organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,10-Di­iodo­phenanthrene

aDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp

(Received 10 October 2012; accepted 5 November 2012; online 10 November 2012)

The whole mol­ecule of the title compound, C14H8I2, is generated by crystallographic twofold symmetry. The mol­ecule is planar [maximum deviation = 0.0323 (6) Å] with the I atoms displaced from the mean plane of the phenanthrene ring system by only 0.0254 (5) Å. In the crystal, mol­ecules form face-to-face slipped anti­parallel ππ stacking inter­actions along the c axis with an inter­planar distance of 3.499 (7) Å.

Related literature

For the synthesis of the title compound, see: Rodrígeuz-Lojo et al. (2012[Rodrígeuz-Lojo, D., Cobas, A., Peña, D., Pérez, D. & Guitián, E. (2012). Org. Lett. 14, 1363-1365.]). For a related structure, see: Yokota et al. (2012[Yokota, R., Kitamura, C. & Kawase, T. (2012). Acta Cryst. E68, o3174.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8I2

  • Mr = 430

  • Monoclinic, C 2/c

  • a = 18.094 (2) Å

  • b = 9.4557 (14) Å

  • c = 7.4187 (10) Å

  • β = 111.953 (3)°

  • V = 1177.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.31 mm−1

  • T = 223 K

  • 0.52 × 0.08 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.388, Tmax = 0.869

  • 5595 measured reflections

  • 1345 independent reflections

  • 1077 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.12

  • 1345 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.92 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1999[Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

o-Diiodoarenes are valuable synthetic intermediates. We were able to obtain suitable single crystals of 9,10-diiodoophenanthrene, the title compound, by the recently published synthetic method of Rodrígeuz-Lojo et al. (2012). We report herein the crystal structure of C14H8I2, the title compound.

In the molecular structure of the title compound, (I), the mean plane of the arene ring displays a maximum deviation of 0.0323 (6) Å for I1 (Fig. 1). The molecule possesses C2 symmetry, and half of the formula unit is crystallographically independent. Bonds lengths and angles are in good agreement with the standard values. Crystal packing is stabilized by face-to-face, slipped, antiparrallel, π-π stacking along the direction of the c axis with an interplanar distance of 3.499 (7) Å (Fig. 2). Very recently, we have reported the crystal structure of 9,10-dibromophenanthrene (Yokota et al., 2012), the bromine analog of (I), which displays a similar packing arrangement.

Related literature top

For the synthesis of the title compound, see: Rodrígeuz-Lojo et al. (2012). For a related structure, see: Yokota et al. (2012).

Experimental top

The title compound was prepared according to the literature method (Rodrígeuz-Lojo et al., 2012) Single crystals suitable for X-ray analysis were obtained from a toluene-hexane solution.

Refinement top

All the aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and 40% probability displacement ellipsoids. Symmetry code: (i) -x + 1, y, -z + 1.5.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed along the b axis. Hydrogen atoms have been omitted for clarity.
9,10-diiodophenanthrene top
Crystal data top
C14H8I2F(000) = 792
Mr = 430Dx = 2.426 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3465 reflections
a = 18.094 (2) Åθ = 3.1–27.5°
b = 9.4557 (14) ŵ = 5.31 mm1
c = 7.4187 (10) ÅT = 223 K
β = 111.953 (3)°Needle, colorless
V = 1177.2 (3) Å30.52 × 0.08 × 0.05 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1345 independent reflections
Radiation source: fine-focus sealed x-ray tube1077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 2322
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1212
Tmin = 0.388, Tmax = 0.869l = 89
5595 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0077P)2 + 13.1956P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1345 reflectionsΔρmax = 0.92 e Å3
73 parametersΔρmin = 0.92 e Å3
0 restraints
Crystal data top
C14H8I2V = 1177.2 (3) Å3
Mr = 430Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.094 (2) ŵ = 5.31 mm1
b = 9.4557 (14) ÅT = 223 K
c = 7.4187 (10) Å0.52 × 0.08 × 0.05 mm
β = 111.953 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1345 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
1077 reflections with I > 2σ(I)
Tmin = 0.388, Tmax = 0.869Rint = 0.030
5595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0077P)2 + 13.1956P]
where P = (Fo2 + 2Fc2)/3
1345 reflectionsΔρmax = 0.92 e Å3
73 parametersΔρmin = 0.92 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3399 (3)0.4417 (6)0.4793 (7)0.0368 (12)
H10.31270.35640.43320.044*
C20.3020 (3)0.5667 (8)0.4155 (8)0.0470 (15)
H20.24880.56690.32750.056*
C30.3408 (3)0.6927 (7)0.4781 (9)0.0467 (15)
H30.31460.77860.43060.056*
C40.4171 (4)0.6931 (6)0.6089 (8)0.0424 (13)
H40.44260.780.65290.051*
C50.4587 (3)0.5675 (5)0.6798 (7)0.0289 (10)
C60.4192 (3)0.4383 (5)0.6137 (7)0.0261 (9)
C70.4618 (3)0.3079 (5)0.6846 (7)0.0281 (10)
I10.40244 (3)0.11933 (4)0.58098 (7)0.05783 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (2)0.051 (3)0.029 (3)0.003 (2)0.008 (2)0.001 (2)
C20.026 (3)0.078 (4)0.034 (3)0.012 (3)0.007 (2)0.010 (3)
C30.038 (3)0.057 (4)0.048 (3)0.024 (3)0.019 (3)0.020 (3)
C40.048 (3)0.040 (3)0.048 (3)0.012 (2)0.028 (3)0.008 (3)
C50.030 (2)0.030 (2)0.031 (3)0.0021 (19)0.017 (2)0.0012 (19)
C60.023 (2)0.035 (2)0.024 (2)0.0010 (18)0.0126 (18)0.0001 (18)
C70.033 (2)0.026 (2)0.025 (2)0.0029 (18)0.010 (2)0.0020 (18)
I10.0670 (3)0.0402 (2)0.0526 (3)0.01527 (19)0.0067 (2)0.00726 (18)
Geometric parameters (Å, º) top
C1—C21.359 (8)C4—C51.399 (7)
C1—C61.409 (7)C4—H40.94
C1—H10.94C5—C61.408 (7)
C2—C31.372 (9)C5—C5i1.467 (10)
C2—H20.94C6—C71.445 (6)
C3—C41.359 (8)C7—C7i1.360 (9)
C3—H30.94C7—I12.075 (5)
C2—C1—C6120.9 (5)C5—C4—H4119.1
C2—C1—H1119.6C4—C5—C6118.2 (5)
C6—C1—H1119.6C4—C5—C5i121.9 (3)
C1—C2—C3120.7 (5)C6—C5—C5i119.8 (3)
C1—C2—H2119.7C5—C6—C1118.5 (5)
C3—C2—H2119.7C5—C6—C7118.7 (4)
C4—C3—C2119.9 (5)C1—C6—C7122.8 (5)
C4—C3—H3120.1C7i—C7—C6121.5 (3)
C2—C3—H3120.1C7i—C7—I1120.77 (13)
C3—C4—C5121.8 (6)C6—C7—I1117.8 (3)
C3—C4—H4119.1
C6—C1—C2—C31.1 (8)C5i—C5—C6—C70.9 (8)
C1—C2—C3—C41.6 (9)C2—C1—C6—C50.4 (7)
C2—C3—C4—C51.4 (9)C2—C1—C6—C7179.6 (5)
C3—C4—C5—C60.7 (8)C5—C6—C7—C7i1.2 (8)
C3—C4—C5—C5i179.7 (6)C1—C6—C7—C7i179.6 (6)
C4—C5—C6—C10.2 (7)C5—C6—C7—I1179.0 (3)
C5i—C5—C6—C1179.8 (5)C1—C6—C7—I10.2 (6)
C4—C5—C6—C7179.5 (5)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H8I2
Mr430
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)18.094 (2), 9.4557 (14), 7.4187 (10)
β (°) 111.953 (3)
V3)1177.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.31
Crystal size (mm)0.52 × 0.08 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.388, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
5595, 1345, 1077
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.12
No. of reflections1345
No. of parameters73
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0077P)2 + 13.1956P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.92, 0.92

Computer programs: RAPID-AUTO (Rigaku, 1999), PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the JSPS and MEXT.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRodrígeuz-Lojo, D., Cobas, A., Peña, D., Pérez, D. & Guitián, E. (2012). Org. Lett. 14, 1363–1365.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYokota, R., Kitamura, C. & Kawase, T. (2012). Acta Cryst. E68, o3174.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds