organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3444-o3445

2,3-Di­amino­pyridinium 4-meth­­oxy­quinoline-2-carboxyl­ate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 5 November 2012; accepted 20 November 2012; online 24 November 2012)

In the 4-meth­oxy­quinoline-2-carboxyl­ate anion of the title salt, C5H8N3+·C11H8NO3, the dihedral angle between the quinoline ring system and the carboxyl­ate group is 16.54 (15)°. In the crystal, the cations and anions are linked via N—H⋯O and N—H⋯N hydrogen bonds, forming a centrosymmetric 2 + 2 aggregate with R22(9) and R42(8) ring motifs. These units are further connected via N—H⋯O hydrogen bonds into a layer parallel to the bc plane. The crystal structure is also stabilized by weak C—H⋯O hydrogen bonds and ππ inter­actions between pyridine rings [centroid–centroid distance = 3.5886 (8) Å] and between pyridine and benzene rings [centroid–centroid distance = 3.6328 (8) Å].

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For background to and the biological activity of quinoline derivatives, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]). For a related structure, see: Hemamalini & Fun (2011[Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o435-o436.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C11H8NO3

  • Mr = 312.33

  • Monoclinic, P 21 /c

  • a = 12.4338 (12) Å

  • b = 7.7462 (7) Å

  • c = 19.4626 (14) Å

  • β = 128.806 (4)°

  • V = 1460.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.24 × 0.21 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.989

  • 17919 measured reflections

  • 4820 independent reflections

  • 3806 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.02

  • 4820 reflections

  • 229 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2⋯O3 0.91 (2) 1.890 (19) 2.7670 (18) 162.8 (19)
N2—H3⋯N1 0.94 (2) 1.94 (3) 2.843 (2) 162.5 (19)
N3—H1⋯O3i 0.89 (2) 1.94 (2) 2.812 (2) 163.4 (16)
N4—H4⋯O2ii 0.893 (18) 1.978 (19) 2.8617 (15) 169.8 (17)
N4—H5⋯O2i 0.88 (2) 2.17 (3) 2.9419 (18) 146 (3)
C4—H4A⋯O2iii 0.95 2.45 3.3529 (15) 158
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991) and biologically active compounds (Markees et al., 1970). Recently, hydrogen-bonding patterns involving 4-methoxyquinolinium-2-carboxylate dihydrate (Hemamalini & Fun, 2011) have been reported. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit (Fig. 1) contains one 2,3-diaminopyridinium cation and one 4-methoxyquinoline-2-carboxylate anion. In the 2,3-diaminopyridinium cation, the protonated N2 atom has lead to a slight increase in the C12—N2—C16 angle to 123.67 (14)°. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.005 (1) Å for atom C14. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the 2-amino groups (N3 and N4) are hydrogen bonded to the carboxylate oxygen atoms (O3 and O2) via a pair of intermolecular N3—H1···O3i and N4—H5···O2i hydrogen bonds (symmetry code in Table 1), forming an R22(9) (Bernstein et al., 1995) ring motif. These motifs are crosslinked via N3—H2···O3 and N2—H3···N1 hydrogen bonds to produce a DDAA array (where D is a hydrogen-bond donor and A is a hydrogen-bond acceptor) with R22(9) and R42(8) motifs. The crystal structure also features weak N4—H4···O2ii and C4—H4A···O2iii hydrogen bonds (symmetry codes in Table 1). Furthermore, the crystal structure is stabilized by the following ππ interactions: (a) between pyridine rings (N2/C12–C16, centroid Cg4) Cg4···Cg4 (1 - x, 1 - y, 1 - z) 3.5886 (8) Å and (b) between pyridine (N1/C1/C6–C9, centroid Cg1) and benzene (C1–C6, centroid Cg2) rings Cg1···Cg2 (2 - x, 1 - y, 1 - z) 3.6328 (8) Å.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For background to and the biological activity of quinoline derivatives, see: Morimoto et al. (1991); Markees et al. (1970). For a related structure, see: Hemamalini & Fun (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2,3-diaminopyrimidine (27 mg, Aldrich) and 4-Methoxy-2-quinolinecarboxylic acid (50 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

N-bound H Atoms were located in a difference Fourier maps and refined freely [N—H = 0.88 (2)–0.936 (18) Å]. The remaining hydrogen atoms were positioned (C—H = 0.95 and 0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2,3-Diaminopyridinium 4-methoxyquinoline-2-carboxylate top
Crystal data top
C5H8N3+·C11H8NO3F(000) = 656
Mr = 312.33Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4575 reflections
a = 12.4338 (12) Åθ = 2.7–31.3°
b = 7.7462 (7) ŵ = 0.10 mm1
c = 19.4626 (14) ÅT = 100 K
β = 128.806 (4)°Block, brown
V = 1460.8 (2) Å30.24 × 0.21 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4820 independent reflections
Radiation source: fine-focus sealed tube3806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 31.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.976, Tmax = 0.989k = 1111
17919 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.4735P]
where P = (Fo2 + 2Fc2)/3
4820 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C5H8N3+·C11H8NO3V = 1460.8 (2) Å3
Mr = 312.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4338 (12) ŵ = 0.10 mm1
b = 7.7462 (7) ÅT = 100 K
c = 19.4626 (14) Å0.24 × 0.21 × 0.11 mm
β = 128.806 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4820 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3806 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.989Rint = 0.036
17919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.54 e Å3
4820 reflectionsΔρmin = 0.24 e Å3
229 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.05026 (9)0.82361 (12)0.41897 (6)0.02018 (19)
O20.57301 (9)0.98701 (12)0.31851 (6)0.02111 (19)
O30.59315 (10)0.93999 (14)0.43875 (7)0.0273 (2)
N10.82921 (10)0.75610 (13)0.51232 (6)0.0165 (2)
C10.96096 (11)0.69323 (14)0.55691 (7)0.0157 (2)
C21.02304 (12)0.60542 (16)0.63772 (8)0.0195 (2)
H2A0.97200.58690.65830.023*
C31.15663 (13)0.54699 (16)0.68650 (8)0.0214 (2)
H3A1.19690.48740.74030.026*
C41.23432 (12)0.57458 (16)0.65750 (8)0.0222 (2)
H4A1.32690.53470.69210.027*
C51.17713 (12)0.65876 (16)0.57956 (8)0.0193 (2)
H5A1.23030.67720.56050.023*
C61.03897 (11)0.71840 (15)0.52728 (7)0.0159 (2)
C70.97352 (11)0.80680 (15)0.44581 (8)0.0156 (2)
C80.84151 (11)0.87022 (15)0.40172 (7)0.0156 (2)
H8A0.79610.93000.34740.019*
C90.77543 (11)0.84423 (15)0.43910 (7)0.0151 (2)
C100.63500 (12)0.92902 (15)0.39471 (8)0.0167 (2)
C110.98637 (14)0.90182 (19)0.33460 (9)0.0239 (3)
H11A1.05350.90920.32390.036*
H11B0.95451.01800.33390.036*
H11C0.90750.83160.28840.036*
N20.69022 (11)0.60036 (14)0.56941 (7)0.0186 (2)
N30.61802 (11)0.86007 (14)0.58672 (7)0.0187 (2)
N40.53416 (12)0.68143 (16)0.67353 (8)0.0242 (2)
C120.63244 (11)0.68819 (15)0.59866 (7)0.0156 (2)
C130.59474 (11)0.59571 (16)0.64456 (7)0.0169 (2)
C140.62055 (13)0.41992 (16)0.65640 (8)0.0205 (2)
H14A0.59780.35570.68730.025*
C150.67973 (13)0.33474 (17)0.62363 (9)0.0230 (3)
H15A0.69540.21380.63160.028*
C160.71448 (13)0.42631 (16)0.58045 (8)0.0222 (2)
H16A0.75500.37020.55830.027*
H10.5578 (18)0.916 (2)0.5893 (11)0.026 (4)*
H20.6256 (18)0.899 (2)0.5461 (11)0.025 (4)*
H30.7185 (18)0.663 (2)0.5421 (12)0.032 (5)*
H40.5352 (19)0.630 (2)0.7151 (12)0.032 (5)*
H50.525 (2)0.795 (3)0.6708 (13)0.041 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0191 (4)0.0250 (4)0.0228 (4)0.0005 (3)0.0162 (4)0.0014 (3)
O20.0206 (4)0.0255 (5)0.0171 (4)0.0057 (3)0.0118 (3)0.0008 (3)
O30.0298 (5)0.0345 (5)0.0303 (5)0.0146 (4)0.0251 (4)0.0128 (4)
N10.0184 (4)0.0158 (4)0.0181 (4)0.0026 (3)0.0128 (4)0.0007 (3)
C10.0179 (5)0.0139 (5)0.0172 (5)0.0012 (4)0.0119 (4)0.0007 (4)
C20.0222 (5)0.0188 (5)0.0184 (5)0.0021 (4)0.0132 (5)0.0010 (4)
C30.0217 (5)0.0193 (6)0.0169 (5)0.0013 (4)0.0090 (4)0.0009 (4)
C40.0161 (5)0.0196 (6)0.0229 (6)0.0010 (4)0.0083 (5)0.0010 (4)
C50.0158 (5)0.0183 (5)0.0226 (6)0.0006 (4)0.0114 (4)0.0026 (4)
C60.0159 (5)0.0139 (5)0.0180 (5)0.0003 (4)0.0107 (4)0.0024 (4)
C70.0167 (5)0.0151 (5)0.0189 (5)0.0021 (4)0.0130 (4)0.0028 (4)
C80.0174 (5)0.0151 (5)0.0165 (5)0.0003 (4)0.0117 (4)0.0007 (4)
C90.0171 (5)0.0142 (5)0.0165 (5)0.0013 (4)0.0117 (4)0.0009 (4)
C100.0182 (5)0.0155 (5)0.0197 (5)0.0020 (4)0.0136 (4)0.0005 (4)
C110.0258 (6)0.0296 (7)0.0236 (6)0.0015 (5)0.0191 (5)0.0027 (5)
N20.0216 (5)0.0197 (5)0.0207 (5)0.0027 (4)0.0162 (4)0.0017 (4)
N30.0231 (5)0.0176 (5)0.0226 (5)0.0035 (4)0.0178 (4)0.0037 (4)
N40.0329 (6)0.0248 (6)0.0300 (6)0.0098 (4)0.0271 (5)0.0095 (4)
C120.0149 (4)0.0183 (5)0.0146 (5)0.0021 (4)0.0097 (4)0.0010 (4)
C130.0158 (5)0.0205 (5)0.0159 (5)0.0015 (4)0.0107 (4)0.0023 (4)
C140.0218 (5)0.0195 (5)0.0231 (6)0.0013 (4)0.0154 (5)0.0038 (4)
C150.0254 (6)0.0174 (5)0.0260 (6)0.0029 (4)0.0160 (5)0.0017 (5)
C160.0263 (6)0.0197 (6)0.0237 (6)0.0049 (4)0.0172 (5)0.0004 (5)
Geometric parameters (Å, º) top
O1—C71.3509 (13)C9—C101.5284 (15)
O1—C111.4351 (15)C11—H11A0.9800
O2—C101.2501 (14)C11—H11B0.9800
O3—C101.2537 (14)C11—H11C0.9800
N1—C91.3227 (15)N2—C121.3475 (15)
N1—C11.3755 (14)N2—C161.3688 (16)
C1—C21.4179 (16)N2—H30.936 (18)
C1—C61.4185 (16)N3—C121.3441 (15)
C2—C31.3743 (17)N3—H10.893 (18)
C2—H2A0.9500N3—H20.905 (17)
C3—C41.4073 (19)N4—C131.3634 (16)
C3—H3A0.9500N4—H40.893 (18)
C4—C51.3712 (18)N4—H50.88 (2)
C4—H4A0.9500C12—C131.4337 (16)
C5—C61.4174 (15)C13—C141.3848 (17)
C5—H5A0.9500C14—C151.4041 (18)
C6—C71.4242 (16)C14—H14A0.9500
C7—C81.3808 (15)C15—C161.3606 (19)
C8—C91.4121 (16)C15—H15A0.9500
C8—H8A0.9500C16—H16A0.9500
C7—O1—C11117.67 (9)O3—C10—C9117.34 (10)
C9—N1—C1117.42 (10)O1—C11—H11A109.5
N1—C1—C2118.35 (10)O1—C11—H11B109.5
N1—C1—C6122.84 (10)H11A—C11—H11B109.5
C2—C1—C6118.76 (10)O1—C11—H11C109.5
C3—C2—C1120.42 (11)H11A—C11—H11C109.5
C3—C2—H2A119.8H11B—C11—H11C109.5
C1—C2—H2A119.8C12—N2—C16123.66 (11)
C2—C3—C4120.61 (11)C12—N2—H3117.9 (11)
C2—C3—H3A119.7C16—N2—H3118.4 (11)
C4—C3—H3A119.7C12—N3—H1119.7 (11)
C5—C4—C3120.36 (11)C12—N3—H2113.9 (11)
C5—C4—H4A119.8H1—N3—H2116.0 (16)
C3—C4—H4A119.8C13—N4—H4117.5 (12)
C4—C5—C6120.27 (11)C13—N4—H5122.8 (13)
C4—C5—H5A119.9H4—N4—H5115.1 (17)
C6—C5—H5A119.9N3—C12—N2118.40 (11)
C5—C6—C1119.56 (11)N3—C12—C13122.85 (11)
C5—C6—C7123.07 (11)N2—C12—C13118.68 (11)
C1—C6—C7117.36 (10)N4—C13—C14122.73 (11)
O1—C7—C8125.32 (11)N4—C13—C12119.69 (11)
O1—C7—C6115.32 (10)C14—C13—C12117.57 (11)
C8—C7—C6119.35 (10)C13—C14—C15121.28 (11)
C7—C8—C9118.56 (10)C13—C14—H14A119.4
C7—C8—H8A120.7C15—C14—H14A119.4
C9—C8—H8A120.7C16—C15—C14119.68 (12)
N1—C9—C8124.34 (10)C16—C15—H15A120.2
N1—C9—C10117.26 (10)C14—C15—H15A120.2
C8—C9—C10118.36 (10)C15—C16—N2119.11 (11)
O2—C10—O3125.12 (11)C15—C16—H16A120.4
O2—C10—C9117.50 (10)N2—C16—H16A120.4
C9—N1—C1—C2177.07 (11)C6—C7—C8—C90.28 (16)
C9—N1—C1—C60.38 (16)C1—N1—C9—C83.32 (17)
N1—C1—C2—C3177.15 (11)C1—N1—C9—C10174.09 (10)
C6—C1—C2—C30.41 (18)C7—C8—C9—N13.03 (18)
C1—C2—C3—C40.56 (19)C7—C8—C9—C10174.35 (10)
C2—C3—C4—C50.68 (19)N1—C9—C10—O2168.15 (11)
C3—C4—C5—C60.19 (19)C8—C9—C10—O214.27 (16)
C4—C5—C6—C11.15 (17)N1—C9—C10—O314.14 (16)
C4—C5—C6—C7179.93 (11)C8—C9—C10—O3163.43 (11)
N1—C1—C6—C5176.19 (11)C16—N2—C12—N3177.71 (11)
C2—C1—C6—C51.25 (17)C16—N2—C12—C130.46 (17)
N1—C1—C6—C72.65 (16)N3—C12—C13—N43.90 (17)
C2—C1—C6—C7179.90 (11)N2—C12—C13—N4178.98 (11)
C11—O1—C7—C85.09 (17)N3—C12—C13—C14176.96 (11)
C11—O1—C7—C6176.10 (10)N2—C12—C13—C140.16 (16)
C5—C6—C7—O12.97 (16)N4—C13—C14—C15178.25 (12)
C1—C6—C7—O1178.23 (10)C12—C13—C14—C150.86 (18)
C5—C6—C7—C8175.92 (11)C13—C14—C15—C160.96 (19)
C1—C6—C7—C82.88 (16)C14—C15—C16—N20.34 (19)
O1—C7—C8—C9179.05 (11)C12—N2—C16—C150.37 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2···O30.91 (2)1.890 (19)2.7670 (18)162.8 (19)
N2—H3···N10.94 (2)1.94 (3)2.843 (2)162.5 (19)
N3—H1···O3i0.89 (2)1.94 (2)2.812 (2)163.4 (16)
N4—H4···O2ii0.893 (18)1.978 (19)2.8617 (15)169.8 (17)
N4—H5···O2i0.88 (2)2.17 (3)2.9419 (18)146 (3)
C4—H4A···O2iii0.952.453.3529 (15)158
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C11H8NO3
Mr312.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.4338 (12), 7.7462 (7), 19.4626 (14)
β (°) 128.806 (4)
V3)1460.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.21 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.976, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
17919, 4820, 3806
Rint0.036
(sin θ/λ)max1)0.734
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.02
No. of reflections4820
No. of parameters229
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2···O30.91 (2)1.890 (19)2.7670 (18)162.8 (19)
N2—H3···N10.94 (2)1.94 (3)2.843 (2)162.5 (19)
N3—H1···O3i0.89 (2)1.94 (2)2.812 (2)163.4 (16)
N4—H4···O2ii0.893 (18)1.978 (19)2.8617 (15)169.8 (17)
N4—H5···O2i0.88 (2)2.17 (3)2.9419 (18)146 (3)
C4—H4A···O2iii0.952.453.3529 (15)158
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o435–o436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3444-o3445
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds