organic compounds
2,6-Diamino-4-chloropyrimidine–benzoic acid (1/1)
aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my
The benzoic acid molecule of the title compound, C4H5ClN4·C7H6O2, is approximately planar, with a dihedral angle of 1.28 (9)° between the carboxy group and the benzene ring. In the crystal, two acid and two base molecules are linked through N—H⋯O and O—H⋯N hydrogen bonds, forming a centrosymmetric 2 + 2 unit with R22(8) and R42(8) motifs. These units are further linked through a pair of N—H⋯N hydrogen bonds into a tape structure along [1-20]. The also features weak π–π [centroid–centroid distance = 3.5984 (11) Å] and C—H⋯π interactions.
Related literature
For the biological activity of pyrimidine and aminopyrimidine derivatives, see: Hunt et al. (1980); Baker & Santi (1965). For related structures, see: Schwalbe & Williams (1982); Hu et al. (2002); Chinnakali et al. (1999); Skovsgaard & Bond (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681204768X/is5218sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681204768X/is5218Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681204768X/is5218Isup3.cml
A hot methanol solutions (20 ml) of 2,6-diamino-4-chloropyrimidine (36 mg, Aldrich) and benzoic acid (30 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.
O- and N-bound H Atoms were located in a difference Fourier maps and refined freely [O—H = 0.866 (10) Å and N—H = 0.79 (2)–0.88 (2) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. Dashed lines indicate the hydrogen bonds. | |
Fig. 2. The crystal packing of the title compound. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. |
C4H5ClN4·C7H6O2 | F(000) = 552 |
Mr = 266.69 | Dx = 1.479 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5646 reflections |
a = 8.7817 (17) Å | θ = 3.0–30.0° |
b = 5.7032 (12) Å | µ = 0.32 mm−1 |
c = 24.026 (4) Å | T = 100 K |
β = 95.493 (4)° | Block, colourless |
V = 1197.8 (4) Å3 | 0.36 × 0.30 × 0.16 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 2097 independent reflections |
Radiation source: fine-focus sealed tube | 1891 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→10 |
Tmin = 0.895, Tmax = 0.951 | k = −6→6 |
7539 measured reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0471P)2 + 0.4196P] where P = (Fo2 + 2Fc2)/3 |
2097 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.25 e Å−3 |
1 restraint | Δρmin = −0.24 e Å−3 |
C4H5ClN4·C7H6O2 | V = 1197.8 (4) Å3 |
Mr = 266.69 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.7817 (17) Å | µ = 0.32 mm−1 |
b = 5.7032 (12) Å | T = 100 K |
c = 24.026 (4) Å | 0.36 × 0.30 × 0.16 mm |
β = 95.493 (4)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2097 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1891 reflections with I > 2σ(I) |
Tmin = 0.895, Tmax = 0.951 | Rint = 0.052 |
7539 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 1 restraint |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.25 e Å−3 |
2097 reflections | Δρmin = −0.24 e Å−3 |
183 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.05557 (4) | 0.64565 (9) | 0.367228 (16) | 0.03348 (18) | |
O1 | 0.43197 (13) | 0.5175 (2) | 0.61239 (5) | 0.0312 (3) | |
O2 | 0.52962 (16) | 0.1720 (2) | 0.59015 (5) | 0.0372 (3) | |
N1 | 0.07033 (15) | 0.7543 (3) | 0.46563 (5) | 0.0274 (4) | |
N2 | 0.27154 (14) | 0.5362 (3) | 0.51588 (5) | 0.0266 (4) | |
N3 | 0.16941 (19) | 0.8669 (3) | 0.55310 (6) | 0.0313 (4) | |
N4 | 0.37676 (16) | 0.2112 (3) | 0.47835 (7) | 0.0325 (4) | |
C1 | 0.07703 (17) | 0.5991 (3) | 0.42471 (7) | 0.0272 (4) | |
C2 | 0.17389 (17) | 0.4136 (4) | 0.42399 (7) | 0.0287 (4) | |
H2A | 0.1734 | 0.3108 | 0.3929 | 0.034* | |
C3 | 0.27541 (17) | 0.3846 (3) | 0.47284 (7) | 0.0272 (4) | |
C4 | 0.17144 (17) | 0.7163 (3) | 0.51057 (6) | 0.0265 (4) | |
C5 | 0.71603 (19) | 0.1587 (3) | 0.69200 (7) | 0.0264 (4) | |
H5A | 0.7220 | 0.0302 | 0.6672 | 0.032* | |
C6 | 0.80722 (19) | 0.1626 (3) | 0.74236 (7) | 0.0276 (4) | |
H6A | 0.8760 | 0.0372 | 0.7519 | 0.033* | |
C7 | 0.79790 (17) | 0.3497 (3) | 0.77877 (7) | 0.0251 (4) | |
H7A | 0.8608 | 0.3526 | 0.8132 | 0.030* | |
C8 | 0.69723 (17) | 0.5321 (3) | 0.76507 (7) | 0.0258 (4) | |
H8A | 0.6908 | 0.6594 | 0.7902 | 0.031* | |
C9 | 0.60544 (17) | 0.5293 (3) | 0.71455 (7) | 0.0241 (4) | |
H9A | 0.5361 | 0.6542 | 0.7052 | 0.029* | |
C10 | 0.61545 (17) | 0.3430 (3) | 0.67768 (6) | 0.0214 (4) | |
C11 | 0.52134 (18) | 0.3366 (3) | 0.62273 (7) | 0.0249 (4) | |
H2N3 | 0.233 (3) | 0.851 (4) | 0.5785 (10) | 0.039 (6)* | |
H2N4 | 0.432 (2) | 0.196 (4) | 0.5105 (10) | 0.045 (6)* | |
H1N4 | 0.388 (2) | 0.113 (4) | 0.4508 (9) | 0.033 (5)* | |
H1N3 | 0.109 (2) | 0.983 (4) | 0.5499 (9) | 0.037 (6)* | |
H1O1 | 0.386 (3) | 0.508 (7) | 0.5789 (7) | 0.113 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0286 (3) | 0.0508 (4) | 0.0183 (2) | −0.00328 (18) | −0.01233 (16) | 0.00310 (18) |
O1 | 0.0260 (6) | 0.0437 (8) | 0.0220 (6) | 0.0042 (6) | −0.0080 (5) | 0.0035 (6) |
O2 | 0.0521 (8) | 0.0321 (8) | 0.0240 (6) | −0.0019 (6) | −0.0147 (6) | −0.0010 (6) |
N1 | 0.0230 (6) | 0.0382 (9) | 0.0190 (7) | −0.0093 (6) | −0.0076 (5) | 0.0077 (7) |
N2 | 0.0203 (6) | 0.0395 (9) | 0.0183 (7) | −0.0085 (6) | −0.0059 (5) | 0.0068 (6) |
N3 | 0.0318 (8) | 0.0370 (10) | 0.0217 (8) | −0.0044 (7) | −0.0144 (6) | 0.0040 (7) |
N4 | 0.0262 (7) | 0.0503 (11) | 0.0195 (7) | −0.0020 (7) | −0.0058 (6) | 0.0009 (7) |
C1 | 0.0202 (7) | 0.0439 (11) | 0.0159 (8) | −0.0113 (7) | −0.0071 (6) | 0.0080 (7) |
C2 | 0.0218 (8) | 0.0457 (12) | 0.0177 (8) | −0.0074 (8) | −0.0032 (6) | 0.0029 (8) |
C3 | 0.0178 (7) | 0.0447 (12) | 0.0181 (8) | −0.0098 (7) | −0.0029 (6) | 0.0071 (7) |
C4 | 0.0214 (7) | 0.0387 (11) | 0.0178 (8) | −0.0124 (7) | −0.0062 (6) | 0.0083 (7) |
C5 | 0.0325 (9) | 0.0257 (10) | 0.0201 (8) | 0.0009 (7) | −0.0015 (7) | −0.0003 (7) |
C6 | 0.0283 (8) | 0.0292 (10) | 0.0244 (8) | 0.0070 (7) | −0.0030 (7) | 0.0050 (7) |
C7 | 0.0220 (8) | 0.0322 (10) | 0.0196 (8) | −0.0019 (7) | −0.0053 (6) | 0.0024 (7) |
C8 | 0.0249 (8) | 0.0268 (10) | 0.0244 (8) | −0.0006 (7) | −0.0038 (6) | −0.0034 (7) |
C9 | 0.0199 (7) | 0.0248 (10) | 0.0267 (8) | 0.0005 (7) | −0.0027 (6) | 0.0028 (7) |
C10 | 0.0192 (7) | 0.0263 (9) | 0.0181 (8) | −0.0046 (6) | −0.0014 (6) | 0.0039 (6) |
C11 | 0.0243 (8) | 0.0291 (10) | 0.0205 (8) | −0.0063 (7) | −0.0023 (6) | 0.0043 (7) |
Cl1—C1 | 1.7395 (15) | C2—C3 | 1.414 (2) |
O1—C11 | 1.306 (2) | C2—H2A | 0.9500 |
O1—H1O1 | 0.866 (10) | C5—C6 | 1.386 (2) |
O2—C11 | 1.229 (2) | C5—C10 | 1.395 (2) |
N1—C1 | 1.328 (2) | C5—H5A | 0.9500 |
N1—C4 | 1.348 (2) | C6—C7 | 1.387 (3) |
N2—C4 | 1.350 (2) | C6—H6A | 0.9500 |
N2—C3 | 1.351 (2) | C7—C8 | 1.384 (2) |
N3—C4 | 1.336 (2) | C7—H7A | 0.9500 |
N3—H2N3 | 0.79 (2) | C8—C9 | 1.392 (2) |
N3—H1N3 | 0.85 (2) | C8—H8A | 0.9500 |
N4—C3 | 1.328 (3) | C9—C10 | 1.391 (2) |
N4—H2N4 | 0.88 (2) | C9—H9A | 0.9500 |
N4—H1N4 | 0.88 (2) | C10—C11 | 1.490 (2) |
C1—C2 | 1.358 (3) | ||
C11—O1—H1O1 | 110 (2) | C6—C5—C10 | 120.18 (16) |
C1—N1—C4 | 114.40 (16) | C6—C5—H5A | 119.9 |
C4—N2—C3 | 118.60 (14) | C10—C5—H5A | 119.9 |
C4—N3—H2N3 | 117.1 (16) | C5—C6—C7 | 119.92 (16) |
C4—N3—H1N3 | 119.2 (15) | C5—C6—H6A | 120.0 |
H2N3—N3—H1N3 | 123 (2) | C7—C6—H6A | 120.0 |
C3—N4—H2N4 | 118.1 (15) | C8—C7—C6 | 120.20 (15) |
C3—N4—H1N4 | 121.4 (13) | C8—C7—H7A | 119.9 |
H2N4—N4—H1N4 | 121 (2) | C6—C7—H7A | 119.9 |
N1—C1—C2 | 126.90 (15) | C7—C8—C9 | 120.15 (16) |
N1—C1—Cl1 | 114.35 (13) | C7—C8—H8A | 119.9 |
C2—C1—Cl1 | 118.76 (14) | C9—C8—H8A | 119.9 |
C1—C2—C3 | 115.25 (17) | C10—C9—C8 | 119.83 (15) |
C1—C2—H2A | 122.4 | C10—C9—H9A | 120.1 |
C3—C2—H2A | 122.4 | C8—C9—H9A | 120.1 |
N4—C3—N2 | 117.76 (15) | C9—C10—C5 | 119.71 (15) |
N4—C3—C2 | 122.23 (17) | C9—C10—C11 | 121.29 (15) |
N2—C3—C2 | 120.01 (17) | C5—C10—C11 | 118.99 (15) |
N3—C4—N1 | 116.94 (17) | O2—C11—O1 | 123.62 (15) |
N3—C4—N2 | 118.24 (15) | O2—C11—C10 | 121.44 (16) |
N1—C4—N2 | 124.81 (16) | O1—C11—C10 | 114.94 (15) |
C4—N1—C1—C2 | −0.5 (2) | C10—C5—C6—C7 | 0.3 (3) |
C4—N1—C1—Cl1 | 179.02 (11) | C5—C6—C7—C8 | 0.3 (3) |
N1—C1—C2—C3 | 1.1 (3) | C6—C7—C8—C9 | −0.4 (2) |
Cl1—C1—C2—C3 | −178.45 (11) | C7—C8—C9—C10 | −0.2 (2) |
C4—N2—C3—N4 | 178.65 (15) | C8—C9—C10—C5 | 0.9 (2) |
C4—N2—C3—C2 | −1.2 (2) | C8—C9—C10—C11 | −178.71 (14) |
C1—C2—C3—N4 | 179.98 (15) | C6—C5—C10—C9 | −0.9 (2) |
C1—C2—C3—N2 | −0.1 (2) | C6—C5—C10—C11 | 178.67 (15) |
C1—N1—C4—N3 | −179.82 (14) | C9—C10—C11—O2 | −179.79 (15) |
C1—N1—C4—N2 | −1.0 (2) | C5—C10—C11—O2 | 0.6 (2) |
C3—N2—C4—N3 | −179.31 (15) | C9—C10—C11—O1 | 0.5 (2) |
C3—N2—C4—N1 | 1.9 (2) | C5—C10—C11—O1 | −179.08 (14) |
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···N2 | 0.87 (2) | 1.74 (2) | 2.5976 (18) | 168 (3) |
N4—H2N4···O2 | 0.88 (2) | 2.03 (2) | 2.894 (2) | 171.2 (18) |
N4—H1N4···O2i | 0.88 (2) | 2.07 (2) | 2.902 (2) | 158.2 (19) |
N3—H1N3···N1ii | 0.85 (2) | 2.18 (2) | 3.020 (2) | 171 (2) |
C9—H9A···Cg1iii | 0.95 | 2.99 | 3.6557 (19) | 128 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+2, −z+1; (iii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C4H5ClN4·C7H6O2 |
Mr | 266.69 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 8.7817 (17), 5.7032 (12), 24.026 (4) |
β (°) | 95.493 (4) |
V (Å3) | 1197.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.36 × 0.30 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.895, 0.951 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7539, 2097, 1891 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.101, 1.09 |
No. of reflections | 2097 |
No. of parameters | 183 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.24 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···N2 | 0.867 (18) | 1.74 (2) | 2.5976 (18) | 168 (3) |
N4—H2N4···O2 | 0.88 (2) | 2.03 (2) | 2.894 (2) | 171.2 (18) |
N4—H1N4···O2i | 0.88 (2) | 2.07 (2) | 2.902 (2) | 158.2 (19) |
N3—H1N3···N1ii | 0.85 (2) | 2.18 (2) | 3.020 (2) | 171 (2) |
C9—H9A···Cg1iii | 0.95 | 2.99 | 3.6557 (19) | 128 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+2, −z+1; (iii) −x+1, y+1/2, −z+3/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-5599-2009.
Acknowledgements
The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. CrossRef CAS PubMed Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hu, M.-L., Ye, M.-D., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1005–o1007. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536. CAS Google Scholar
Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840–1843. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444–453. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Hu et al., 2002) and co-crystal structures (Chinnakali et al., 1999; Skovsgaard & Bond, 2009) have ben reported. In the present study, hydrogen-bonding patterns in the 2,6-diamino-4-chloropyrimidine–benzoic acid (1/1) co-crystal are investigated.
The asymmetric unit (Fig. 1) contains one 2,6-diamino-4-chloropyrimidine molecule and one benzoic acid molecule. The 2,6-diamino-4-chloropyrimidine molecule is essentially planar, with a maximum deviation of 0.009 (2) Å for atom C4. The carboxyl group of the benzoic acid molecule is twisted slightly from the ring with a dihedral angle between C5–C10 ring and O1/O2/C10/C11 plane being 1.28 (9)°. The bond lengths (Allen et al., 1987) and angles are normal.
In the crystal packing (Fig. 2), the 2,6-diamino-4-chloropyrimidine molecules interact with the carboxylic group of the respective benzoic acid molecules through N4—H2N4···O2 and O1—H1O1···N2 hydrogen bonds, forming a cyclic hydrogen-bonded motif of R22(8) (Bernstein et al., 1995). These motifs are centrosymmetrically paired via N4—H1N4···O2i hydrogen bonds, resulting in a DADA array (Where D is a hydrogen-bond donor and A is a hydrogen-bond acceptor) of quadruple hydrogen bonds (symmetry code in Table 1); this can be represented by the graph-set notations of R22(8) and R42(8). The quadruple hydrogen-bonding motifs are further extended through a couple of N3—H1N3···N1ii hydrogen bonds (symmetry code in Table 1), leading to the formation of hydrogen-bonded supramolecular tape. The crystal structure is further stabilized by π–π interactions between the pyrimidine (Cg2; N1/N2/C1–C4) rings [Cg2···Cg2 = 3.5984 (11) Å; -x, 1 - y, 1 - z] and C—H···π interactions (Table 1) involving the centroid of the C5–C10 (centroid Cg1) ring.