
H18B0.062800.307200.397100.0340*
H18C0.136000.325900.440900.0340*
H19A0.110300.445500.010800.0320*
H19B0.003200.308900.002000.0320*
H19C0.194200.332300.059600.0320*
H21A1.231700.843800.360600.0240*
H21B1.248800.897800.490500.0240*
H22A1.065800.994800.298800.0360*
H22B1.238701.069500.393100.0360*
H22C1.074001.046200.427100.0360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0241 (2)0.0211 (2)0.0196 (2)0.0112 (2)0.0066 (1)0.0051 (1)
O10.0334 (6)0.0209 (5)0.0182 (5)0.0120 (4)0.0065 (4)0.0025 (4)
O20.0206 (5)0.0222 (5)0.0150 (5)0.0019 (4)0.0084 (4)0.0029 (4)
O30.0158 (5)0.0190 (5)0.0255 (5)0.0046 (4)0.0120 (4)0.0068 (4)
O40.0160 (5)0.0241 (5)0.0162 (5)0.0015 (4)0.0058 (4)0.0008 (4)
O50.0206 (5)0.0233 (5)0.0196 (5)0.0014 (4)0.0101 (4)0.0021 (4)
O60.0154 (5)0.0173 (5)0.0168 (5)0.0002 (4)0.0046 (4)0.0036 (4)
N10.0211 (6)0.0187 (6)0.0283 (7)0.0050 (5)0.0073 (5)0.0007 (5)
C10.0162 (7)0.0214 (7)0.0230 (7)0.0041 (6)0.0047 (6)0.0096 (6)
C20.0208 (7)0.0197 (7)0.0185 (7)0.0020 (6)0.0031 (6)0.0043 (5)
C30.0203 (7)0.0151 (7)0.0215 (7)0.0027 (5)0.0065 (6)0.0029 (5)
C40.0148 (6)0.0136 (7)0.0211 (7)0.0038 (5)0.0071 (5)0.0049 (5)
C50.0164 (7)0.0140 (6)0.0189 (7)0.0017 (5)0.0070 (5)0.0049 (5)
C60.0158 (7)0.0156 (7)0.0184 (6)0.0039 (5)0.0083 (5)0.0061 (5)
C70.0146 (6)0.0122 (6)0.0155 (6)0.0029 (5)0.0056 (5)0.0030 (5)
C80.0143 (6)0.0123 (6)0.0184 (6)0.0061 (5)0.0069 (5)0.0057 (5)
C90.0150 (6)0.0125 (6)0.0159 (6)0.0039 (5)0.0038 (5)0.0035 (5)
C100.0187 (7)0.0151 (7)0.0158 (6)0.0075 (5)0.0084 (5)0.0056 (5)
C110.0143 (6)0.0138 (6)0.0207 (7)0.0059 (5)0.0084 (5)0.0064 (5)
C120.0141 (6)0.0136 (6)0.0183 (6)0.0050 (5)0.0045 (5)0.0036 (5)
C130.0166 (7)0.0162 (7)0.0153 (6)0.0060 (5)0.0073 (5)0.0047 (5)
C140.0153 (7)0.0134 (6)0.0159 (6)0.0034 (5)0.0056 (5)0.0034 (5)
C150.0138 (6)0.0134 (6)0.0186 (6)0.0064 (5)0.0054 (5)0.0036 (5)
C170.0239 (7)0.0224 (7)0.0139 (6)0.0047 (6)0.0063 (5)0.0034 (5)
C180.0232 (7)0.0192 (7)0.0263 (7)0.0006 (6)0.0112 (6)0.0066 (6)
C190.0207 (7)0.0232 (7)0.0176 (7)0.0005 (6)0.0063 (6)0.0016 (6)
C200.0132 (6)0.0159 (7)0.0241 (7)0.0055 (5)0.0083 (5)0.0061 (6)
C210.0133 (7)0.0214 (7)0.0220 (7)0.0010 (6)0.0027 (5)0.0033 (6)
C220.0264 (8)0.0184 (7)0.0273 (8)0.0003 (6)0.0105 (6)0.0033 (6)
Geometric parameters (Å, º) top
S1—C11.7040 (14)C14—C151.528 (2)
S1—C41.7254 (15)C14—C201.4734 (19)
O1—C51.2219 (16)C21—C221.497 (2)
O2—C101.3653 (16)C1—H10.9300
O2—C171.4303 (17)C2—H20.9300
O3—C111.3755 (18)C3—H30.9300
O3—C181.4249 (18)C6—H6A0.9700
O4—C121.3623 (17)C6—H6B0.9700
O4—C191.4304 (17)C7—H70.9800
O5—C151.1996 (17)C9—H90.9300
O6—C151.3342 (16)C13—H130.9300
O6—C211.4651 (18)C14—H140.9800
N1—C201.1397 (19)C17—H17A0.9600
C1—C21.364 (2)C17—H17B0.9600
C2—C31.417 (2)C17—H17C0.9600
C3—C41.368 (2)C18—H18A0.9600
C4—C51.4679 (19)C18—H18B0.9600
C5—C61.514 (2)C18—H18C0.9600
C6—C71.5309 (18)C19—H19A0.9600
C7—C81.521 (2)C19—H19B0.9600
C7—C141.559 (2)C19—H19C0.9600
C8—C91.3913 (18)C21—H21A0.9700
C8—C131.3941 (19)C21—H21B0.9700
C9—C101.390 (2)C22—H22A0.9600
C10—C111.3959 (19)C22—H22B0.9600
C11—C121.3971 (18)C22—H22C0.9600
C12—C131.391 (2)
C1—S1—C491.52 (7)C4—C3—H3124.00
C10—O2—C17117.05 (11)C5—C6—H6A109.00
C11—O3—C18113.37 (11)C5—C6—H6B109.00
C12—O4—C19117.02 (11)C7—C6—H6A109.00
C15—O6—C21115.87 (11)C7—C6—H6B109.00
S1—C1—C2112.56 (11)H6A—C6—H6B108.00
C1—C2—C3111.94 (13)C6—C7—H7107.00
C2—C3—C4112.82 (13)C8—C7—H7107.00
S1—C4—C3111.16 (11)C14—C7—H7107.00
S1—C4—C5119.12 (10)C8—C9—H9120.00
C3—C4—C5129.71 (13)C10—C9—H9120.00
O1—C5—C4121.25 (13)C8—C13—H13120.00
O1—C5—C6121.58 (12)C12—C13—H13120.00
C4—C5—C6117.12 (11)C7—C14—H14109.00
C5—C6—C7112.22 (11)C15—C14—H14109.00
C6—C7—C8112.13 (11)C20—C14—H14109.00
C6—C7—C14110.99 (11)O2—C17—H17A109.00
C8—C7—C14112.42 (11)O2—C17—H17B109.00
C7—C8—C9118.67 (12)O2—C17—H17C109.00
C7—C8—C13121.01 (12)H17A—C17—H17B109.00
C9—C8—C13120.31 (13)H17A—C17—H17C109.00
C8—C9—C10120.15 (12)H17B—C17—H17C109.00
O2—C10—C9124.82 (12)O3—C18—H18A109.00
O2—C10—C11115.26 (13)O3—C18—H18B109.00
C9—C10—C11119.90 (12)O3—C18—H18C109.00
O3—C11—C10119.50 (12)H18A—C18—H18B110.00
O3—C11—C12120.84 (12)H18A—C18—H18C109.00
C10—C11—C12119.60 (13)H18B—C18—H18C109.00
O4—C12—C11115.00 (12)O4—C19—H19A109.00
O4—C12—C13124.50 (12)O4—C19—H19B109.00
C11—C12—C13120.51 (12)O4—C19—H19C109.00
C8—C13—C12119.43 (12)H19A—C19—H19B109.00
C7—C14—C15109.30 (11)H19A—C19—H19C109.00
C7—C14—C20111.98 (11)H19B—C19—H19C110.00
C15—C14—C20109.62 (11)O6—C21—H21A109.00
O5—C15—O6125.34 (13)O6—C21—H21B109.00
O5—C15—C14124.81 (12)C22—C21—H21A109.00
O6—C15—C14109.74 (11)C22—C21—H21B109.00
N1—C20—C14177.91 (16)H21A—C21—H21B108.00
O6—C21—C22111.19 (12)C21—C22—H22A109.00
S1—C1—H1124.00C21—C22—H22B109.00
C2—C1—H1124.00C21—C22—H22C110.00
C1—C2—H2124.00H22A—C22—H22B109.00
C3—C2—H2124.00H22A—C22—H22C109.00
C2—C3—H3124.00H22B—C22—H22C109.00
C4—S1—C1—C20.13 (13)C14—C7—C8—C9100.64 (14)
C1—S1—C4—C30.09 (13)C14—C7—C8—C1380.57 (15)
C1—S1—C4—C5179.01 (12)C6—C7—C14—C1563.27 (13)
C17—O2—C10—C91.2 (2)C6—C7—C14—C2058.39 (15)
C17—O2—C10—C11179.64 (12)C8—C7—C14—C15170.23 (10)
C18—O3—C11—C10101.99 (15)C8—C7—C14—C2068.11 (14)
C18—O3—C11—C1281.04 (16)C7—C8—C9—C10176.92 (12)
C19—O4—C12—C11168.81 (12)C13—C8—C9—C101.9 (2)
C19—O4—C12—C1312.0 (2)C7—C8—C13—C12177.12 (12)
C21—O6—C15—O51.1 (2)C9—C8—C13—C121.7 (2)
C21—O6—C15—C14177.57 (11)C8—C9—C10—O2178.97 (13)
C15—O6—C21—C2282.45 (15)C8—C9—C10—C110.6 (2)
S1—C1—C2—C30.14 (17)O2—C10—C11—O34.74 (19)
C1—C2—C3—C40.1 (2)O2—C10—C11—C12178.24 (12)
C2—C3—C4—S10.03 (18)C9—C10—C11—O3173.80 (13)
C2—C3—C4—C5178.95 (15)C9—C10—C11—C123.2 (2)
S1—C4—C5—O15.0 (2)O3—C11—C12—O45.74 (19)
S1—C4—C5—C6172.23 (10)O3—C11—C12—C13173.52 (13)
C3—C4—C5—O1176.11 (16)C10—C11—C12—O4177.29 (12)
C3—C4—C5—C66.7 (2)C10—C11—C12—C133.5 (2)
O1—C5—C6—C727.39 (19)O4—C12—C13—C8179.79 (13)
C4—C5—C6—C7155.42 (12)C11—C12—C13—C81.0 (2)
C5—C6—C7—C867.74 (14)C7—C14—C15—O5100.86 (16)
C5—C6—C7—C14165.60 (11)C7—C14—C15—O675.65 (13)
C6—C7—C8—C9133.47 (13)C20—C14—C15—O522.22 (19)
C6—C7—C8—C1345.31 (17)C20—C14—C15—O6161.28 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.493.368 (2)157
C18—H18B···O2ii0.962.563.385 (2)143
C17—H17A···Cg2iii0.962.853.6327 (16)139
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H23NO6S
Mr417.47
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.4308 (5), 10.5025 (6), 12.3059 (6)
α, β, γ (°)98.530 (2), 107.950 (2), 97.966 (3)
V3)1005.26 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16712, 3965, 3498
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.04
No. of reflections3965
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.493.368 (2)157
C18—H18B···O2ii0.962.563.385 (2)143
C17—H17A···Cg2iii0.962.853.6327 (16)139
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

SMK thanks the UGC–BRS and the University of Mysore for the award of a fellowship.

References

First citationGünther, O. S. & Steinmetz, R. (1963). Liebigs Ann. Chem. 668, 19–30.  Google Scholar
First citationHarrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2010). Acta Cryst. E66, o2477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds