organic compounds
9,10-Diiodophenanthrene
aDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp
The whole molecule of the title compound, C14H8I2, is generated by crystallographic twofold symmetry. The molecule is planar [maximum deviation = 0.0323 (6) Å] with the I atoms displaced from the mean plane of the phenanthrene ring system by only 0.0254 (5) Å. In the crystal, molecules form face-to-face slipped antiparallel π–π stacking interactions along the c axis with an interplanar distance of 3.499 (7) Å.
Related literature
For the synthesis of the title compound, see: Rodrígeuz-Lojo et al. (2012). For a related structure, see: Yokota et al. (2012).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 1999); cell PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812045758/jj2155sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812045758/jj2155Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812045758/jj2155Isup3.cml
The title compound was prepared according to the literature method (Rodrígeuz-Lojo et al., 2012) Single crystals suitable for X-ray analysis were obtained from a toluene-hexane solution.
All the aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C).
Data collection: RAPID-AUTO (Rigaku, 1999); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C14H8I2 | F(000) = 792 |
Mr = 430 | Dx = 2.426 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3465 reflections |
a = 18.094 (2) Å | θ = 3.1–27.5° |
b = 9.4557 (14) Å | µ = 5.31 mm−1 |
c = 7.4187 (10) Å | T = 223 K |
β = 111.953 (3)° | Needle, colorless |
V = 1177.2 (3) Å3 | 0.52 × 0.08 × 0.05 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 1345 independent reflections |
Radiation source: fine-focus sealed x-ray tube | 1077 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 3.5° |
ω scans | h = −23→22 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −12→12 |
Tmin = 0.388, Tmax = 0.869 | l = −8→9 |
5595 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0077P)2 + 13.1956P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
1345 reflections | Δρmax = 0.92 e Å−3 |
73 parameters | Δρmin = −0.92 e Å−3 |
0 restraints |
C14H8I2 | V = 1177.2 (3) Å3 |
Mr = 430 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.094 (2) Å | µ = 5.31 mm−1 |
b = 9.4557 (14) Å | T = 223 K |
c = 7.4187 (10) Å | 0.52 × 0.08 × 0.05 mm |
β = 111.953 (3)° |
Rigaku R-AXIS RAPID diffractometer | 1345 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 1077 reflections with I > 2σ(I) |
Tmin = 0.388, Tmax = 0.869 | Rint = 0.030 |
5595 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0077P)2 + 13.1956P] where P = (Fo2 + 2Fc2)/3 |
1345 reflections | Δρmax = 0.92 e Å−3 |
73 parameters | Δρmin = −0.92 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3399 (3) | 0.4417 (6) | 0.4793 (7) | 0.0368 (12) | |
H1 | 0.3127 | 0.3564 | 0.4332 | 0.044* | |
C2 | 0.3020 (3) | 0.5667 (8) | 0.4155 (8) | 0.0470 (15) | |
H2 | 0.2488 | 0.5669 | 0.3275 | 0.056* | |
C3 | 0.3408 (3) | 0.6927 (7) | 0.4781 (9) | 0.0467 (15) | |
H3 | 0.3146 | 0.7786 | 0.4306 | 0.056* | |
C4 | 0.4171 (4) | 0.6931 (6) | 0.6089 (8) | 0.0424 (13) | |
H4 | 0.4426 | 0.78 | 0.6529 | 0.051* | |
C5 | 0.4587 (3) | 0.5675 (5) | 0.6798 (7) | 0.0289 (10) | |
C6 | 0.4192 (3) | 0.4383 (5) | 0.6137 (7) | 0.0261 (9) | |
C7 | 0.4618 (3) | 0.3079 (5) | 0.6846 (7) | 0.0281 (10) | |
I1 | 0.40244 (3) | 0.11933 (4) | 0.58098 (7) | 0.05783 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.029 (2) | 0.051 (3) | 0.029 (3) | 0.003 (2) | 0.008 (2) | 0.001 (2) |
C2 | 0.026 (3) | 0.078 (4) | 0.034 (3) | 0.012 (3) | 0.007 (2) | 0.010 (3) |
C3 | 0.038 (3) | 0.057 (4) | 0.048 (3) | 0.024 (3) | 0.019 (3) | 0.020 (3) |
C4 | 0.048 (3) | 0.040 (3) | 0.048 (3) | 0.012 (2) | 0.028 (3) | 0.008 (3) |
C5 | 0.030 (2) | 0.030 (2) | 0.031 (3) | 0.0021 (19) | 0.017 (2) | 0.0012 (19) |
C6 | 0.023 (2) | 0.035 (2) | 0.024 (2) | 0.0010 (18) | 0.0126 (18) | 0.0001 (18) |
C7 | 0.033 (2) | 0.026 (2) | 0.025 (2) | −0.0029 (18) | 0.010 (2) | −0.0020 (18) |
I1 | 0.0670 (3) | 0.0402 (2) | 0.0526 (3) | −0.01527 (19) | 0.0067 (2) | −0.00726 (18) |
C1—C2 | 1.359 (8) | C4—C5 | 1.399 (7) |
C1—C6 | 1.409 (7) | C4—H4 | 0.94 |
C1—H1 | 0.94 | C5—C6 | 1.408 (7) |
C2—C3 | 1.372 (9) | C5—C5i | 1.467 (10) |
C2—H2 | 0.94 | C6—C7 | 1.445 (6) |
C3—C4 | 1.359 (8) | C7—C7i | 1.360 (9) |
C3—H3 | 0.94 | C7—I1 | 2.075 (5) |
C2—C1—C6 | 120.9 (5) | C5—C4—H4 | 119.1 |
C2—C1—H1 | 119.6 | C4—C5—C6 | 118.2 (5) |
C6—C1—H1 | 119.6 | C4—C5—C5i | 121.9 (3) |
C1—C2—C3 | 120.7 (5) | C6—C5—C5i | 119.8 (3) |
C1—C2—H2 | 119.7 | C5—C6—C1 | 118.5 (5) |
C3—C2—H2 | 119.7 | C5—C6—C7 | 118.7 (4) |
C4—C3—C2 | 119.9 (5) | C1—C6—C7 | 122.8 (5) |
C4—C3—H3 | 120.1 | C7i—C7—C6 | 121.5 (3) |
C2—C3—H3 | 120.1 | C7i—C7—I1 | 120.77 (13) |
C3—C4—C5 | 121.8 (6) | C6—C7—I1 | 117.8 (3) |
C3—C4—H4 | 119.1 | ||
C6—C1—C2—C3 | 1.1 (8) | C5i—C5—C6—C7 | −0.9 (8) |
C1—C2—C3—C4 | −1.6 (9) | C2—C1—C6—C5 | −0.4 (7) |
C2—C3—C4—C5 | 1.4 (9) | C2—C1—C6—C7 | −179.6 (5) |
C3—C4—C5—C6 | −0.7 (8) | C5—C6—C7—C7i | 1.2 (8) |
C3—C4—C5—C5i | 179.7 (6) | C1—C6—C7—C7i | −179.6 (6) |
C4—C5—C6—C1 | 0.2 (7) | C5—C6—C7—I1 | −179.0 (3) |
C5i—C5—C6—C1 | 179.8 (5) | C1—C6—C7—I1 | 0.2 (6) |
C4—C5—C6—C7 | 179.5 (5) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C14H8I2 |
Mr | 430 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 223 |
a, b, c (Å) | 18.094 (2), 9.4557 (14), 7.4187 (10) |
β (°) | 111.953 (3) |
V (Å3) | 1177.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.31 |
Crystal size (mm) | 0.52 × 0.08 × 0.05 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.388, 0.869 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5595, 1345, 1077 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.083, 1.12 |
No. of reflections | 1345 |
No. of parameters | 73 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0077P)2 + 13.1956P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.92, −0.92 |
Computer programs: RAPID-AUTO (Rigaku, 1999), PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported by Grants-in-Aid for Scientific Research from the JSPS and MEXT.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rodrígeuz-Lojo, D., Cobas, A., Peña, D., Pérez, D. & Guitián, E. (2012). Org. Lett. 14, 1363–1365. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yokota, R., Kitamura, C. & Kawase, T. (2012). Acta Cryst. E68, o3174. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
o-Diiodoarenes are valuable synthetic intermediates. We were able to obtain suitable single crystals of 9,10-diiodoophenanthrene, the title compound, by the recently published synthetic method of Rodrígeuz-Lojo et al. (2012). We report herein the crystal structure of C14H8I2, the title compound.
In the molecular structure of the title compound, (I), the mean plane of the arene ring displays a maximum deviation of 0.0323 (6) Å for I1 (Fig. 1). The molecule possesses C2 symmetry, and half of the formula unit is crystallographically independent. Bonds lengths and angles are in good agreement with the standard values. Crystal packing is stabilized by face-to-face, slipped, antiparrallel, π-π stacking along the direction of the c axis with an interplanar distance of 3.499 (7) Å (Fig. 2). Very recently, we have reported the crystal structure of 9,10-dibromophenanthrene (Yokota et al., 2012), the bromine analog of (I), which displays a similar packing arrangement.