organic compounds
2-(2-Nitrophenyl)acetohydrazide
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C8H9N3O3, the dihedral angle between the benzene ring and the acetohydrazide C—C(=O)—N—N plane [maximum deviation = 0.0471 (13) Å] is 87.62 (8)°. The nitro group is twisted by 19.3 (2)° with respect to the benzene ring. In the crystal, N—H⋯O hydrogen bonds link the molecules into a double-column structure along the b axis.
Related literature
For the chemistry of et al. (1984). For the biological properties of see: Kalsi et al. (2006); Masunari & Tavares (2007); Singh et al. (1992). For related structures, see: Ahmad et al. (2012); Dutkiewicz et al. (2009); Liu & Gao (2012). For bond-length data, see: Allen et al. (1987).
ses: DomianoExperimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812047381/is5219sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812047381/is5219Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812047381/is5219Isup3.cml
To a solution of methyl 2-(2-nitrophenyl)acetate (2 g, 10.14 mmol) in methanol (20 mL), hydrazine hydrate (2 mL) was added and the reaction mixture was stirred at room temperature for 8 hours (Fig. 3). After the completion of the reaction, methanol was removed under vacuum, water was added, precipitated solid was filtered and dried. The single crystal was grown from mixture methanol: water (2:1) by slow evaporation method and yield of the compound was 95%. (m.p.: 422-424 K).
Atoms H1A, H1B and H2 were refined with a bond-length restraint N—H = 0.86 (2) Å. All remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH) and 0.97 Å (CH2). Isotropic displacement parameters were set to 1.2 times Ueq of the parent atom. The
0.3 (3) and the Hooft y parameter of 0.45 (18) imply that the crystal used was an inversion twin.Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C8H9N3O3 | F(000) = 204 |
Mr = 195.18 | Dx = 1.468 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2yb | Cell parameters from 1694 reflections |
a = 6.6962 (5) Å | θ = 3.3–32.5° |
b = 4.9388 (4) Å | µ = 0.98 mm−1 |
c = 13.3593 (12) Å | T = 173 K |
β = 92.361 (8)° | Chunk, colorless |
V = 441.43 (6) Å3 | 0.36 × 0.28 × 0.08 mm |
Z = 2 |
Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer | 1967 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1824 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 89.1°, θmin = 7.3° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −6→6 |
Tmin = 0.667, Tmax = 0.925 | l = −17→17 |
3829 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0517P)2 + 0.016P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1967 reflections | Δρmax = 0.19 e Å−3 |
136 parameters | Δρmin = −0.17 e Å−3 |
4 restraints | Absolute structure: Flack (1983), 836 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.3 (3) |
C8H9N3O3 | V = 441.43 (6) Å3 |
Mr = 195.18 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 6.6962 (5) Å | µ = 0.98 mm−1 |
b = 4.9388 (4) Å | T = 173 K |
c = 13.3593 (12) Å | 0.36 × 0.28 × 0.08 mm |
β = 92.361 (8)° |
Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer | 1967 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | 1824 reflections with I > 2σ(I) |
Tmin = 0.667, Tmax = 0.925 | Rint = 0.025 |
3829 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | Δρmax = 0.19 e Å−3 |
S = 1.05 | Δρmin = −0.17 e Å−3 |
1967 reflections | Absolute structure: Flack (1983), 836 Friedel pairs |
136 parameters | Absolute structure parameter: 0.3 (3) |
4 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27090 (17) | 0.8745 (2) | 0.55928 (9) | 0.0360 (3) | |
O2 | 0.0246 (2) | 0.4300 (4) | 0.71073 (10) | 0.0632 (5) | |
O3 | −0.0790 (2) | 0.4790 (4) | 0.85895 (11) | 0.0576 (4) | |
N1 | 0.1751 (2) | 0.4904 (3) | 0.41437 (10) | 0.0360 (3) | |
H1A | 0.202 (3) | 0.660 (4) | 0.4013 (15) | 0.043* | |
H1B | 0.042 (2) | 0.494 (5) | 0.4186 (13) | 0.043* | |
N2 | 0.2580 (2) | 0.4374 (3) | 0.51138 (10) | 0.0318 (3) | |
H2 | 0.286 (3) | 0.275 (4) | 0.5269 (13) | 0.038* | |
N3 | 0.0398 (2) | 0.5265 (3) | 0.79401 (10) | 0.0358 (4) | |
C1 | 0.3052 (2) | 0.6316 (3) | 0.57676 (12) | 0.0274 (3) | |
C2 | 0.4158 (2) | 0.5384 (4) | 0.67189 (12) | 0.0338 (4) | |
H2A | 0.3753 | 0.3547 | 0.6868 | 0.041* | |
H2B | 0.5580 | 0.5363 | 0.6609 | 0.041* | |
C3 | 0.3777 (2) | 0.7162 (3) | 0.76100 (11) | 0.0290 (3) | |
C4 | 0.2066 (2) | 0.7141 (3) | 0.81839 (11) | 0.0293 (3) | |
C5 | 0.1834 (2) | 0.8801 (4) | 0.90089 (12) | 0.0358 (4) | |
H5 | 0.0682 | 0.8696 | 0.9372 | 0.043* | |
C6 | 0.3327 (3) | 1.0607 (4) | 0.92857 (13) | 0.0391 (4) | |
H6 | 0.3182 | 1.1750 | 0.9831 | 0.047* | |
C7 | 0.5050 (3) | 1.0703 (4) | 0.87408 (13) | 0.0392 (4) | |
H7 | 0.6064 | 1.1916 | 0.8922 | 0.047* | |
C8 | 0.5260 (2) | 0.9000 (4) | 0.79295 (12) | 0.0338 (4) | |
H8 | 0.6435 | 0.9080 | 0.7583 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0441 (6) | 0.0188 (6) | 0.0449 (7) | 0.0021 (5) | −0.0010 (5) | 0.0046 (5) |
O2 | 0.0697 (9) | 0.0736 (12) | 0.0466 (8) | −0.0375 (9) | 0.0085 (6) | −0.0133 (8) |
O3 | 0.0440 (7) | 0.0653 (11) | 0.0651 (9) | −0.0193 (7) | 0.0216 (6) | −0.0069 (8) |
N1 | 0.0431 (7) | 0.0306 (8) | 0.0346 (7) | −0.0004 (7) | 0.0062 (6) | 0.0013 (6) |
N2 | 0.0423 (7) | 0.0197 (7) | 0.0337 (7) | 0.0046 (6) | 0.0070 (5) | 0.0036 (6) |
N3 | 0.0339 (7) | 0.0332 (9) | 0.0405 (8) | −0.0061 (6) | 0.0037 (6) | 0.0013 (6) |
C1 | 0.0296 (7) | 0.0197 (8) | 0.0336 (8) | 0.0031 (6) | 0.0087 (6) | 0.0028 (6) |
C2 | 0.0387 (8) | 0.0261 (9) | 0.0369 (9) | 0.0096 (7) | 0.0048 (6) | 0.0034 (7) |
C3 | 0.0314 (7) | 0.0254 (8) | 0.0303 (7) | 0.0034 (6) | 0.0006 (6) | 0.0079 (7) |
C4 | 0.0288 (7) | 0.0242 (8) | 0.0347 (8) | −0.0011 (6) | 0.0007 (6) | 0.0043 (7) |
C5 | 0.0385 (8) | 0.0353 (10) | 0.0338 (8) | −0.0005 (8) | 0.0048 (6) | 0.0011 (7) |
C6 | 0.0509 (10) | 0.0333 (10) | 0.0330 (9) | −0.0026 (8) | −0.0003 (7) | −0.0012 (7) |
C7 | 0.0432 (9) | 0.0332 (10) | 0.0404 (9) | −0.0089 (8) | −0.0076 (7) | 0.0077 (8) |
C8 | 0.0300 (7) | 0.0351 (10) | 0.0362 (8) | −0.0023 (7) | 0.0003 (6) | 0.0095 (7) |
O1—C1 | 1.242 (2) | C2—H2B | 0.9700 |
O2—N3 | 1.2107 (19) | C3—C8 | 1.399 (2) |
O3—N3 | 1.2236 (18) | C3—C4 | 1.405 (2) |
N1—N2 | 1.413 (2) | C4—C5 | 1.387 (2) |
N1—H1A | 0.877 (16) | C5—C6 | 1.379 (3) |
N1—H1B | 0.898 (14) | C5—H5 | 0.9300 |
N2—C1 | 1.327 (2) | C6—C7 | 1.390 (3) |
N2—H2 | 0.845 (16) | C6—H6 | 0.9300 |
N3—C4 | 1.477 (2) | C7—C8 | 1.384 (3) |
C1—C2 | 1.516 (2) | C7—H7 | 0.9300 |
C2—C3 | 1.509 (2) | C8—H8 | 0.9300 |
C2—H2A | 0.9700 | ||
N2—N1—H1A | 106.5 (14) | C8—C3—C4 | 115.04 (15) |
N2—N1—H1B | 107.5 (12) | C8—C3—C2 | 118.50 (14) |
H1A—N1—H1B | 102 (2) | C4—C3—C2 | 126.45 (15) |
C1—N2—N1 | 122.93 (15) | C5—C4—C3 | 123.33 (15) |
C1—N2—H2 | 118.6 (13) | C5—C4—N3 | 115.94 (13) |
N1—N2—H2 | 118.3 (13) | C3—C4—N3 | 120.72 (14) |
O2—N3—O3 | 122.93 (16) | C6—C5—C4 | 119.47 (15) |
O2—N3—C4 | 118.92 (13) | C6—C5—H5 | 120.3 |
O3—N3—C4 | 118.13 (14) | C4—C5—H5 | 120.3 |
O1—C1—N2 | 122.50 (16) | C5—C6—C7 | 119.32 (16) |
O1—C1—C2 | 122.07 (16) | C5—C6—H6 | 120.3 |
N2—C1—C2 | 115.32 (15) | C7—C6—H6 | 120.3 |
C3—C2—C1 | 113.10 (14) | C8—C7—C6 | 120.18 (17) |
C3—C2—H2A | 109.0 | C8—C7—H7 | 119.9 |
C1—C2—H2A | 109.0 | C6—C7—H7 | 119.9 |
C3—C2—H2B | 109.0 | C7—C8—C3 | 122.65 (15) |
C1—C2—H2B | 109.0 | C7—C8—H8 | 118.7 |
H2A—C2—H2B | 107.8 | C3—C8—H8 | 118.7 |
N1—N2—C1—O1 | 3.6 (2) | O3—N3—C4—C5 | −18.1 (2) |
N1—N2—C1—C2 | −172.72 (13) | O2—N3—C4—C3 | −20.3 (2) |
O1—C1—C2—C3 | 32.4 (2) | O3—N3—C4—C3 | 160.87 (17) |
N2—C1—C2—C3 | −151.21 (14) | C3—C4—C5—C6 | 1.0 (2) |
C1—C2—C3—C8 | −103.44 (17) | N3—C4—C5—C6 | 179.95 (15) |
C1—C2—C3—C4 | 77.9 (2) | C4—C5—C6—C7 | −0.9 (3) |
C8—C3—C4—C5 | 0.0 (2) | C5—C6—C7—C8 | 0.0 (3) |
C2—C3—C4—C5 | 178.63 (16) | C6—C7—C8—C3 | 1.0 (3) |
C8—C3—C4—N3 | −178.96 (14) | C4—C3—C8—C7 | −1.0 (2) |
C2—C3—C4—N3 | −0.3 (2) | C2—C3—C8—C7 | −179.73 (16) |
O2—N3—C4—C5 | 160.74 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1i | 0.90 (1) | 2.21 (2) | 3.0752 (19) | 163 (2) |
N2—H2···O1ii | 0.85 (2) | 2.03 (2) | 2.8531 (18) | 165 (2) |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C8H9N3O3 |
Mr | 195.18 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 173 |
a, b, c (Å) | 6.6962 (5), 4.9388 (4), 13.3593 (12) |
β (°) | 92.361 (8) |
V (Å3) | 441.43 (6) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.98 |
Crystal size (mm) | 0.36 × 0.28 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.667, 0.925 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3829, 1967, 1824 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.096, 1.05 |
No. of reflections | 1967 |
No. of parameters | 136 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.17 |
Absolute structure | Flack (1983), 836 Friedel pairs |
Absolute structure parameter | 0.3 (3) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1i | 0.898 (14) | 2.207 (16) | 3.0752 (19) | 163 (2) |
N2—H2···O1ii | 0.845 (16) | 2.030 (18) | 2.8531 (18) | 164.6 (19) |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x, y−1, z. |
Acknowledgements
ASP thanks UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.
References
Ahmad, S., Jabbar, A., Hussain, M. T. & Tahir, M. N. (2012). Acta Cryst. E68, o2269. CSD CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Domiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281–286. CSD CrossRef CAS Web of Science Google Scholar
Dutkiewicz, G., Chidan Kumar, C. S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2009). Acta Cryst. E65, o3189. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kalsi, R., Shrimali, M., Bhalla, T. N. & Barthwal, J. P. (2006). Indian J. Pharm. Sci. 41, 353–359. Google Scholar
Liu, G. & Gao, J. (2012). Acta Cryst. E68, o1969. CSD CrossRef IUCr Journals Google Scholar
Masunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem. 15, 4229–4236. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, V., Srivastava, V. K., Palit, G. & Shanker, K. (1992). Arzneim. Forsch. Drug Res. 42, 993–996. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of hydrazides has been intensely investigated in recent years due to their excellent coordinating capability (Domiano et al., 1984). Hydrazides and their condensation products have displayed diverse range of biological properties such as anti-helmintic (Kalsi et al., 2006), anti-leprotic (Masunari & Tavares, 2007) and anti-depressant (Singh et al., 1992). The crystal structures of some hydrazides, viz., 2-(4-bromophenyl)acetohydrazide (Ahmad et al., 2012), 2-(4-chlorophenoxy)acetohydrazide (Dutkiewicz et al., 2009) and 2-(4-methoxyphenoxy)acetohydrazide (Liu & Gao, 2012) have been reported. In view of the importance of hydrazides, the crystal structure of title compound (I) is reported.
In the title compound, the dihedral angle between the benzene ring and acetohydrazide C2/C1/O1/N2/N1 plane is 87.62 (8)° (Fig. 1). The nitro group is twisted by 19.3 (2)° with the benzene ring. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, N—H···O hydrogen bonds (Table 1) link the molecules into a double-column structure along the b axis (Fig. 2).